Canopy-Applied Benzothiadiazole (BTH) during the Pre-Harvest Period as a Tool to Increase Polyphenol Accumulation and Color Intensity in Cabernet Gernischt and Cabernet Franc
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vineyard Location, Grapevine Treatments, and Samples
2.2. Reagents and Chemicals
2.3. Analysis of Grape Juice Physical and Chemical Parameters
2.4. Analysis of Colorimetric Indexes in Grapes
2.5. Analysis of Phenols in Grapes by Spectrophotometry
2.6. Analysis of Anthocyanin Compounds in Grapes by UHPLC-QqQ-MS/MS
2.7. Analysis of Non-Anthocyanin Phenolics in Grapes by UHPLC-QqQ-MS/MS
2.8. Statistical Analysis
3. Results and Discussion
3.1. Impact of BTH Treatment on Physical and Chemical Parameters
3.2. Impact of BTH Treatment on Colorimetric Indexes in Grapes
3.3. Impact of BTH Treatment on Anthocyanin Compounds in Grapes
3.4. Impact of BTH Treatment on Non-Anthocyanin Phenolics in Grapes
3.5. Multivariable Analysis
3.5.1. Pearson Correlation Analysis of L*, a*, b*, and Anthocyanin Compounds
3.5.2. OPLS-DA Analysis of Phenols
3.5.3. Heatmap Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Full form |
BTH | Benzothiadiazole |
DAF | Days after flowering |
SKDH | Shikimate dehydrogenase |
TAL | Tyrosine ammonia-lyase |
DFR | Dihydroflavonol 4-reductase |
G6PDH | Glucose-6-phosphate dehydrogenase |
PAL | Phenylalanine ammonia-lyase |
C4H | Cinnamate-4-hydroxylase |
4CL | 4-coumaroyl-CoA ligase |
CHS | Chalcone synthase |
CHI | Chalcone isomerase |
FLS | Flavonol synthase |
LAR | Leucoanthocyanidin reductase |
ANS | Anthocyanidin synthase |
UFGT | UDP-glucose-flavonoid 3-O-glucosyltransferase |
F3′H | Flavonoids-3′-hydroxylase |
F3′5′H | Flavonoids-3′,5′-hydroxylase |
100-BW | 100-Berries weight |
TSS | Total soluble solids |
RS | Reducing sugars |
TA | Titratable acidity |
TP | Total phenols |
TFD | Total flavonoids |
TFL | Total flavanols |
TAN | Total anthocyanins |
TT | Total tannins |
OPLS-DA | Orthogonal partial least squares discriminant analysis |
VIP | Variable importance projection |
References
- Šikuten, I.; Štambuk, P.; Andabaka, Ž.; Tomaz, I.; Marković, Z.; Stupić, D.; Maletić, E.; Kontić, J.K.; Preiner, D. Grapevine as a Rich Source of Polyphenolic Compounds. Molecules 2020, 25, 5604. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Velasco, C.E.; Avila-Sosa, R.; Navarro-Cruz, A.R.; López-Malo, A.; Palou, E. Chapter 9-Biotic and Abiotic Factors to Increase Bioactive Compounds in Fruits and Vegetables. In Food Bioconversion; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 317–349. [Google Scholar]
- Xavier Machado, T.O.; Portugal, I.B.M.; Padilha, C.; Ferreira Padilha, F.; Dos Santos Lima, M. New Trends in the Use of Enzymes for the Recovery of Polyphenols in Grape Byproducts. J. Food Biochem. 2021, 45, e13712. [Google Scholar] [CrossRef] [PubMed]
- Tian, Q.; Xu, Z.; Sun, X.; Deavila, J.; Du, M.; Zhu, M. Grape Pomace Inhibits Colon Carcinogenesis by Suppressing Cell Proliferation and Inducing Epigenetic Modifications. J. Nutr. Biochem. 2020, 84, 108443. [Google Scholar] [CrossRef] [PubMed]
- Martins, I.M.; Macedo, G.A.; Macedo, J.A. Biotransformed Grape Pomace as a Potential Source of Anti-Inflammatory Polyphenolics: Effects in Caco-2 Cells. Food Biosci. 2020, 35, 100607. [Google Scholar] [CrossRef]
- Brown, J.C.; Jiang, X. Activities of Muscadine Grape Skin and Polyphenolic Constituents Against Helicobacter Pylori. J. Appl Microbiol. 2013, 114, 982–991. [Google Scholar] [CrossRef] [PubMed]
- Weaver, S.R.; Rendeiro, C.; McGettrick, H.M.; Philp, A.; Lucas, S.J.E. Fine Wine or Sour Grapes? A Systematic Review and Meta-Analysis of the Impact of Red Wine Polyphenols on Vascular Health. Eur. J. Nutr. 2021, 60, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Igrejas, G.; Falco, V.; Santos, T.P.; Torres, C.; Oliveira, A.M.P.; Pereira, J.E.; Amaral, J.S.; Poeta, P. Chemical Composition, Antioxidant and Antimicrobial Activity of Phenolic Compounds Extracted from Wine Industry by-Products. Food Control 2018, 92, 516–522. [Google Scholar] [CrossRef]
- Matsui, K. Green Leaf Volatiles: Hydroperoxide Lyase Pathway of Oxylipin Metabolism. Curr. Opin. Plant Biol. 2006, 9, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Costabel, M.; Wilkinson, K.; Bastian, S.; McCarthy, M.; Ford, C.; Dokoozlian, N. Seasonal and Regional Variation of Green Aroma Compounds in Commercial Vineyards of Vitis vinifera L. Merlot in California. Am. J. Enol. Vitic. 2013, 64, 430–436. [Google Scholar] [CrossRef]
- Oliveira, J.M.; Faria, M.; Sá, F.; Barros, F.; Araújo, I.M. C6-Alcohols as Varietal Markers for Assessment of Wine Origin. Anal. Chim. Acta 2006, 563, 300–309. [Google Scholar] [CrossRef]
- Yuan, F.; Qian, M.C. Development of C13-Norisoprenoids, Carotenoids and Other Volatile Compounds in Vitis vinifera L. Cv. Pinot Noir Grapes. Food Chem. 2016, 192, 633–641. [Google Scholar] [CrossRef]
- Robinson, A.L.; Boss, P.K.; Heymann, H.; Solomon, P.S.; Trengove, R.D. Influence of Yeast Strain, Canopy Management, and Site on the Volatile Composition and Sensory Attributes of Cabernet Sauvignon Wines from Western Australia. J. Agric. Food Chem. 2011, 59, 3273–3284. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.Q.; Cheng, G.; Duan, L.L.; Jiang, R.; Pan, Q.H.; Duan, C.Q.; Wang, J. Effect of Training Systems on Fatty Acids and Their Derived Volatiles in Cabernet Sauvignon Grapes and Wines of the North Foot of Mt. Tianshan. Food Chem. 2015, 181, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Trejo-Saavedra, D.L.; García-Neria, M.A.; Rivera-Bustamante, R.F. Benzothiadiazole (BTH) Induces Resistance to Pepper Golden Mosaic Virus (PepGMV) in Pepper (Capsicum annuum L.). Biol. Res. 2013, 46, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Wang, Y.; Li, C.; Wang, B.; Ma, L.; Ren, Y.; Bi, Y.; Li, Y.; Xue, H.; Prusky, D. The Effect of Benzo-(1,2,3)-Thiadiazole-7-Carbothioic Acid S-Methyl Ester (BTH) Treatment on Regulation of Reactive Oxygen Species Metabolism Involved in Wound Healing of Potato Tubers during Postharvest. Food Chem. 2020, 309, 125608. [Google Scholar] [CrossRef] [PubMed]
- Krome, K.; Kabsch, U.; Aumann, J. The Effect of Benzothiadiazole and Fungal Extracts of Cercospora beticola and Fusarium graminearum on Phosphoenolpyruvate Carboxylase Activity in Cucumber Leaves. J. Plant Dis. Protect. 2007, 114, 250–255. [Google Scholar] [CrossRef]
- Du, H.; Sun, Y.; Yang, R.; Zhang, W.; Wan, C.; Chen, J.; Kahramanoğlu, İ.; Zhu, L. Benzothiazole (BTH) Induced Resistance of Navel Orange Fruit and Maintained Fruit Quality during Storage. J. Food Qual. 2021, 2021, 6631507. [Google Scholar] [CrossRef]
- Huan, C.; Xu, Q.; Shuling, S.; Dong, J.; Zheng, X. Effect of Benzothiadiazole Treatment on Quality and Anthocyanin Biosynthesis in Plum Fruit during Storage at Ambient Temperature. J. Sci. Food Agric. 2021, 101, 3176–3185. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Xi, P.; Lin, Z.; Huang, J.; Lu, S.; Jiang, Z.; Qiao, F. Efficacy and Potential Mechanisms of Benzothiadiazole Inhibition on Postharvest Litchi Downy Blight. Postharvest Biol. Technol. 2021, 181, 111660. [Google Scholar] [CrossRef]
- Zhu, X.; Ma, K.; Yao, Y.; Song, Z.; Zhou, Y.; Si, Z.; Lu, H.; Chen, W.; Li, X. Benzothiadiazole Induced Changes in the Transcriptome and Regulation of Banana Fruit Ripening and Disease Resistance. Postharvest Biol. Technol. 2023, 196, 112161. [Google Scholar] [CrossRef]
- Skłodowska, M.; Gajewska, E.; Kuzniak, E.; Wielanek, M.; Mikiciński, A.; Sobiczewski, P. Antioxidant Profile and Polyphenol Oxidase Activities in Apple Leaves after Erwinia Amylovora Infection and Pretreatment with a Benzothiadiazole-Type Resistance Inducer (BTH). J. Phytopathol. 2011, 159, 495–504. [Google Scholar] [CrossRef]
- Li, X.; Bi, Y.; Wang, J.; Dong, B.; Li, H.; Gong, D.; Zhao, Y.; Tang, Y.; Yu, X.; Shang, Q. BTH Treatment Caused Physiological, Biochemical and Proteomic Changes of Muskmelon (Cucumis melo L.) Fruit during Ripening. J. Proteom. 2015, 120, 179–193. [Google Scholar] [CrossRef]
- Ding, X.; Zhu, X.; Zheng, W.; Li, F.; Xiao, S.; Duan, X. BTH Treatment Delays the Senescence of Postharvest Pitaya Fruit in Relation to Enhancing Antioxidant System and Phenylpropanoid Pathway. Foods 2021, 10, 846. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Yuan, Y.; Hu, Z.; Zheng, Y. Combination of Pichia Membranifaciens and Ammonium Molybdate for Controlling Blue Mould Caused by Penicillium Expansum in Peach Fruit. Int. J. Food Microbiol. 2010, 141, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.J.; Qiu, X.; Moore, P.H.; Borth, W.; Hu, J.; Ferreira, S.; Albert, H.H. Systemic Acquired Resistance Induced by BTH in Papaya. Physiol. Mol. Plant Pathol. 2003, 63, 237–248. [Google Scholar] [CrossRef]
- Cao, S.; Hu, Z.; Zheng, Y.; Lu, B. Effect of BTH on Anthocyanin Content and Activities of Related Enzymes in Strawberry after Harvest. J. Agric. Food Chem. 2010, 58, 5801–5805. [Google Scholar] [CrossRef] [PubMed]
- Paladines-Quezada, D.F.; Moreno-Olivares, J.D.; Fernández-Fernández, J.I.; Bleda-Sánchez, J.A.; Gil-Muñoz, R. Different Response of Proanthocyanidins from Vitis vinifera cv. Monastrell Depending on Time of Elicitor Application. J. Sci. Food Agric. 2023, 103, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Plaza, E.; Bautista-Ortín, A.B.; Ruiz-García, Y.; Fernández-Fernández, J.I.; Gil-Muñoz, R. Effect of Elicitors on the Evolution of Grape Phenolic Compounds during the Ripening Period. J. Sci. Food Agric. 2017, 97, 977–983. [Google Scholar] [CrossRef] [PubMed]
- Coombe, B.G. Growth Stages of the Grapevine: Adoption of a System for Identifying Grapevine Growth Stages. Aust. J. Grape Wine R. 2008, 1, 104–110. [Google Scholar] [CrossRef]
- Gil, R. Improving Phenolic and Chromatic Characteristics of Monastrell, Merlot and Syrah Wines by Using Two Elicitors. Oeno One 2017, 51, 1. [Google Scholar] [CrossRef]
- Paladines-Quezada, D.F.; Moreno-Olivares, J.D.; Fernández-Fernández, J.I.; Bleda-Sánchez, J.A.; Martínez-Moreno, A.; Gil-Muñoz, R. Elicitors and Pre-Fermentative Cold Maceration: Effects on Polyphenol Concentration in Monastrell Grapes and Wines. Biomolecules 2019, 9, 671. [Google Scholar] [CrossRef] [PubMed]
- Iriti, M.; Rossoni, M.; Borgo, M.; Ferrara, L.; Faoro, F. Induction of Resistance to Gray Mold with Benzothiadiazole Modifies Amino Acid Profile and Increases Proanthocyanidins in Grape: Primary Versus Secondary Metabolism. J. Agric. Food Chem. 2005, 53, 9133–9139. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Liao, Y.; Cao, S.; Di, H.; Zheng, Y. Effects of Benzothiadiazole on Disease Resistance and Soluble Sugar Accumulation in Grape Berries and Its Possible Cellular Mechanisms Involved. Postharvest Biol. Technol. 2015, 102, 51–60. [Google Scholar] [CrossRef]
- Salifu, R.; Jiang, Y.; Ba, L.; Zhang, Z.; Feng, L.; Li, J. Influence of Benzothiadiazole on the Amino Acids and Aroma Compositions of ‘Cabernet Gernischt’ Grapes (Vitis vinifera L.). Horticulturae 2022, 8, 812. [Google Scholar] [CrossRef]
- Carreño, J.; Martínez, A.; Almela, L.; Fernández-López, J.A. Proposal of an Index for the Objective Evaluation of the Colour of Red Table Grapes. Food Res. Int. 1995, 28, 373–377. [Google Scholar] [CrossRef]
- Kyraleou, M.; Kallithraka, S.; Gkanidi, E.; Koundouras, S.; Mannion, D.T.; Kilcawley, K.N. Discrimination of Five Greek Red Grape Varieties According to the Anthocyanin and Proanthocyanidin Profiles of Their Skins and Seeds. J. Food Compos. Anal. 2020, 92, 103547. [Google Scholar] [CrossRef]
- Topalovic, A.; Mikulic-Petkovsek, M. Changes in Sugars, Organic Acids and Phenolics of Grape Berries of Cultivar Cardinal during Ripening. J. Food Agric. Environ. 2010, 8, 223–227. [Google Scholar]
- Wang, Z.P.; Deloire, A.; Carbonneau, A.; Federspiel, B.; Lopez, F. An in Vivo Experimental System to Study Sugar Phloem Unloading in Ripening Grape Berries during Water Deficiency Stress. Ann. Bot. 2003, 92, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Keller, M.; Shrestha, P.; Hall, G.; Bondada, B.; Davenport, J. Arrested Sugar Accumulation and Altered Organic Acid Metabolism in Grape Berries Affected by the Berry Shrivel Syndrome. Am. J. Enol. Vitic. 2016, 67, 398–406. [Google Scholar] [CrossRef]
- Wang, J.; Han, Y.; Chen, C.; Sam, F.E.; Guan, R.; Wang, K.; Zhang, Y.; Zhao, M.; Chen, C.; Liu, X.; et al. Influence of Benzothiadiazole on the Accumulation and Metabolism of C6 Compounds in Cabernet Gernischt Grapes (Vitis vinifera L.). Foods 2023, 12, 3710. [Google Scholar] [CrossRef]
- Paladines-Quezada, D.F.; Moreno-Olivares, J.D.; Fernández-Fernández, J.I.; Bautista-Ortín, A.B.; Gil-Muñoz, R. Influence of Methyl Jasmonate and Benzothiadiazole on the Composition of Grape Skin Cell Walls and Wines. Food Chem. 2019, 277, 691–697. [Google Scholar] [CrossRef]
- Pérez-Magariño, S.; José, M. Effect of Ripening Stage of Grapes on the Low Molecular Weight Phenolic Compounds of Red Wines. Eur. Food Res. Technol. 2005, 220, 597–606. [Google Scholar] [CrossRef]
- Gozzo, F. Systemic Acquired Resistance in Crop Protection: From Nature to a Chemical Approach. J. Agric. Food Chem. 2003, 51, 4487–4503. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, L.; Zhao, L.; Zhang, X.; Zhang, H.; Han, Y.; Jiang, X.; Liu, Y.; Gao, L.; Xia, T. Comprehensive Analysis of Metabolic Fluxes from Leucoanthocyanins to Anthocyanins and Proanthocyanidins (PAs). J. Agric. Food Chem. 2020, 68, 15142–15153. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, M.; Zhang, G.; Li, P.; Ma, F. Differential Regulation of Anthocyanin Synthesis in Apple Peel Under Different Sunlight Intensities. Int. J. Mol. Sci. 2019, 23, 6060. [Google Scholar] [CrossRef]
- Costa, C.; Graça, A.; Fontes, N.; Teixeira, M.; Gerós, H.; Santos, J. The Interplay Between Atmospheric Conditions and Grape Berry Quality Parameters in Portugal. Appl. Sci. 2020, 10, 4943. [Google Scholar] [CrossRef]
- Hukkanen, A.T.; Kokko, H.I.; Buchala, A.J.; McDougall, G.J.; Stewart, D.; Kärenlampi, S.O.; Karjalainen, R.O. Benzothiadiazole Induces the Accumulation of Phenolics and Improves Resistance to Powdery Mildew in Strawberries. J. Agric. Food Chem. 2007, 55, 1862–1870. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, C.; Sun, J.; Zhang, Z.; Zhao, S.; Shi, W.; Wang, W.; Zhao, B. Influence of Rootstock on Endogenous Hormones and Color Change in Cabernet Sauvignon grapes. Sci. Rep. 2023, 13, 6608. [Google Scholar] [CrossRef]
- Herrera, J.; Castellarin, S.D. Preveraison Water Deficit Accelerates Berry Color Change in Merlot Grapevines. Am. J. Enol. Vitic. 2016, 67, 356–360. [Google Scholar] [CrossRef]
- Castellarin, S.D.; Di Gaspero, G. Transcriptional Control of Anthocyanin Biosynthetic Genes in Extreme Phenotypes for Berry Pigmentation of Naturally Occurring Grapevines. BMC Plant Biol. 2007, 7, 46. [Google Scholar] [CrossRef]
- Shahab, M.; Silvestre, P.; Ahmed, S.; Colombo, R.; Roberto, S.; Koyama, R.; Souza, R. Relationship Between Anthocyanins and Skin Color of Table Grapes Treated with Abscisic Acid at Different Stages of Berry Ripening. Sci. Hortic. 2019, 259, 108859. [Google Scholar] [CrossRef]
- Yang, L. Influential Factor of Anthocyanin Stability and the Potential Pathways Improving Their Stability. Hans J. Food Nutr. Sci. 2017, 6, 137–142. [Google Scholar] [CrossRef]
- Sandhu, A.K.; Gray, D.J.; Lu, J.; Gu, L. Effects of Exogenous Abscisic Acid on Antioxidant Capacities, Anthocyanins, and Flavonol Contents of Muscadine Grape (Vitis rotundifolia) Skins. Food Chem. 2011, 126, 982–988. [Google Scholar] [CrossRef]
- Gonzalez, A.; Olea, P.; Bordeu, E.; Alcalde, J.; Gény, L. S-Abscisic Acid, 2-Chloroethylphosphonic Acid and Indole-3-Acetic Acid Treatments Modify Grape (Vitis vinifera L. Cv. ‘Cabernet Sauvignon’) Hormonal Balance and Wine Quality. Vitis 2012, 51, 45–52. [Google Scholar]
- Iriti, M.; Rossoni, M.; Borgo, M.; Faoro, F. Benzothiadiazole Enhances Resveratrol and Anthocyanin Biosynthesis in Grapevine, Meanwhile Improving Resistance to Botrytis cinerea. J. Agric. Food Chem. 2004, 52, 4406–4413. [Google Scholar] [CrossRef]
- Fumagalli, F.; Rossoni, M.; Iriti, M.; di Gennaro, A.; Faoro, F.; Borroni, E.; Borgo, M.; Scienza, A.; Sala, A.; Folco, G. From Field to Health: A Simple Way to Increase the Nutraceutical Content of Grape as Shown by NO-Dependent Vascular Relaxation. J. Agric. Food Chem. 2006, 54, 5344–5349. [Google Scholar] [CrossRef]
- Flamini, R.; Mattivi, F.; De Rosso, M.; Arapitsas, P.; Bavaresco, L. Advanced Knowledge of Three Important Classes of Grape Phenolics: Anthocyanins, Stilbenes and Flavonols. Int. J. Mol. Sci. 2013, 14, 19651–19669. [Google Scholar] [CrossRef]
- Ullah, C.; Tsai, C.J.; Unsicker, S.B.; Xue, L.; Reichelt, M.; Gershenzon, J.; Hammerbacher, A. Salicylic Acid Activates Poplar Defense against the Biotrophic Rust Fungus Melampsora larici-Populina Via Increased Biosynthesis of Catechin and Proanthocyanidins. New Phytol. 2019, 221, 960–975. [Google Scholar] [CrossRef]
- Felicijan, M.; Kristl, J.; Krajnc, A. Pre-Treatment with Salicylic Acid Induces Phenolic Responses of Norway Spruce (Picea abies) Bark to Bark Beetle (Ips typographus) Attack. Trees 2016, 30, 2117–2129. [Google Scholar] [CrossRef]
- Han, Y.; Vimolmangkang, S.; Soria-Guerra, R.E.; Korban, S.S. Introduction of Apple ANR Genes into Tobacco Inhibits Expression of Both CHI and DFR Genes in Flowers, Leading to Loss of Anthocyanin. J. Exp. Bot. 2012, 63, 2437–2447. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Zhongjie, L.; Zhang, F.; Zhou, X.; Sun, X.; Li, Y.; Liu, W.; Xiao, H.; Wang, N.; Lu, H.; et al. Metabolomic and Transcriptomic Analyses Reveal the Effects of Self-and Hetero-Grafting on Anthocyanin Biosynthesis in Grapevine. Hortic. Res. 2022, 9, uhac103. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzis, G.; Rustioni, L.; Parisi, S.G.; Zoli, F.; Brancadoro, L. Anthocyanin Biosynthesis during Berry Development in Corvina Grape. Sci. Hortic. 2016, 212, 74–80. [Google Scholar] [CrossRef]
- Cheng, J.; Yu, K.; Shi, Y.; Wang, J.; Duan, C. Transcription Factor VviMYB86 Oppositely Regulates Proanthocyanidin and Anthocyanin Biosynthesis in Grape Berries. Front. Plant Sci. 2020, 11, 613677. [Google Scholar] [CrossRef] [PubMed]
- Gervasi, T.; Oliveri, F.; Gottuso, V.; Squadrito, M.; Bartolomeo, G.; Cicero, N.; Dugo, G. Nero d’Avola and Perricone Cultivars: Determination of Polyphenols, Flavonoids and Anthocyanins in Grapes and Wines. Nat. Prod. Res. 2016, 30, 2329–2337. [Google Scholar] [CrossRef]
- Mattivi, F.; Guzzon, R.; Vrhovsek, U.; Stefanini, M.; Velasco, R. Metabolite Profiling of Grape: Flavonols and Anthocyanins. J. Agric. Food Chem. 2006, 54, 7692–7702. [Google Scholar] [CrossRef] [PubMed]
- Tahmaz, H.; Söylemezoğlu, G. Effects of Vinification Techniques Combined with UV-C Irradiation on Phenolic Contents of Red Wines. J. Food Sci. 2017, 82, 1351–1356. [Google Scholar] [CrossRef]
- Sridhar, K.; Charles, A.L. In Vitro Antioxidant Activity of Kyoho Grape Extracts in DPPH and ABTS Assays: Estimation Methods for EC (50) Using Advanced Statistical Programs. Food Chem. 2019, 275, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Meng, T.; Xiao, D.; Muhammed, A.; Deng, J.; Chen, L.; He, J. Anti-Inflammatory Action and Mechanisms of Resveratrol. Molecules 2021, 26, 229. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Sáenz de Urturi, I.; Rubio-Bretón, P.; Marín-San Román, S.; Baroja, E.; Ramírez-Rodríguez, G.B.; Delgado-López, J.M.; Pérez-Álvarez, E.P. Foliar Application of Methyl Jasmonate and Methyl Jasmonate Supported on Nanoparticles: Incidence on Grape Phenolic Composition Over Two Seasons. Food Chem. 2023, 402, 134244. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Huang, W.D. Salicylic Acid Modulated Flavonol Biosynthesis in Three Key Phases during Grape Berry Development. Eur. Food Res. Technol. 2013, 237, 441–448. [Google Scholar] [CrossRef]
- Fernandez-Marin, M.; Guerrero, R.; Puertas, B.; Garcia-Parrilla, M.; Collado, I.; Cantos-Villar, E. Impact of Preharvest and Postharvest Treatment Combinations on Increase of Stilbene Content in Grape. J. Int. Sci. Vigne Vin 2013, 47, 203–212. [Google Scholar] [CrossRef]
- Ruiz-Garcia, Y.; Romero-Cascales, I.; Bautista-Ortín, A.; Gil, R.; Adrian, M.; Gomez-Plaza, E. Increasing Bioactive Phenolic Compounds in Grapes: Response of Six Monastrell Grape Clones to Benzothiadiazole and Methyl Jasmonate Treatments. Am. J. Enol. Vitic. 2013, 64, 459–465. [Google Scholar] [CrossRef]
- Xie, S.; Song, C.; Wang, X.; Liu, M.; Zhang, Z.; Xi, Z. Tissue-Specific Expression Analysis of Anthocyanin Biosynthetic Genes in White-and Red-Fleshed Grape Cultivars. Molecules 2015, 20, 22767–22780. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Song, M.; Wang, Z.; Zhai, Y.; Hu, C.; Perl, A.; Ma, H. Independent Flavonoid and Anthocyanin Biosynthesis in the Flesh of a Red-Fleshed Table Grape Revealed by Metabolome and Transcriptome Co-Analysis. BMC Plant Biol. 2023, 23, 361. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Sam, F.E.; Li, J.; Bi, Y.; Ma, T.; Zhang, B. Pre-Harvest Benzothiadiazole Spraying Promotes the Cumulation of Phenolic Compounds in Grapes. Foods 2022, 11, 3345. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.L.; Liu, M.; Zhao, H.; Meng, J.F.; Fang, Y.L. Effect of Exogenous Abscisic Acid and Methyl Jasmonate on Anthocyanin Composition, Fatty Acids, and Volatile Compounds of Cabernet Sauvignon (Vitis vinifera L.) Grape Berries. Molecules 2016, 21, 1345. [Google Scholar] [CrossRef]
- Ju, Y.L.; Liu, B.C.; Xu, X.L.; Wu, J.R.; Sun, W.; Fang, Y.L. Targeted Metabolomic and Transcript Level Analysis Reveals the Effects of Exogenous Strigolactone and Methyl Jasmonate on Grape Quality. Sci. Hortic. 2022, 299, 111009. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Ma, T.; Qiang, W.; Wang, B.; Jiang, Y.; Ma, T.; Zhang, B. Canopy-Applied Benzothiadiazole (BTH) during the Pre-Harvest Period as a Tool to Increase Polyphenol Accumulation and Color Intensity in Cabernet Gernischt and Cabernet Franc. Agronomy 2024, 14, 1818. https://doi.org/10.3390/agronomy14081818
Wang H, Ma T, Qiang W, Wang B, Jiang Y, Ma T, Zhang B. Canopy-Applied Benzothiadiazole (BTH) during the Pre-Harvest Period as a Tool to Increase Polyphenol Accumulation and Color Intensity in Cabernet Gernischt and Cabernet Franc. Agronomy. 2024; 14(8):1818. https://doi.org/10.3390/agronomy14081818
Chicago/Turabian StyleWang, Hongjuan, Tongwei Ma, Wenle Qiang, Bo Wang, Yumei Jiang, Tengzhen Ma, and Bo Zhang. 2024. "Canopy-Applied Benzothiadiazole (BTH) during the Pre-Harvest Period as a Tool to Increase Polyphenol Accumulation and Color Intensity in Cabernet Gernischt and Cabernet Franc" Agronomy 14, no. 8: 1818. https://doi.org/10.3390/agronomy14081818
APA StyleWang, H., Ma, T., Qiang, W., Wang, B., Jiang, Y., Ma, T., & Zhang, B. (2024). Canopy-Applied Benzothiadiazole (BTH) during the Pre-Harvest Period as a Tool to Increase Polyphenol Accumulation and Color Intensity in Cabernet Gernischt and Cabernet Franc. Agronomy, 14(8), 1818. https://doi.org/10.3390/agronomy14081818