Foliar Application of Bee Honey or Ginger Extract Enhanced Salvia officinalis L. Growth and Productivity by Improving Phytohormones, Antioxidants, Chlorophylls, and Nutrients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Soil Attributes
2.2. Experimental Design and Treatments
2.3. Growth and Herb Yield Characters
2.4. Determination of Essential Oil Percentage
2.5. Essential Oil Constituents
2.6. Determination of Chlorophyll Content
2.7. Determination of Total Phenol Content
2.8. Antioxidant Capacity
2.9. Determination of Phytohormone Contents
2.10. Determination of Nutrient Elements
2.11. Statistical Analysis
3. Results
3.1. Growth Attributes
3.2. Herb Yield
3.3. Essential Oil Content
3.4. Essential Oil Composition
3.5. Total Chlorophyll Content
3.6. Total Phenolics
3.7. Antioxidant Capacity
3.8. Phytohormone Content
3.9. Nutrient Content
3.10. Principal Component Analysis (PCA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schippmann, U.; Leaman, D.; Cunningham, A.B. A comparison of cultivation and wild collection of medicinal and aromatic plants under sustainability aspects. In Medicinal and Aromatic Plants; Bogers, R.J., Ed.; UR Frontis Series; Springer: Dordrecht, The Netherlands, 2006; Volume 17, pp. 75–95. [Google Scholar]
- Said-Al Ahl, H.; Hussein, M.S.; Gendy, A.S.H.; Tkachenko, K.G. Quality of Sage (Salvia officinalis L.) Essential Oil Grown in Egypt. Int. J. Plant Res. 2015, 1, 119–123. Available online: http://www.aiscience.org/journal/ijpr (accessed on 5 June 2024).
- Bruneton, J. Pharmacognosy, Phytochemistry Medicinal Plants; Lavoisier Intercept: London, UK, 1999. [Google Scholar]
- El-Feky, A.M.; Aboulthana, W.M. Phytochemical and biochemical studies of sage (Salvia officinalis L.). UK J. Pharm. Biosci. 2016, 4, 56. [Google Scholar]
- Walker, J.B.; Sytsma, K.J.; Treutlein, J.; Wink, M. Salvia (Lamiaceae) is not monophyletic: Implications for the systematics, radiation, and ecological specializations of Salvia and tribe Mentheae. Am. J. Bot. 2004, 91, 1115–1125. [Google Scholar] [CrossRef]
- Tisserand, R.; Balacs, T. Essential Oil Safety; Churchill Livingstone: New York, NY, USA, 1995. [Google Scholar]
- Demirci, B.; Hüsnü, K.; Baser, C.; Tümen, G. Composition of the essential oil of Salvia aramiensis Rech. fil. growing in Turkey. Flavour Frag. J. 2005, 17, 23–25. [Google Scholar] [CrossRef]
- Delamare Longaray, A.P.L.; Ivete, T.M.P.; Artico, L.; Atti-Serafini, L.; Echeverrrigary, S. Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. cultivated in south Brazil. Food Chem. 2007, 100, 603–608. [Google Scholar] [CrossRef]
- Özcan, B.; Birgul, E.M.; Coleri, A.; Yolcu, H.; Caliskan, M. In vitro antimicrobial and antioxidant activities of various extracts of Salvia microstegia (Boiss.) et. Bal. from Antakya, Turkey. Fresenius Environ. Bull. 2009, 18, 658–662. [Google Scholar]
- Kolak, U.; Kabouche, A.; Ozturk, M.; Kabouche, Z.; Topçu, G.; Ulubelen, A. Antioxidant diterpenoids from the roots of Salvia barrelieri. Phytochem. Anal. 2009, 20, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Jung, S.N.; Son, K.H.; Kim, S.R.; Ha, T.Y.; Park, M.G.; Jo, I.G.; Park, J.G.; Choe, W.; Kim, S.; et al. Antidiabetes and antiobesity effect of cryptotanshinone via activation of AMP-activated protein ki-nase. Mol. Pharmacol. 2007, 72, 62–72. [Google Scholar] [CrossRef]
- Cardile, V.; Russo, A.; Formisano, C.; Rigano, D.; Senatore, F.; Arnold, N.A.; Piozzi, F. Essential oils of Salvia bracteata and Salvia rubifolia from Lebanon: Chemical composition, antimicrobial activity and inhibitory effect on human melanoma cells. J. Ethnopharmacol. 2009, 126, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Henriques, M.; Silva, S.; Ferreira, I.C.F.R. Evaluation of Bioactive Properties and Phenolic Compounds in Different Extracts Prepared from Salvia officinalis L. Food Chem. 2014, 170, 378–385. [Google Scholar] [CrossRef]
- Pandey, V.; Patra, D.D. Crop productivity, aroma profile and antioxidant activity in Pelargonium graveolens L’Her. under integrated supply of various organic and chemical fertilizers. Ind. Crop. Prod. 2015, 67, 257–263. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Kahil, A.A.; Ali, E.F.; Hassan, F. Influence of bio-fertilizers on growth, yield and anthocyanin content of Hibiscus sabdariffa L. plant under Taif region conditions. Annu. Res. Rev. Biol. 2017, 17, 1–15. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1655. [Google Scholar] [CrossRef] [PubMed]
- Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. Biostimulants and crop responses: A review. Biol. Agric. Hort. 2015, 31, 1–17. [Google Scholar] [CrossRef]
- Hassan, F.A.S.; Ali, E.F.; Mostafa, N.Y.; Mazrou, R. Shelf-life extension of sweet basil leaves by edible coating with thyme volatile oil encapsulated chitosan nanoparticles. Int. J. Biol. Macromol. 2021, 177, 517–525. [Google Scholar] [CrossRef]
- Rady, M.M.; Boriek, S.H.K.; Abd El-Mageed, T.A.; Seif El-Yazal, M.A.; Ali, E.F.; Hassan, F.A.S.; Abdelkhalik, A. Exogenous gibberellic acid or dilute bee honey boosts drought stress tolerance in Vicia faba by rebalancing osmoprotectants, antioxidants, nutrients, and phytohormones. Plants 2021, 10, 748. [Google Scholar] [CrossRef] [PubMed]
- Hassan, F.; Al-Yasi, H.; Ali, E.F.; Alamer, K.; Hessini, K.; Attia, H.; El-Shazly, S. Mitigation of salt stress effects by moringa leaf extract or salicylic acid through motivating antioxidant machinery in damask rose. Can. J. Plant Sci. 2021, 101, 157–165. [Google Scholar] [CrossRef]
- Ali, E.F.; Hassan, F.A.S.; Elgimabi, M. Improving the growth, yield and volatile oil content of Pelargonium graveolens L. Herit by foliar application with moringa leaf extract through motivating physiological and biochemical parameters. S. Afr. J. Bot. 2018, 119, 383–389. [Google Scholar] [CrossRef]
- Arena, M.E.; Postemsky, P.D.; Curvetto, N.R. Changes in the phenolic compounds and antioxidant capacity of Berberis microphylla G. Forst. Berries in relation to light intensity and fertilization. Sci. Hortic. 2017, 218, 63–71. [Google Scholar] [CrossRef]
- Yakhin, O.L.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in plant science: A global perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar] [CrossRef] [PubMed]
- Inés, M.; Craig, A.; Ordoñez, R.; Zampini, C.; Sayago, J.; Bedascarrasbure, E.; Alvarez, A.; Salomón, V.; Maldonado, L. LWT—Food Science and Technology Physico chemical and bioactive properties of honeys from Northwestern Argentina. LWT Food Sci. Technol. 2011, 44, 1922–1930. [Google Scholar]
- El-Hanafy, S.H. A pilot study exploring the effects of bee honey as a bio-fertilizer on the morphological features and chemical constituents of Syngonium podophyllum plants. J. Product. Dev. 2007, 12, 299–314. [Google Scholar] [CrossRef]
- Semida, W.M.; Abd El-Mageed, T.A.; Hemida, K.; Rady, M.M. Natural bee-honey based biostimulants confer salt tolerance in onion via modulation of the antioxidant defence system. J. Hortic. Sci. Biotechnol. 2019, 94, 632–642. [Google Scholar] [CrossRef]
- Belal, H.E.E.; Abdelpary, M.A.M.; Desoky, E.-S.M.; Ali, E.F.; Al Kashgry, N.A.T.; Rady, M.M.; Semida, W.M.; Mahmoud, A.E.M.; Sayed, A.A.S. Effect of eco-friendly application of bee honey solution on yield, physio-chemical, antioxidants, and enzyme gene expressions in excessive nitrogen-stressed common bean (Phaseolus vulgaris L.) plants. Plants 2023, 12, 3435. [Google Scholar] [CrossRef]
- Yeh, H.; Chuang, C.; Chen, H.; Wan, C.; Chen, T.; Lin, L. Bioactive components analysis of two various gingers (Zingiber officinale Roscoe) and antioxidant effect of ginger extracts. LWT—Food Sci. Technol. 2014, 55, 329–334. [Google Scholar] [CrossRef]
- Chen, C.; Kuo, M.; Wu, C.; Ho, C. Pungent compounds of ginger (Zingiber officinale (L) Rosc) extracted by liquid carbon dioxide. J. Agric. Food Chem. 1986, 34, 477–480. [Google Scholar] [CrossRef]
- Ali, E.F.; Al-Yasi, H.M.; Issa, A.A.; Hessini, K.; Hassan, F.A.S. Ginger extract and fulvic acid foliar applications as novel practical approaches to improve the growth and productivity of damask rose. Plants 2022, 11, 412. [Google Scholar] [CrossRef]
- Shabana, M.H.; Balbaa, L.K.; Talaat, I.M. Effect of foliar applications of Zingiber officinale extracts on Origanum majorana. J. Herbs Spices Med. Plants 2017, 23, 89–97. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 7th ed.; Iowa State University Press: Ames, IA, USA, 1980. [Google Scholar]
- Metzner, H.; Rau, H.; Senger, H. Unter suchungen zur synchronisier barteit einzelner pigmentan angel mutanten von chlorela. Planta 1965, 65, 186–194. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids Pigments of Photosynthetic Biomembranes. In Methods Enzymology; Colowick, S.P., Kaplan, N.O., Eds.; Academic Press: Cambridge, MA, USA, 1987; Volume 148, pp. 350–382. [Google Scholar]
- McDonald, S.; Prenzler, P.D.; Antolovich, M.; Robards, K. Phenolic content and antioxidant activity of olive extracts. Food Chem. 2001, 73, 73–84. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Nehela, Y.; Hijaz, F.; Elzaawely, A.A.; El-Zahaby, H.M.; Killiny, N. Phytohormone profiling of the sweet orange (Citrus sinensis (L.) Osbeck) leaves and roots using GC-MS-based method. J. Plant Physiol. 2016, 199, 12–17. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists International. Official Methods of Analysis, 16th ed.; AOAC: Arlington, VA, USA, 1995. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Determination of total nitrogen in plant material. Agron. J. 1973, 65, 109–112. [Google Scholar] [CrossRef]
- Jackson, W.A. Nitrate acquisition and assimilation by higher plants: Processes in the root system. In Nitrogen in the Environment, Vol 2 Soil-Plant-Nitrogen Relationships; Nielsen, D.R., MacDonald, J.G., Eds.; Academic Press: New York, NY, USA, 1978; pp. 45–88. [Google Scholar]
- Prasad, R.; Shivay, Y.S.; Kumar, D.; Sharma, S.N. Learning by Doing Exercise in Soil Fertility—Practical Manual for Soil Fertility; Indian Agricultural Research Institute: New Delhi, India, 2006. [Google Scholar]
- Zahid, M.; Iqbal, N.; Muhammad, S.; Faisal, S.; Mahboob, W.; Hussain, M. Efficacy of exogenous applications of glucose in improving wheat crop (Triticum aestivum L.) performance under drought stress. Pak. J. Agric. Sci. 2018, 31, 264–273. [Google Scholar] [CrossRef]
- Tan, C.; Zhang, L.; Duan, X.; Chai, X.; Huang, R.; Kang, Y.; Yang, X. Effects of exogenous sucrose and selenium on plant growth, quality, and sugar metabolism of pea sprouts. J. Sci. Food Agric. 2022, 102, 2855–2863. [Google Scholar] [CrossRef]
- Mazrou, R.; Ali, E.F.; Hassan, S.; Hassan, F.A.S. A pivotal role of chitosan nanoparticles in enhancing the essential oil productivity and antioxidant capacity in Matricaria chamomilla L. Horticulturae 2021, 7, 574. [Google Scholar] [CrossRef]
- Ahmed, M.; Hasanuzzaman, M.; Raza, M.A.; Malik, A.; Ahmad, S. Plant nutrients for crop growth, development and stress tolerance. In Sustainable Agriculture in the Era of Climate Change; Roychowdhury, R., Choudhury, S., Hasanuzzaman, M., Srivastava, S., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 43–92. Available online: https://link.springer.com/chapter/10.1007/978-3-030-45669-6_3 (accessed on 17 July 2024).
- Mekdad, A.A.A.; Abou El-Enin, M.M.; Rady, M.M.; Hassan, F.A.S.; Ali, E.F.; Shaaban, A. Impact of level of nitrogen fertilization and critical period for weed control in peanut (Arachis hypogaea L.). Agronomy 2021, 11, 909. [Google Scholar] [CrossRef]
- Mekdad, A.A.A.; Rady, M.M.; Ali, E.F.; Hassan, F.A.S. Early sowing combined with adequate potassium and sulfur fertilization: Promoting Beta vulgaris (L.) yield, yield quality, and K- and S-use efficiency in a dry saline environment. Agronomy 2021, 11, 806. [Google Scholar] [CrossRef]
- Hassan, F.; Ali, E.F.; Mahfouz, S. Comparison between different fertilization sources, irrigation frequency and their combinations on the growth and yield of coriander plant. Aust. J. Appl. Basic Sci. 2012, 6, 600–615. [Google Scholar]
- Taiz, L.; Zeiger, E. Plant Physiology, 5th ed.; Sinauer Associates: Sunderland, MA, USA, 2010. [Google Scholar]
- Stefanov, M.A.; Rashkov, G.D.; Apostolova, E.L. Assessment of the photosynthetic apparatus functions by chlorophyll fluorescence and P700 absorbance in C3 and C4 plants under physiological conditions and under salt stress. Int. J. Mol. Sci. 2022, 23, 3768. [Google Scholar] [CrossRef] [PubMed]
- El-Serafy, R.S.; Dahab, A.A.; Ghanem, K.Z.; Elhakem, A.; Bahgat, A.; Venkatesh, J.; El-Sheshtawy, A.; Badawy, A. As a natural antioxidant: Sesbania Grandiflora leaf extract enhanced growth and yield performance, active ingredients and tolerance of Hibiscus Sabdariffa L. under salt-affected Soil. J. Soil Sci. Plant Nutr. 2024, 24, 3406–3420. [Google Scholar] [CrossRef]
- Ali, E.F.; Issa, A.A.; Al-Yasi, H.M.; Hessini, K.; Hassan, F.A.S. The efficacies of 1-methylcyclopropene and chitosan nanoparticles in preserving the postharvest quality of Damask rose and their underlying biochemical and physiological mechanisms. Biology 2022, 11, 242. [Google Scholar] [CrossRef] [PubMed]
- Behdad, A.; Mohsenzadeh, S.; Azizi, M.; Moshtaghi, N. Salinity effects on physiological and phytochemical characteristics and gene expression of two Glycyrrhiza glabra L. populations. Phytochemistry 2020, 171, 112236. [Google Scholar] [CrossRef] [PubMed]
- Semida, W.M.; Rady, M.M. Presoaking application of propolis and maize grain extracts alleviates salinity stress in common bean (Phaseolus vulgaris L.). Sci. Hortic. 2014, 168, 210–217. [Google Scholar] [CrossRef]
- Bano, U.; Khan, A.F.; Mujeeb, F.; Maurya, N.; Tabassum, H.; Siddiqui, M.H.; Haneef, M.; Osama, K.; Farooqui, A. Effect of plant growth regulators on essential oil yield in aromatic plants. J. Chem. Pharm. Res. 2016, 8, 733–739. [Google Scholar]
- Khan, A.F.; Mujeeb, F.; Aha, F.; Farooqui, A. Effect of plant growth regulators on growth and essential oil content of palmarosa (Cymbopogon martinii). Asian J. Pharm. Clin. Res. 2015, 8, 373–376. [Google Scholar]
Physical Properties | Chemical Properties | ||||||||
---|---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | pH | OM | EC | N+ | PO43− | K+ | Ca2+ |
4.27% | 37.24% | 48.49% | 8.02 | 0.18% | 1.24 dsm−1 | 0.18% | 0.032% | 0.039% | 38.17 (meqL−1) |
Main Components of BH | Main Components of GE | ||
---|---|---|---|
Component | Value | Component | Value |
Proteins | 0.30% | Total phenols | 338.67 mg 100 g−1 DW |
Total soluble sugars | 83.72% | Flavonoids | 0.23 g 100 g−1 DW |
Ascorbic acid | 23.46 mg kg−1 FW | Total carotenoids | 36.55 mg 100 g−1 DW |
Organic acids | 0.42% | Carbohydrates | 21.33 g 100 g−1 DW |
Thiamine | 0.16 mg kg−1 FW | Fat | 2.35 g 100 g−1 DW |
Riboflavin | 0.21 mg kg−1 FW | Protein | 3.28 g 100 g−1 DW |
Niacin | 1.59 mg kg−1 FW | Citric acid | 0.07 mg g−1 DW |
Pyridoxine | 2.13 mg kg−1 FW | Oxalic acid | 13.98 mg g−1 DW |
Proline | 46.63 mg kg−1 FW | Tartaric acid | 23.15 mg g−1 DW |
Phosphorus | 48.67 mg kg−1 FW | Phosphorus | 11.07 mg 100 g−1 DW |
Potassium | 438.92 mg kg−1 FW | Potassium | 167.48 mg 100 g−1 DW |
Magnesium | 81.67 mg kg−1 FW | Magnesium | 3.97 mg 100 g−1 DW |
Calcium | 73.14 mg kg−1 FW | Calcium | 28.46 mg 100 g−1 DW |
Zinc | 4.87 mg kg−1 FW | Zinc | 0.26 mg 100 g−1 DW |
Manganese | 7.96 mg kg−1 FW | Manganese | 0.22 mg 100 g−1 DW |
Iron | 65.91 mg kg−1 FW | Iron | 4.33 mg 100 g−1 DW |
Copper | 3.88 mg kg−1 FW | Copper | 0.19 mg 100 g−1 DW |
Treatments | First Season 2022 | Second Season 2023 | ||
---|---|---|---|---|
Plant Height (cm) | Branch Number/Plant | Plant Height (cm) | Branch Number/Plant | |
Control | 28.64 d ± 1.21 | 6.47 d ± 0.54 | 29.16 d ± 1.15 | 7.16 d ± 0.48 |
BH5 | 33.15 c ± 1.04 | 7.93 c ± 0.58 | 33.98 c ± 1.24 | 8.67 c ± 0.42 |
BH10 | 37.67 b ± 1.13 | 11.86 b ± 0.61 | 38.29 b ± 1.18 | 11.89 b ± 0.54 |
BH15 | 38.73 ab ± 1.02 | 12.25 b ± 0.59 | 39.18 b ± 1.35 | 12.33 b ± 0.61 |
GE5 | 36.17 b ± 0.97 | 11.55 b ± 0.73 | 37.86 b ± 1.27 | 11.67 b ± 0.52 |
GE10 | 40.56 a ± 1.17 | 14.49 a ± 0.66 | 42.11 a ± 1.24 | 14.96 a ± 0.59 |
GE15 | 41.12 a ± 1.10 | 14.33 a ± 0.71 | 42.33 a ± 1.39 | 14.87 a ± 0.64 |
Treatments | First Season 2022 | Second Season 2023 | ||
---|---|---|---|---|
Herb FW (g/Plant) | Herb DW (g/Plant) | Herb FW (g/Plant) | Herb DW (g/Plant) | |
Control | 51.37 f ± 1.21 | 8.57 d ± 0.48 | 53.17 f ± 0.1.23 | 8.93 e ± 0.42 |
BH5 | 63.18 e ± 1.04 | 9.93 c ± 0.42 | 66.46 e ± 0.1.19 | 10.23 d ± 0.53 |
BH10 | 75.29 c ± 1.13 | 12.16 b ± 0.55 | 78.33 c ± 1.20 | 12.96 b ± 0.47 |
BH15 | 77.58 b ± 1.02 | 12.26 b ± 0.51 | 81.11 b ± 0.126 | 13.11 b ± 0.44 |
GE5 | 68.46 d ± 0.97 | 10.29 c ± 0.62 | 71.22 d ± 1.15 | 11.66 c ± 0.52 |
GE10 | 81.23 a ± 1.17 | 15.33 a ± 0.57 | 85.62 a ± 1.25 | 16.45 a ± 0.57 |
GE15 | 80.47 a ± 1.10 | 15.24 a ± 0.64 | 85.14 a ± 1.34 | 16.28 a ± 0.51 |
Treatments | First Season 2022 | Second Season 2023 | ||||
---|---|---|---|---|---|---|
Essential Oil (%) | Essential Oil Yield (mL/Plant) | Essential Oil Yield (L/ha) | Essential Oil (%) | Essential Oil Yield (ml/Plant) | Essential Oil Yield (L/ha) | |
Control | 0.93 e ± 0.05 | 0.48 f ± 0.03 | 24.51 e ± 0.34 | 0.91 e ± 0.03 | 0.48 f ± 0.02 | 24.82 e ± 0.38 |
BH5 | 0.97 d ± 0.07 | 0.61 e ± 0.02 | 31.44 d ± 0.41 | 0.98 d ± 0.05 | 0.65 e ± 0.04 | 33.41 d ± 0.34 |
BH10 | 1.19 c ± 0.06 | 0.90 c ± 0.03 | 45.96 bc ± 0.38 | 1.20 c ± 0.02 | 0.94 c ± 0.02 | 48.22 bc ± 0.36 |
BH15 | 1.22 b ± 0.08 | 0.95 b ± 0.04 | 48.55 b ± 0.47 | 1.23 b ± 0.04 | 1.00 b ± 0.03 | 51.18 b ± 0.43 |
GE5 | 1.17 c ± 0.11 | 0.80 d ± 0.02 | 41.09 c ± 0.43 | 1.19 c ± 0.06 | 0.85 d ± 0.02 | 43.48 c ± 0.41 |
GE10 | 1.34 a ± 0.09 | 1.09 a ± 0.04 | 55.84 a ± 0.50 | 1.35 a ± 0.05 | 1.16 a ± 0.04 | 59.30 a ± 0.47 |
GE15 | 1.33 a ± 0.12 | 1.07 a ± 0.03 | 54.90 a ± 0.41 | 1.34 a ± 0.04 | 1.14 a ± 0.05 | 58.53 a ± 0.43 |
No. | RI | Compound | Control | BH5 | BH10 | BH15 | GE5 | GE10 | GE15 |
---|---|---|---|---|---|---|---|---|---|
Relative (%) | |||||||||
1. | 952 | α-Pinene | 2.15 | 2.11 | 2.35 | 2.29 | 2.33 | 2.38 | 2.34 |
2. | 963 | Camphene | 2.23 | 2.28 | 2.19 | 2.34 | 2.41 | 2.45 | 2.39 |
3. | 986 | β-Pinene | 1.12 | 1.33 | 1.45 | 1.65 | 1.66 | 1.59 | 1.62 |
4. | 992 | β-Myrcene | 0.8 | 0.7 | 0.9 | 0.7 | 0.8 | 0.66 | 0.74 |
5. | 1028 | p-Cymene | 1.03 | 1.22 | 1.19 | 1.13 | 1.09 | 1.15 | 1.13 |
6. | 1036 | Limonene | 1.27 | 1.25 | 1.44 | 1.32 | 1.49 | 1.56 | 1.47 |
7. | 1044 | 1.8-Cineole | 5.92 | 6.14 | 6.63 | 7.11 | 6.98 | 7.34 | 7.33 |
8. | 1108 | α-Thujone | 24.88 | 25.13 | 25.62 | 26.84 | 26.18 | 27.18 | 27.22 |
9. | 1110 | β-Thujone | 10.93 | 11.23 | 11.96 | 12.52 | 11.88 | 12.24 | 12.27 |
10. | 1149 | Camphor | 20.44 | 20.87 | 21.03 | 21.96 | 21.32 | 21.67 | 21.55 |
11. | 1164 | Borneol | 4.66 | 4.78 | 4.82 | 4.88 | 4.78 | 4.82 | 4.96 |
12. | 1178 | Terpinen-4-ol | 0.81 | 0.74 | 0.83 | 0.79 | 0.86 | 0.84 | 0.77 |
13. | 1276 | Bornyl acetate | 3.16 | 3.31 | 3.11 | 3.22 | 3.29 | 3.26 | 3.34 |
14. | 1388 | Β-Caryophyllene | 0.68 | 0.71 | 0.65 | 0.73 | 0.75 | 0.83 | 0.79 |
15. | 1448 | α-Humulene | 2.28 | 2.11 | 2.23 | 2.34 | 2.36 | 2.66 | 2.65 |
16. | 1586 | Viridiflorol | 5.67 | 5.83 | 6.17 | 6.67 | 6.55 | 6.91 | 6.88 |
Total% | 88.03 | 89.74 | 92.57 | 96.49 | 94.73 | 97.54 | 97.45 |
Treatments | First Season 2022 | Second Season 2023 | ||||
---|---|---|---|---|---|---|
Total Chlorophyll Content (mg g−1 FW) | Total Phenolics (mg GAE g−1 DW) | FRAP (mg AAE 100 g−1 FW) | Total Chlorophyll Content (mg g−1 FW) | Total Phenolics (mg GAE g−1 DW) | FRAP (mg AAE 100 g−1 FW) | |
Control | 1.85 e ± 0.03 | 10.32 d ± 0.08 | 1.63 d ± 0.05 | 1.88 e ± 0.04 | 10.15 d ± 0.03 | 1.59 d ± 0.02 |
BH5 | 1.96 d ± 0.02 | 11.24 c ± 0.06 | 1.82 c ± 0.03 | 1.94 d ± 0.03 | 11.33 c ± 0.05 | 1.78 c ± 0.05 |
BH10 | 2.11 c ± 0.04 | 13.81 b ± 0.09 | 2.24 b ± 0.07 | 2.15 c ± 0.02 | 13.55 b ± 0.07 | 2.20 b ± 0.04 |
BH15 | 2.14 b ± 0.02 | 13.79 b ± 1.02 | 2.26 b ± 0.04 | 2.18 b ± 0.04 | 13.72 b ± 0.09 | 2.17 b ± 0.07 |
GE5 | 2.09 c ± 0.04 | 11.67 c ± 0.08 | 1.85 c ± 0.02 | 2.14 c ± 0.03 | 11.45 c ± 0.06 | 1.77 c ± 0.06 |
GE10 | 2.23 a ± 0.03 | 15.84 a ± 0.09 | 2.67 a ± 0.05 | 2.26 a ± 0.05 | 15.67 a ± 0.08 | 2.73 a ± 0.03 |
GE15 | 2.24 a ± 0.02 | 15.89 a ± 1.03 | 2.69 a ± 0.06 | 2.27 a ± 0.03 | 15.72 a ± 1.01 | 2.70 a ± 0.04 |
Treatments | First Season 2022 | Second Season 2023 | ||||
---|---|---|---|---|---|---|
Indole-3-Acetic Acid (µg g−1 FW) | Gibberellic Acid (µg g−1 FW) | Cytokinins (µg g−1 FW) | Indole-3-Acetic Acid (µg g−1 FW) | Gibberellic Acid (µg g−1 FW) | Cytokinins (µg g−1 FW) | |
Control | 12.56 d ± 0.56 | 23.17 d ± 1.14 | 18.39 d ± 1.02 | 12.31 d ± 0.61 | 22.87 d ± 1.09 | 17.66 d ± 0.98 |
BH5 | 13.62 c ± 0.67 | 26.18 c ± 1.17 | 20.56 c ± 0.88 | 13.55 c ± 0.58 | 26.93 c ± 1.02 | 21.33 c ± 0.93 |
BH10 | 15.27 b ± 0.72 | 29.57 b ± 1.09 | 23.67 b ± 0.93 | 15.48 b ± 0.55 | 28.88 bc ± 1.11 | 23.92 b ± 1.02 |
BH15 | 15.38 b ± 0.66 | 30.39 b ± 1.12 | 23.64 b ± 1.04 | 15.29 b ± 0.64 | 30.67 b ± 1.05 | 23.87 b ± 0.94 |
GE5 | 13.45 c ± 0.59 | 26.52 c ± 1.06 | 19.82 c ± 0.96 | 13.36 c ± 0.71 | 27.05 c ± 1.03 | 20.91 c ± 0.89 |
GE10 | 17.88 a ± 0.74 | 34.11 a ± 1.13 | 24.89 a ± 1.07 | 18.03 a ± 0.57 | 35.36 a ± 1.06 | 25.67 a ± 0.96 |
GE15 | 17.74 a ± 0.63 | 34.25 a ± 1.05 | 24.93 a ± 0.89 | 18.11 a ± 0.61 | 35.22 a ± 1.12 | 25.85 a ± 01.06 |
Treatments | First Season 2022 | |||||
---|---|---|---|---|---|---|
N (mg g−1 DW) | P (mg g−1 DW) | K (mg g−1 DW) | Fe (μg g−1 DW) | Zn (μg g−1 DW) | Mg (mg g−1 DW) | |
Control | 17.33 d ± 0.33 | 2.13 e ± 0.13 | 19.44 e ± 0.55 | 478.45 d ± 8.92 | 112.54 e ± 3.66 | 1.48 e ± 0.13 |
BH5 | 19.25 c ± 0.37 | 2.88 d ± 0.11 | 21.18 d ± 0.68 | 515.33 c ± 7.88 | 142.17 d ± 3.29 | 2.19 d ± 0.10 |
BH10 | 21.67 b ± 0.41 | 3.26 b ± 0.15 | 22.88 b ± 0.65 | 563.18 b ± 7.63 | 172.66 b ± 3.45 | 2.95 b ± 0.11 |
BH15 | 21.73 b ± 0.39 | 3.29 b ± 0.12 | 22.79 b ± 0.63 | 566.36 b ± 7.90 | 176.67 b ± 3.58 | 3.02 b ± 0.16 |
GE5 | 19.89 c ± 0.38 | 3.04 c ± 0.11 | 21.65 c ± 0.59 | 512.67 c ± 8.36 | 161.82 c ± 3.62 | 2.68 c ± 0.14 |
GE10 | 22.92 a ± 0.40 | 3.72 a ± 0.14 | 23.82 a ± 0.61 | 682.24 a ± 7.55 | 183.33 a ± 3.44 | 3.84 a ± 0.12 |
GE15 | 23.03 a ± 0.35 | 3.77 a ± 0.13 | 23.86 a ± 0.67 | 689.69 a ± 8.47 | 181.97 a ± 3.51 | 3.79 a ± 0.11 |
Second season 2023 | ||||||
Control | 17.52 d ± 0.44 | 2.17 e ± 0.11 | 19.26 e ± 0.62 | 473.22 d ± 7.33 | 114.36 e ± 3.11 | 1.52 e ± 0.16 |
BH5 | 19.38 c ± 0.39 | 2.93 d ± 0.15 | 21.14 d ± 0.57 | 511.41 c ± 8.45 | 146.13 d ± 3.56 | 2.26 d ± 0.14 |
BH10 | 21.55 b ± 0.47 | 3.35 b ± 0.13 | 22.77 b ± 0.52 | 559.27 b ± 8.65 | 175.82 b ± 3.84 | 2.93 b ± 0.13 |
BH15 | 21.67 b ± 0.33 | 3.39 b ± 0.10 | 22.73 b ± 0.59 | 561.65 b ± 6.22 | 174.77 b ± 3.86 | 2.98 b ± 0.18 |
GE5 | 19.51 c ± 0.45 | 2.98 c ± 0.14 | 21.59 c ± 0.63 | 515.23 c ± 7.29 | 159.45 c ± 3.72 | 2.56 c ± 0.11 |
GE10 | 22.76 a ± 0.37 | 3.81 a ± 0.11 | 23.72 a ± 0.65 | 679.48 a ± 6.62 | 179.72 a ± 3.55 | 3.76 a ± 0.15 |
GE15 | 22.81 a ± 0.39 | 3.84 a ± 0.12 | 23.70 a ± 0.57 | 676.53 a ± 7.57 | 180.93 a ± 3.98 | 3.82 a ± 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moussa, M.M.; Mansour, M.M.F.; El-Sharnouby, M.; Hassan, F.A.S. Foliar Application of Bee Honey or Ginger Extract Enhanced Salvia officinalis L. Growth and Productivity by Improving Phytohormones, Antioxidants, Chlorophylls, and Nutrients. Agronomy 2024, 14, 1819. https://doi.org/10.3390/agronomy14081819
Moussa MM, Mansour MMF, El-Sharnouby M, Hassan FAS. Foliar Application of Bee Honey or Ginger Extract Enhanced Salvia officinalis L. Growth and Productivity by Improving Phytohormones, Antioxidants, Chlorophylls, and Nutrients. Agronomy. 2024; 14(8):1819. https://doi.org/10.3390/agronomy14081819
Chicago/Turabian StyleMoussa, Mohamed M., Mohamed Magdy F. Mansour, Mohamed El-Sharnouby, and Fahmy A. S. Hassan. 2024. "Foliar Application of Bee Honey or Ginger Extract Enhanced Salvia officinalis L. Growth and Productivity by Improving Phytohormones, Antioxidants, Chlorophylls, and Nutrients" Agronomy 14, no. 8: 1819. https://doi.org/10.3390/agronomy14081819
APA StyleMoussa, M. M., Mansour, M. M. F., El-Sharnouby, M., & Hassan, F. A. S. (2024). Foliar Application of Bee Honey or Ginger Extract Enhanced Salvia officinalis L. Growth and Productivity by Improving Phytohormones, Antioxidants, Chlorophylls, and Nutrients. Agronomy, 14(8), 1819. https://doi.org/10.3390/agronomy14081819