Morphological Traits and Biomass Allocation of Leymus secalinus along Habitat Gradient in a Floodplain Wetland of the Heihe River, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Experimental Method and Design
2.2.1. Measurement of the Leaf and Stem Traits of L. secalinus
2.2.2. Measurement of the Root Morphological Traits and Organ Biomass of L. secalinus
2.2.3. Measurement of Soil Properties (Moisture Content, Soil Bulk Density, Soil Salinity, and pH)
2.3. Statistical Analysis
3. Results
3.1. Soil Properties of Each Habitat
3.2. Plant Community Traits in Each Habitat
3.3. Population Traits of L. secalinus
3.4. Analysis of the Biomass Ratio of L. secalinus Roots, Stems and Leaves
3.5. Functional Traits of L. secalinus in Each Habitat
3.6. Effects of Environmental Factors on L. secalinus Functional Traits
3.7. Correlations between the Root, Stem and Leaf Morphological Characteristics and Biomass Allocation of L. secalinus
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Garssen, A.G.; Baattrup-Pedersen, A.; Voesenek, L.A.C.J.; Verhoeven, J.T.A.; Soons, M.B. Riparian plant community responses to increased flooding: A meta-analysis. Glob. Chang. Biol. 2015, 21, 2881–2890. [Google Scholar] [CrossRef]
- Popoff, N.; Jaunatre, R.; Bouteiller, C.L.; Trinquier, M.; Paillet, Y.; Evette, A. Ecological succession and fine sediment accretion influence local patch dynamics of a pioneer riparian species (Typha minima Hoppe). Freshw. Biol. 2021, 66, 2351–2363. [Google Scholar] [CrossRef]
- Han, L.; Wang, H.Z.; Yu, J. Research progress and prospects on riparian zone ecology. Ecol. Environ. Sci. 2013, 22, 879–886. [Google Scholar] [CrossRef]
- Tabacchi, E.; Lambs, L.; Guilloy, H.; Planty-Tabacchi, A.-M.; Muller, E.; Décamps, H. Impacts of riparian vegetation on hydrological processes. Hydrol. Process. 2000, 14, 2959–2976. [Google Scholar] [CrossRef]
- Tikssa, M.; Bekele, T.; Kelbessa, E. Plant community distribution and variation along the Awash river corridor in the main Ethiopian rift. Afr. J. Ecol. 2010, 48, 21–28. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, C.Z.; Wen, J.; Kang, M.P.; Li, X.Y. Fractal analysis of root architecture responses of Saussurea salsa to a gradient of flooding intensity and salinity. Plant Soil 2022, 471, 669–683. [Google Scholar] [CrossRef]
- Liang, S.C.; Liu, R.H.; Rong, C.Y.; Chang, B.; Jiang, Y. Variation and correlation of plant functional traits in the riparian zone of the Lijiang River, Guilin, Southwest China. Chin. J. Plant Ecol. 2019, 43, 16–26. [Google Scholar] [CrossRef]
- Mensah, S.; Glèlè Kakaï, R.; Seifert, T. Patterns of biomass allocation between foliage and woody structure: The effects of tree size and specific functional traits. Ann. For. Res. 2016, 59, 49–60. [Google Scholar] [CrossRef]
- Hecht, V.L.; Temperton, V.M.; Nagel, K.A.; Rascher, U.; Pude, R.; Postma, J.A. Plant density modifies root system architecture in spring barley (Hordeum vulgare L.) through a change in nodal root number. Plant Soil 2019, 439, 179–200. [Google Scholar] [CrossRef]
- Freschet, G.T.; Violle, C.; Bourget, M.Y.; Scherer-Lorenzen, M.; Fort, F. Allocation, morphology, physiology, architecture: The multiple facets of plant above- and below-ground responses to resource stress. New Phytol. 2018, 219, 1338–1352. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, C.Z.; Kang, M.P.; Li, X.Y. The relationship of the main root-shoot morphological characteristics and biomass allocation of Saussurea salsa under different habitat conditions in Sugan lake wetland on the northern margin of the Qinghai-Tibet Plateau. Ecol. Indic. 2021, 128, 107836. [Google Scholar] [CrossRef]
- Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytol. 2012, 193, 30–50. [Google Scholar] [CrossRef] [PubMed]
- Pallas, B.; Da Silva, D.; Valsesia, P.; Yang, W.; Guillaume, O.; Lauri, P.-E.; Vercambre, G.; Génard, M.; Costes, E. Simulation of carbon allocation and organ growth variability in apple tree by connecting architectural and source-sink models. Ann. Bot. 2016, 118, 317–330. [Google Scholar] [CrossRef]
- Lavorel, S.; Grigulis, K.; Lamarque, P.; Colace, M.P.; Garden, D.; Girel, J.; Pellet, G.; Douzet, R. Using plant functional traits to understand the landscape distribution of multiple ecosystem services. J. Ecol. 2011, 99, 135–147. [Google Scholar] [CrossRef]
- Moor, H.; Rydin, H.; Hylander, K.; Nilsson, M.B.; Lindborg, R.; Norberg, J. Towards a trait based ecology of wetland vegetation. J. Ecol. 2017, 105, 1623–1635. [Google Scholar] [CrossRef]
- Dawson, S.K.; Warton, D.I.; Kingsford, R.T.; Berney, P.; Keith, D.A.; Catford, J.A. Plant traits of propagule banks and standing vegetation reveal flooding alleviates impacts of agriculture on wetland restoration. J. Appl. Ecol. 2017, 54, 1907–1918. [Google Scholar] [CrossRef]
- Fu, H.; Yuan, G.X.; Cao, T.; Ni, L.Y.; Zhang, X.L. Clonal growth and foraging behavior of a submerged macrophyte Vallisneria natans in response to water depth gradient. J. Lake Sci. 2012, 24, 705–711. [Google Scholar] [CrossRef]
- Hanke, J.M.; Ludewig, K.; Jensen, K. Effects of water level and competition on the endangered river corridor plant Cnidium dubium in the context of climate change. Wetl. Ecol. Manag. 2015, 23, 215–226. [Google Scholar] [CrossRef]
- Deng, J.M.; Li, T.; Wang, G.X.; Liu, J.; Yu, Z.L.; Zhao, C.M.; Ji, M.F.; Zhang, Q.; Liu, J.Q. Trade-offs between the metabolic rate and population density of plants. PLoS ONE 2008, 3, e1799. [Google Scholar] [CrossRef]
- Westoby, M.; Falster, D.S.; Moles, A.T.; Vesk, P.A.; Wright, I.J. Plant ecological strategies: Some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 2002, 33, 125–159. [Google Scholar] [CrossRef]
- Garnier, E.; Navas, M.L. A trait-based approach to comparative functional plant ecology: Concepts, methods and applications for agroecology: A review. Agron. Sustain. Dev. 2012, 32, 365–399. [Google Scholar] [CrossRef]
- Plaza-Bonilla, D.; Álvaro-Fuentes, J.; Hansen, N.C.; Lampurlanés, J.; Cantero-Martínez, C. Winter cereal root growth and aboveground-belowground biomass ratios as affected by site and tillage system in dry land Mediterranean conditions. Plant Soil 2014, 374, 925–939. [Google Scholar] [CrossRef]
- Zhong, F.; Wang, H.C.; Li, J.N.; Duan, Z.H. Influence of Water-Heat Condition on Distribution of Platycladus orientalis (L)Franco Roots in Southern and Northern Mountains of Lanzhou City. J. Desert Res. 2006, 26, 559–563. [Google Scholar]
- Baastrup-Spohr, L.; Sand-Jensen, K.; Nicolajsen, S.V.; Bruun, H.H. From soaking wet to bone dry: Predicting plant community composition along a steep hydrological gradient. J. Veg. Sci. 2015, 26, 619–630. [Google Scholar] [CrossRef]
- Zhao, G.S.; Liu, M.; Shi, P.L.; Zong, N.; Zhang, X.; Zhang, X.Z. Variation of leaf and root traits and ecological adaptive strategies along a precipitation gradient on Changtang Plateau. Acta Ecol. Sin. 2020, 40, 295–309. [Google Scholar] [CrossRef]
- Enquist, B.J.; Niklas, K.J. Global allocation rules for patterns of biomass partitioning in seed plants. Science 2002, 295, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Freschet, G.T.; Cornelissen, J.H.C.; van Logtestijn, R.S.P.; Aerts, R. Evidence of the ‘plant economics spectrum’ in a subarctic flora. J. Ecol. 2010, 98, 362–373. [Google Scholar] [CrossRef]
- Laughlin, D.C.; Leppert, J.J.; Moore, M.M.; Sieg, C.H. A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Funct. Ecol. 2010, 24, 493–501. [Google Scholar] [CrossRef]
- Liu, G.; Freschet, G.T.; Pan, X.; Cornelissen, J.H.C.; Li, Y.; Dong, M. Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems. New Phytol. 2010, 188, 543–553. [Google Scholar] [CrossRef]
- Freschet, G.T.; Bellingham, P.J.; Lyver, P.O.B.; Bonner, K.I.; Wardle, D.A. Plasticity in above- and belowground resource acquisition traits in response to single and multiple environmental factors in three tree species. Ecol. Evol. 2013, 3, 1065–1078. [Google Scholar] [CrossRef]
- Pigliucci, M.; Murren, C.J.; Schlichting, C.D. Phenotypic plasticity and evolution by genetic assimilation. J. Exp. Biol. 2006, 209, 2362–2367. [Google Scholar] [CrossRef] [PubMed]
- Dong, M. Effect of severing Rhizome on clonal growth in rhizomatous grass species Psammochloa villosa and Leymus secalinus. Acta Bot. Sin. 1999, 41, 194–198. [Google Scholar]
- Du, L.X.; Zhu, H.L.; Dong, K.H.; Fan, P.P.; Sun, J.P. Effects of salt stress on the ions uptake and transport of Leymus secalinus seeding. Acta Agrestia Sin. 2015, 23, 510–516. [Google Scholar]
- Zhu, Y.J.; Ye, X.H.; Chu, Y.; Gao, S.Q.; Dong, M. Effects of precipitation on clonal plant distribution on Ordos Plateau. Acta Ecol. Sin. 2020, 40, 952–963. [Google Scholar] [CrossRef]
- Liu, L.; Bai, Y.X.; Qiao, Y.G.; Miao, C.; She, W.W.; Qin, S.G.; Zhang, Y.Q. Water-use characteristics of two dominant plant species in different community types in the Mu Us Desert. CATENA 2023, 221, 106803. [Google Scholar] [CrossRef]
- Yi, J.; Gu, A.L.; Jia, G.H.; Wu, X. Studies on the drought hardiness in seeding of Leymus Hochst. J. Arid Land Resour. Environ. 2001, 15, 41–46. [Google Scholar]
- Qi, B.J.; Yi, J.; Gu, A.L.; Yuan, J.Z. Studies on the salt hardiness in seeds and seeding of Leymus Hochst. J. Arid Land Resour. Environ. 2001, 15, 41–46. [Google Scholar]
- Yi, J.; Li, Q.F.; Tian, R.H. Seed dormancy and hormone control of germination in Leymus Hochst. Acta Agreatia Sin. 1997, 5, 93–100. [Google Scholar] [CrossRef]
- Yang, Y.F.; Zhang, B.T. Clone growth and its age structure of Leymus secalimus modules in the Songnen Plain of China. Chin. J. Appl. Ecol. 2004, 11, 2109–2112. [Google Scholar] [CrossRef]
- Sha, L.N.; Liang, X.; Tang, Y.; Xu, J.Q.; Chen, W.J.; Cheng, Y.R.; Wu, D.D.; Zhang, Y.; Wang, Y.; Kang, H.Y.; et al. Evolutionary patterns of plastome resolve multiple origins of the Ns-containing polyploid species in Triticeae. Mol. Phylogenetics Evol. 2022, 175, 107591. [Google Scholar] [CrossRef]
- Zhang, W.H.; Liu, D.L.; Miao, Y.J.; Xu, Y.M.; Chen, M.H.; Shao, J. Comparison of drought resistance of wild Leymus secalinus and Elymus nutans in Tibet. Pratacultural Sci. 2017, 34, 1255–1263. [Google Scholar] [CrossRef]
- Han, L.; Zhao, C.Z.; Feng, W.; Zheng, H.L.; Duan, B.B. Trade-off relationship between vein density and vein diameter of Achnatherum splendens in response to habitat changes in Zhangye wetland. Chin. J. Plant Ecol. 2017, 41, 872–881. [Google Scholar] [CrossRef]
- Geng, H.L.; Wang, Y.H.; Wang, F.Y.; Jia, B.R. The dynamics of root-shoot ratio and its environmental effective factors of recovering Leymus chinensis steppe vegetation in Inner Mongolia. Acta Ecol. Sin. 2008, 28, 4629–4634. [Google Scholar] [CrossRef]
- Li, Q.; Jun, W.; Zhao, C.Z.; Zhao, L.C.; Dan, K. The relationship between the main leaf traits and photosynthetic physiological characteristics of Phragmites australis under different habitats of a salt marsh at Qinwangchuan, China. AoB Plants 2022, 14, plac054. [Google Scholar] [CrossRef]
- Garnier, E.; Stahl, U.; Laporte, M.A.; Kattge, J.; Mougenot, I.; Kühn, I.; Laporte, B.; Amiaud, B.; Ahrestani, F.S.; Bönisch, G.; et al. Towards a thesaurus of plant characteristics: An ecological contribution. J. Ecol. 2017, 105, 298–309. [Google Scholar] [CrossRef]
- Meng, T.T.; Ni, J.; Wang, G.H. Plant functional traits, enviroments and ecosystem functioning. J. Plant Ecol. 2007, 31, 150–165. [Google Scholar]
- Violle, C.; Navas, M.L.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I.; Garnier, E. Let the concept of trait be functional! Oikos 2007, 116, 882–892. [Google Scholar] [CrossRef]
- Kattge, J.; Diaz, S.; Lavorel, S.; Prentice, I.C.; Leadley, P.; Bönisch, G.; Garnier, E.; Westoby, M.; Reich, P.B.; Wright, I.J.; et al. TRY—A global database of plant traits. Glob. Chang. Biol. 2011, 17, 2905–2935. [Google Scholar] [CrossRef]
- Kenney, A.M.; McKay, J.K.; Richards, J.H.; Juenger, T.E. Direct and indirect selection on flowering time, water-use efficiency (WUE, δ13C), and WUE plasticity to drought in Arabidopsis thaliana. Ecol. Evol. 2014, 4, 4505–4521. [Google Scholar] [CrossRef]
- Roumet, C.; Birouste, M.; Picon-Cochard, C.; Ghestem, M.; Osman, N.; Vrignon-Brenas, S.; Stokes, A. Root structure-function relationships in 74 species: Evidence of a root economics spectrum related to carbon economy. New Phytol. 2016, 210, 815–826. [Google Scholar] [CrossRef]
- Kleyer, M.; Minden, V. Why functional ecology should consider all plant organs: An allocation-based perspective. Basic Appl. Ecol. 2015, 16, 1–9. [Google Scholar] [CrossRef]
- Dang, J.J.; Zhao, C.Z.; Li, Y.; Hou, Z.J.; Dong, X.G. G Variations with slope in stem and leaf traits of Melica przewalskyi in alpine grassland. Chin. J. Plant Ecol. 2014, 38, 1307–1314. [Google Scholar]
- Pierce, S.; Negreiros, D.; Cerabolini, B.E.L.; Kattge, J.; Díaz, S.; Kleyer, M.; Tampucci, D. A global method for calculating plant CSR ecological strategies applied across biomes world-wide. Funct. Ecol. 2016, 31, 444–457. [Google Scholar] [CrossRef]
Plot | I | II | III |
---|---|---|---|
Main species | Phragmites australis, Leymus secalinus, Achnatherum splendens, Myricaria bracteata | Leymus secalinus, Achnatherum splendens, Sophora alopecuroides | Leymus secalinus, Achnatherum splendens |
Average height (cm) | 73.4 ± 3.7 a | 37.5 ± 0.9 c | 43.4 ± 2.2 b |
Coverage (%) | 81 ± 4 a | 56 ± 3 b | 39 ± 2 c |
Density (plants/m2) | 61 ± 3 a | 34 ± 2 b | 29 ± 1 c |
Plot | I | II | III |
---|---|---|---|
Leaf area (cm2) | 0.97 ± 0.09 b | 1.17 ± 0.03 a | 1.22 ± 0.06 a |
Leaf thickness (mm) | 0.48 ± 0.01 a | 0.39 ± 0.01 b | 0.37 ± 0.01 b |
Specific leaf area (cm2/g) | 0.99 ± 0.10 a | 0.86 ± 0.03 b | 0.85 ± 0.04 b |
Stem length (cm) | 31.26 ± 2.09 a | 23.38± 0.65 b | 10.18 ± 0.42 b |
Stem diameter (mm) | 1.88 ± 0.10 b | 2.20 ± 0.14 a | 1.82 ± 0.07 b |
Rhizome diameter (mm) | 0.54 ± 0.03 c | 0.72 ± 0.02 b | 0.96 ± 0.03 a |
Rhizome length (cm) | 503.20 ± 7.74 b | 519.40 ± 7.85 a | 272.45 ± 5.57 c |
root surface area (cm2) | 80.75 ± 2.82 b | 117.70 ± 2.83 a | 84.22 ± 2.06 b |
Specific root length (cm/g) | 340.77 ± 24.67 a | 275.47 ± 11.62 b | 256.37± 8.16 b |
Stem biomass (g) | 0.39 ± 0.02 b | 0.27 ± 0.01 b | 0.20 ± 0.01 c |
Leaf biomass (g) | 1.01 ± 0.02 b | 1.41 ± 0.04 a | 1.50 ± 0.09 a |
Rhizome biomass (g) | 1.68 ± 0.09 b | 1.97 ± 0.06 a | 1.08± 0.02 c |
Root–shoot ratio | 1.75 ± 0.09 a | 1.07 ± 0.05 b | 0.55 ± 0.02 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, J.; Li, Q.; Zhao, C.; Kang, M. Morphological Traits and Biomass Allocation of Leymus secalinus along Habitat Gradient in a Floodplain Wetland of the Heihe River, China. Agronomy 2024, 14, 1899. https://doi.org/10.3390/agronomy14091899
Wen J, Li Q, Zhao C, Kang M. Morphological Traits and Biomass Allocation of Leymus secalinus along Habitat Gradient in a Floodplain Wetland of the Heihe River, China. Agronomy. 2024; 14(9):1899. https://doi.org/10.3390/agronomy14091899
Chicago/Turabian StyleWen, Jun, Qun Li, Chengzhang Zhao, and Manping Kang. 2024. "Morphological Traits and Biomass Allocation of Leymus secalinus along Habitat Gradient in a Floodplain Wetland of the Heihe River, China" Agronomy 14, no. 9: 1899. https://doi.org/10.3390/agronomy14091899
APA StyleWen, J., Li, Q., Zhao, C., & Kang, M. (2024). Morphological Traits and Biomass Allocation of Leymus secalinus along Habitat Gradient in a Floodplain Wetland of the Heihe River, China. Agronomy, 14(9), 1899. https://doi.org/10.3390/agronomy14091899