Optimization of Support Vector Machine with Biological Heuristic Algorithms for Estimation of Daily Reference Evapotranspiration Using Limited Meteorological Data in China
Abstract
:1. Introduction
- To assess the efficacy of two biological heuristic algorithms—PSO and the WOA—in refining the SVM model for daily ET0 estimation;
- To conduct a comparative analysis of the performance of the hybrid SVM models and the standalone SVM model under conditions with limited meteorological data, focusing on their accuracy in ET0 estimation;
- To identify the adaptability of the estimation models, based on key input factors, to the different climatic zones of China.
2. Materials and Methods
2.1. Data Sources
2.2. FAO56–Penman–Monteith Equation
2.3. Machine Learning Algorithms
2.3.1. SVM
2.3.2. WOA
2.3.3. PSO Algorithm
2.4. Evaluation of Model Performance
2.5. Technical Route
3. Results
4. Discussion
5. Conclusions
- The WOA-SVM model, which incorporates the WOA for feature selection and parameter tuning, demonstrated the highest accuracy in estimating daily ET0 across all climatic zones. It outperformed both the PSO-SVM and the standalone SVM models, with the highest R2 values observed in the testing phase.
- The PSO-SVM model showed a significant improvement in accuracy compared to the standalone SVM model, indicating the beneficial effect of PSO in enhancing the SVM’s performance. However, it was consistently surpassed by the WOA-SVM model, suggesting the WOA’s potential superiority in optimizing SVM parameters.
- The standalone SVM model, while providing competent results, exhibited comparatively higher RMSE and MAE values and lower R2 and NSE values across the training and testing phases, indicating its performance was less accurate than the hybrid models.
- When limited meteorological factors are used to construct the estimation model of ET0, the model still performs well.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, H.; Guo, R.; Shi, K.; Yue, H.; Zu, S.; Li, Z.; Zhang, X. Effect of different water treatments in soil-plant-atmosphere continuum based on intelligent weighing systems. Water 2022, 14, 673. [Google Scholar] [CrossRef]
- Ahmad, L.; Parvaze, S.; Parvaze, S.; Kanth, R. Reference evapotranspiration and crop water requirement of apple (Malus pumila) in Kashmir valley. J. Agrometeorol. 2017, 19, 262–264. [Google Scholar] [CrossRef]
- Maček, U.; Bezak, N.; Šraj, M. Reference evapotranspiration changes in Slovenia, Europe. Agric. For. Meteorol. 2018, 260, 183–192. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, X.; Zhou, H.; Wang, X.; Xing, X. Prediction model for daily reference crop evapotranspiration based on hybrid algorithm and principal components analysis in Southwest China. Comput. Electron. Agric. 2021, 190, 106424. [Google Scholar] [CrossRef]
- Jeon, M.-G.; Nam, W.-H.; Mun, Y.-S.; Yoon, D.-H.; Yang, M.-H.; Lee, H.-J.; Shin, J.-H.; Hong, E.-M.; Zhang, X. Climate change impacts on reference evapotranspiration in South Korea over the recent 100 years. Theor. Appl. Climatol. 2022, 150, 309–326. [Google Scholar] [CrossRef]
- Rahman, M.A.; Ali, M.; Mojid, M.A.; Anjum, N.; Haq, M.E.; Kainose, A.; Dissanayaka, K. Crop coefficient, reference crop evapotranspiration and water demand of dry-season Boro rice as affected by climate variability: A case study from northeast Bangladesh. Irrig. Drain. 2023, 72, 148–165. [Google Scholar] [CrossRef]
- Su, L.; Wang, Q.; Bai, Y. An analysis of yearly trends in growing degree days and the relationship between growing degree day values and reference evapotranspiration in Turpan area, China. Theor. Appl. Clim. 2013, 113, 711–724. [Google Scholar] [CrossRef]
- El-Kenawy, E.-S.M.; Zerouali, B.; Bailek, N.; Bouchouich, K.; Hassan, M.A.; Almorox, J.; Kuriqi, A.; Eid, M.; Ibrahim, A. Improved weighted ensemble learning for predicting the daily reference evapotranspiration under the semi-arid climate conditions. Environ. Sci. Pollut. Res. 2022, 29, 81279–81299. [Google Scholar] [CrossRef] [PubMed]
- Gowda, P.H.; Howell, T.A.; Baumhardt, R.L.; Porter, D.O.; Marek, T.H.; Nangia, V. A user-friendly interactive tool for estimating reference ET using ASCE standardized Penman-Monteith equation. Appl. Eng. Agric. 2016, 32, 383–390. [Google Scholar]
- Zhao, L.; Qing, S.; Bai, J.; Hao, H.; Li, H.; Shi, Y.; Xing, X.; Yang, R. A hybrid optimized model for predicting evapotranspiration in early and late rice based on a categorical regression tree combination of key influencing factors. Comput. Electron. Agric. 2023, 211, 108031. [Google Scholar] [CrossRef]
- Tao, H.; Diop, L.; Bodian, A.; Djaman, K.; Ndiaye, P.M.; Yaseen, Z.M. Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso. Agric. Water Manag. 2018, 208, 140–151. [Google Scholar] [CrossRef]
- Dong, J.; Liu, X.; Huang, G.; Fan, J.; Wu, L.; Wu, J. Comparison of four bio-inspired algorithms to optimize KNEA for predicting monthly reference evapotranspiration in different climate zones of China. Comput. Electron. Agric. 2021, 186, 106211. [Google Scholar] [CrossRef]
- Gao, L.; Gong, D.; Cui, N.; Lv, M.; Feng, Y. Evaluation of bio-inspired optimization algorithms hybrid with artificial neural network for reference crop evapotranspiration estimation. Comput. Electron. Agric. 2021, 190, 106466. [Google Scholar] [CrossRef]
- Nagappan, M.; Gopalakrishnan, V.; Alagappan, M. Prediction of reference evapotranspiration for irrigation scheduling using machine learning. Hydrol. Sci. J. 2020, 65, 2669–2677. [Google Scholar] [CrossRef]
- Ruiming, F.; Shijie, S. Daily reference evapotranspiration prediction of Tieguanyin tea plants based on mathematical morphology clustering and improved generalized regression neural network. Agric. Water Manag. 2020, 236, 106177. [Google Scholar] [CrossRef]
- Ferreira, L.B.; da Cunha, F.F.; de Oliveira, R.A.; Fernandes Filho, E.I. Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM—A new approach. J. Hydrol. 2019, 572, 556–570. [Google Scholar] [CrossRef]
- Lu, Y.; Li, T.; Hu, H.; Zeng, X. Short-term prediction of reference crop evapotranspiration based on machine learning with different decomposition methods in arid areas of China. Agric. Water Manag. 2023, 279, 108175. [Google Scholar] [CrossRef]
- Spontoni, T.A.; Ventura, T.M.; Palácios, R.S.; Curado, L.F.; Fernandes, W.A.; Capistrano, V.B.; Fritzen, C.L.; Pavão, H.G.; Rodrigues, T.R. Evaluation and modelling of reference evapotranspiration using different machine learning techniques for a brazilian tropical savanna. Agronomy 2023, 13, 2056. [Google Scholar] [CrossRef]
- Zhao, Z.; Feng, G.; Zhang, J. The simplified hybrid model based on BP to predict the reference crop evapotranspiration in Southwest China. PLoS ONE 2022, 17, e0269746. [Google Scholar] [CrossRef] [PubMed]
- Chia, M.Y.; Huang, Y.F.; Koo, C.H. Swarm-based optimization as stochastic training strategy for estimation of reference evapotranspiration using extreme learning machine. Agric. Water Manag. 2021, 243, 106447. [Google Scholar] [CrossRef]
- Shaloo; Kumar, B.; Bisht, H.; Rajput, J.; Mishra, A.K.; TM, K.K.; Brahmanand, P.S. Reference evapotranspiration prediction using machine learning models: An empirical study from minimal climate data. Agron. J. 2024, 116, 956–972. [Google Scholar] [CrossRef]
- Youssef, M.A.; Peters, R.T.; El-Shirbeny, M.; Abd-ElGawad, A.M.; Rashad, Y.M.; Hafez, M.; Arafa, Y. Enhancing irrigation water management based on ETo prediction using machine learning to mitigate climate change. Cogent Food Agric. 2024, 10, 2348697. [Google Scholar] [CrossRef]
- Gupta, S.; Kumar, P.; Kishore, G.; Ali, R.; Al-Ansari, N.; Vishwakarma, D.K.; Kuriqi, A.; Pham, Q.B.; Kisi, O.; Heddam, S. Sensitivity of daily reference evapotranspiration to weather variables in tropical savanna: A modelling framework based on neural network. Appl. Water Sci. 2024, 14, 138. [Google Scholar] [CrossRef]
- Abdullah, S.S.; Malek, M.A.; Abdullah, N.S.; Kisi, O.; Yap, K.S. Extreme learning machines: A new approach for prediction of reference evapotranspiration. J. Hydrol. 2015, 527, 184–195. [Google Scholar] [CrossRef]
- Zhu, B.; Feng, Y.; Gong, D.; Jiang, S.; Zhao, L.; Cui, N. Hybrid particle swarm optimization with extreme learning machine for daily reference evapotranspiration prediction from limited climatic data. Comput. Electron. Agric. 2020, 173, 105430. [Google Scholar] [CrossRef]
- Gatera, A.; Kuradusenge, M.; Bajpai, G.; Mikeka, C.; Shrivastava, S. Comparison of random forest and support vector machine regression models for forecasting road accidents. Sci. Afr. 2023, 21, e01739. [Google Scholar] [CrossRef]
- Nourani, V.; Elkiran, G.; Abdullahi, J. Multi-step ahead modeling of reference evapotranspiration using a multi-model approach. J. Hydrol. 2020, 581, 124434. [Google Scholar] [CrossRef]
- Guo, X.; Sun, X.; Ma, J. Prediction of daily crop reference evapotranspiration (ET0) values through a least-squares support vector machine model. Hydrol. Res. 2011, 42, 268–274. [Google Scholar] [CrossRef]
- Khairan, H.E.; Zubaidi, S.L.; Raza, S.F.; Hameed, M.; Al-Ansari, N.; Ridha, H.M. Examination of Single-and Hybrid-Based Metaheuristic Algorithms in ANN Reference Evapotranspiration Estimating. Sustainability 2023, 15, 14222. [Google Scholar] [CrossRef]
- Roy, D.K.; Sarkar, T.K.; Biswas, S.K.; Datta, B. Generalized daily reference evapotranspiration models based on a hybrid optimization algorithm tuned fuzzy tree approach. Water Resour. Manag. 2023, 37, 193–218. [Google Scholar] [CrossRef]
- Ikram, R.M.A.; Mostafa, R.R.; Chen, Z.; Islam, A.R.M.T.; Kisi, O.; Kuriqi, A.; Zounemat-Kermani, M. Advanced hybrid metaheuristic machine learning models application for reference crop evapotranspiration prediction. Agronomy 2022, 13, 98. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, L.; Hu, X.; Zhao, J.; Dong, W.; Zhu, F.; Wang, H. Multi-Algorithm Hybrid Optimization of Back Propagation (BP) Neural Networks for Reference Crop Evapotranspiration Prediction Models. Water 2023, 15, 3718. [Google Scholar] [CrossRef]
- He, H.; Liu, L.; Zhu, X. Optimization of extreme learning machine model with biological heuristic algorithms to estimate daily reference evapotranspiration in Hetao Irrigation District of China. Eng. Appl. Comput. Fluid Mech. 2022, 16, 1939–1956. [Google Scholar] [CrossRef]
- Jia, W.; Zhang, Y.; Wei, Z.; Zheng, Z.; Xie, P. Daily reference evapotranspiration prediction for irrigation scheduling decisions based on the hybrid PSO-LSTM model. PLoS ONE 2023, 18, e0281478. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Chen, X.; Cui, N.; Zhu, B.; Gong, D.; Han, L.; Xing, L.; Zhen, S.; Li, Q.; Liu, Q.; et al. Optimized empirical model based on whale optimization algorithm for simulate daily reference crop evapotranspiration in different climatic regions of China. J. Hydrol. 2022, 612, 128084. [Google Scholar] [CrossRef]
- Wu, L.; Huang, G.; Fan, J.; Ma, X.; Zhou, H.; Zeng, W. Hybrid extreme learning machine with meta-heuristic algorithms for monthly pan evaporation prediction. Comput. Electron. Agric. 2020, 168, 105115. [Google Scholar] [CrossRef]
- Long, Z.; Xinbo, Z.; Yuanze, L.; Yi, S.; Hanmi, Z.; Xiuzhen, L.; Xiaodong, W.; Xuguang, X. Applicability of hybrid bionic optimization models with kernel-based extreme learning machine algorithm for predicting daily reference evapotranspiration: A case study in arid and semiarid regions, China. Environ. Sci. Pollut. Res. Int. 2022, 30, 22396–22412. [Google Scholar]
- Xing, X.; Liu, Y.; Zhao, W.G.; Kang, D.G.; Yu, M.; Ma, X. Determination of dominant weather parameters on reference evapotranspiration by path analysis theory. Comput. Electron. Agric. 2016, 120, 10–16. [Google Scholar] [CrossRef]
- Pijush Samui, P.S.; Dixon, B. Application of support vector machine and relevance vector machine to determine evaporative losses in reservoirs. Hydrol. Process. 2012, 26, 1361–1369. [Google Scholar] [CrossRef]
- Pal, M. Support vector machines-based modelling of seismic liquefaction potential. Int. J. Numer. Anal. Methods Geomech. 2006, 30, 983–996. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhou, J.; Khandelwal, M.; Yang, H.; Yang, P.; Li, C. Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost models to predict blast-induced ground vibration. Eng. Comput. 2022, 38, 4145–4162. [Google Scholar] [CrossRef]
- Deghfel, N.; Badoud, A.E.; Merahi, F.; Bajaj, M.; Zaitsev, I. A new intelligently optimized model reference adaptive controller using GA and WOA-based MPPT techniques for photovoltaic systems. Sci. Rep. 2024, 14, 6827. [Google Scholar] [CrossRef] [PubMed]
- Tikhamarine, Y.; Malik, A.; Pandey, K.; Sammen, S.S.; Souag-Gamane, D.; Heddam, S.; Kisi, O. Monthly evapotranspiration estimation using optimal climatic parameters: Efficacy of hybrid support vector regression integrated with whale optimization algorithm. Environ. Monit. Assess. 2020, 192, 696. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Cui, N.; Zhao, L.; Hu, X.; Gong, D. Comparison of ELM, GANN, WNN and empirical models for estimating reference evapotranspiration in humid region of Southwest China. J. Hydrol. 2016, 536, 376–383. [Google Scholar] [CrossRef]
- Yong, S.L.S.; Ng, J.L.; Huang, Y.F.; Ang, C.K.; Ahmad Kamal, N.; Mirzaei, M.; Najah Ahmed, A. Enhanced daily reference evapotranspiration estimation using optimized hybrid support vector regression models. Water Resour. Manag. 2024, 1–29. [Google Scholar] [CrossRef]
- Li, S.; Fan, Z. Evaluation of urban green space landscape planning scheme based on PSO-BP neural network model. Alex. Eng. J. 2022, 61, 7141–7153. [Google Scholar] [CrossRef]
- Liang, F.; Sun, L.; Zeng, Z.; Kang, J. Treatment of surfactant wastewater by foam separation: Combining the RSM method and WOA-BP neural network to explore optimal process conditions. Chem. Eng. Res. Des. 2023, 193, 85–98. [Google Scholar] [CrossRef]
- Lian, Z.; Duan, L.; Qiao, Y.; Chen, J.; Miao, J.; Li, M. The improved ELM algorithms optimized by bionic WOA for EEG classification of brain computer interface. IEEE Access 2021, 9, 67405–67416. [Google Scholar] [CrossRef]
- Figueiredo, E.M.; Ludermir, T.B. Investigating the use of alternative topologies on performance of the PSO-ELM. Neurocomputing 2014, 127, 4–12. [Google Scholar] [CrossRef]
- Mohammadi, B.; Mehdizadeh, S. Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm. Agric. Water Manag. 2020, 237, 106145. [Google Scholar] [CrossRef]
- Feng, Y.; Gong, D.; Zhang, Q.; Jiang, S.; Zhao, L.; Cui, N. Evaluation of temperature-based machine learning and empirical models for predicting daily global solar radiation. Energy Convers. Manag. 2019, 198, 111780. [Google Scholar] [CrossRef]
- Shiri, J.; Nazemi, A.H.; Sadraddini, A.A.; Landeras, G.; Kisi, O.; Fard, A.F.; Marti, P. Comparison of heuristic and empirical approaches for estimating reference evapotranspiration from limited inputs in Iran. Comput. Electron. Agric. 2014, 108, 230–241. [Google Scholar] [CrossRef]
Station | Station Number | Lat (°N) | Lon (°E) | Tmax (°C) | Tmin (°C) | U2 (m s−1) | RH (%) | Rs (W/m2) |
---|---|---|---|---|---|---|---|---|
Haerbin | 50953 | 45.93 | 126.57 | 10.52 | −0.76 | 1.82 | 0.64 | 14.14 |
Wulumuqi | 51469 | 43.45 | 87.18 | 21.71 | 8.47 | 0.89 | 0.39 | 15.75 |
Minfeng | 51839 | 37.07 | 82.72 | 10.62 | −3.93 | 1.31 | 0.59 | 17.02 |
Lenghu | 52602 | 38.75 | 93.33 | 11.71 | −5.63 | 2.81 | 0.29 | 18.32 |
Gonghe | 52856 | 36.27 | 100.62 | 11.99 | −2.30 | 0.98 | 0.49 | 17.07 |
Huhehaote | 53463 | 40.85 | 111.57 | 13.16 | 0.79 | 1.32 | 0.52 | 15.93 |
Linhe | 53513 | 40.73 | 107.37 | 14.94 | 1.72 | 1.63 | 0.48 | 17.05 |
Luochuan | 53942 | 35.77 | 109.42 | 15.50 | 4.74 | 1.14 | 0.62 | 15.79 |
Xiwuzhumuqin | 54012 | 44.58 | 117.60 | 8.50 | −4.64 | 1.99 | 0.60 | 15.02 |
Jinan | 54823 | 36.60 | 117.00 | 19.67 | 10.49 | 1.63 | 0.56 | 15.68 |
Zedang | 55598 | 29.27 | 91.77 | 16.55 | 2.05 | 1.90 | 0.43 | 18.30 |
Linzhi | 56312 | 29.67 | 94.33 | 16.09 | 3.97 | 0.91 | 0.63 | 14.84 |
Jingzhou | 57476 | 30.35 | 112.15 | 21.02 | 13.19 | 1.58 | 0.79 | 14.10 |
Tongren | 57741 | 27.72 | 109.18 | 21.99 | 13.94 | 0.62 | 0.77 | 12.18 |
Dinghai | 58477 | 30.03 | 122.10 | 20.49 | 13.83 | 1.62 | 0.78 | 15.03 |
Baise | 59211 | 23.90 | 106.60 | 27.59 | 18.46 | 0.97 | 0.76 | 14.86 |
Shantou | 59316 | 23.40 | 116.68 | 25.41 | 18.82 | 1.31 | 0.80 | 15.93 |
Dongfang | 59838 | 19.10 | 108.62 | 28.58 | 22.07 | 2.28 | 0.79 | 18.55 |
Station | Model | Training | Testing | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RMSE (mm/d) | R2 | MAE (mm/d) | NSE | GPI | RMSE (mm/d) | R2 | MAE (mm/d) | NSE | GPI | ||
Lenghu | SVM | 0.434 | 0.985 | 0.346 | 0.885 | −0.215 | 0.975 | 0.548 | 0.763 | 0.408 | −0.826 |
PSO-SVM | 0.285 | 0.959 | 0.188 | 0.951 | 0.611 | 0.310 | 0.948 | 0.195 | 0.940 | 1.566 | |
WOA-SVM | 0.115 | 0.992 | 0.088 | 0.992 | 1.739 | 0.121 | 0.991 | 0.092 | 0.991 | 1.928 | |
Gonghe | SVM | 0.203 | 0.966 | 0.153 | 0.956 | 0.925 | 0.343 | 0.889 | 0.239 | 0.871 | 1.304 |
PSO-SVM | 0.203 | 0.955 | 0.154 | 0.955 | 0.807 | 0.207 | 0.953 | 0.160 | 0.953 | 1.692 | |
WOA-SVM | 0.206 | 0.954 | 0.155 | 0.954 | 0.783 | 0.206 | 0.954 | 0.160 | 0.954 | 1.696 | |
Zedang | SVM | 0.284 | 0.978 | 0.214 | 0.913 | 0.448 | 0.626 | 0.687 | 0.462 | 0.572 | 0.139 |
PSO-SVM | 0.137 | 0.980 | 0.105 | 0.980 | 1.456 | 0.156 | 0.974 | 0.120 | 0.974 | 1.827 | |
WOA-SVM | 0.150 | 0.976 | 0.116 | 0.976 | 1.342 | 0.152 | 0.975 | 0.118 | 0.975 | 1.835 | |
Linzhi | SVM | 0.346 | 0.988 | 0.275 | 0.871 | −0.009 | 0.798 | 0.436 | 0.629 | 0.305 | −0.946 |
PSO-SVM | 0.245 | 0.946 | 0.177 | 0.935 | 0.446 | 0.245 | 0.945 | 0.180 | 0.934 | 1.609 | |
WOA-SVM | 0.130 | 0.982 | 0.098 | 0.982 | 1.517 | 0.138 | 0.979 | 0.107 | 0.979 | 1.866 |
Station | Model | Training | Testing | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RMSE (mm/d) | R2 | MAE (mm/d) | NSE | GPI | RMSE (mm/d) | R2 | MAE (mm/d) | NSE | GPI | ||
Jingzhou | SVM | 0.242 | 0.975 | 0.181 | 0.972 | 1.019 | 0.345 | 0.943 | 0.245 | 0.941 | 1.495 |
PSO-SVM | 0.255 | 0.969 | 0.183 | 0.969 | 0.911 | 0.272 | 0.963 | 0.188 | 0.963 | 1.658 | |
WOA-SVM | 0.263 | 0.967 | 0.189 | 0.967 | 0.850 | 0.273 | 0.963 | 0.191 | 0.963 | 1.655 | |
Tongren | SVM | 0.320 | 0.978 | 0.246 | 0.951 | 0.624 | 0.657 | 0.834 | 0.490 | 0.786 | 0.666 |
PSO-SVM | 0.307 | 0.958 | 0.224 | 0.955 | 0.525 | 0.293 | 0.960 | 0.217 | 0.958 | 1.608 | |
WOA-SVM | 0.221 | 0.976 | 0.163 | 0.976 | 1.131 | 0.218 | 0.977 | 0.157 | 0.977 | 1.765 | |
Dinghai | SVM | 0.444 | 0.979 | 0.365 | 0.905 | −0.171 | 1.003 | 0.605 | 0.821 | 0.502 | −0.655 |
PSO-SVM | 0.301 | 0.963 | 0.207 | 0.956 | 0.625 | 0.292 | 0.963 | 0.207 | 0.958 | 1.622 | |
WOA-SVM | 0.119 | 0.993 | 0.081 | 0.993 | 1.764 | 0.125 | 0.992 | 0.087 | 0.992 | 1.933 |
Station | Model | Training | Testing | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RMSE (mm/d) | R2 | MAE (mm/d) | NSE | GPI | RMSE (mm/d) | R2 | MAE (mm/d) | NSE | GPI | ||
Wulumuqi | SVM | 0.456 | 0.976 | 0.336 | 0.950 | 0.192 | 1.040 | 0.779 | 0.720 | 0.740 | 0.056 |
PSO-SVM | 0.304 | 0.978 | 0.205 | 0.978 | 0.945 | 0.337 | 0.973 | 0.222 | 0.973 | 1.619 | |
WOA-SVM | 0.305 | 0.978 | 0.206 | 0.978 | 0.941 | 0.319 | 0.976 | 0.215 | 0.976 | 1.646 | |
Minfeng | SVM | 0.665 | 0.982 | 0.555 | 0.895 | −0.965 | 1.556 | 0.547 | 1.295 | 0.419 | −1.637 |
PSO-SVM | 0.410 | 0.967 | 0.252 | 0.960 | 0.425 | 0.388 | 0.970 | 0.243 | 0.964 | 1.549 | |
WOA-SVM | 0.125 | 0.996 | 0.087 | 0.996 | 1.795 | 0.130 | 0.996 | 0.091 | 0.996 | 1.939 | |
Huhehaote | SVM | 0.453 | 0.943 | 0.294 | 0.939 | −0.130 | 0.675 | 0.873 | 0.437 | 0.870 | 0.888 |
PSO-SVM | 0.525 | 0.918 | 0.328 | 0.918 | −0.728 | 0.564 | 0.909 | 0.350 | 0.909 | 1.154 | |
WOA-SVM | 0.533 | 0.916 | 0.335 | 0.916 | −0.791 | 0.562 | 0.910 | 0.349 | 0.910 | 1.160 | |
Linhe | SVM | 0.458 | 0.977 | 0.336 | 0.938 | 0.104 | 1.061 | 0.750 | 0.752 | 0.678 | −0.126 |
PSO-SVM | 0.251 | 0.981 | 0.165 | 0.981 | 1.165 | 0.328 | 0.969 | 0.201 | 0.969 | 1.629 | |
WOA-SVM | 0.277 | 0.977 | 0.185 | 0.977 | 1.011 | 0.320 | 0.971 | 0.205 | 0.971 | 1.637 | |
Xiwulumuqin | SVM | 0.621 | 0.985 | 0.508 | 0.886 | −0.840 | 1.481 | 0.505 | 1.206 | 0.371 | −1.659 |
PSO-SVM | 0.118 | 0.996 | 0.081 | 0.996 | 1.818 | 0.193 | 0.990 | 0.117 | 0.989 | 1.855 | |
WOA-SVM | 0.139 | 0.994 | 0.098 | 0.994 | 1.714 | 0.146 | 0.994 | 0.101 | 0.994 | 1.914 |
Station | Model | Training | Testing | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RMSE (mm/d) | R2 | MAE (mm/d) | NSE | GPI | RMSE (mm/d) | R2 | MAE (mm/d) | NSE | GPI | ||
Haerbin | SVM | 0.532 | 0.929 | 0.383 | 0.926 | −0.678 | 0.715 | 0.869 | 0.506 | 0.865 | 0.791 |
PSO-SVM | 0.610 | 0.903 | 0.439 | 0.903 | −1.355 | 0.641 | 0.892 | 0.452 | 0.892 | 0.965 | |
WOA-SVM | 0.629 | 0.896 | 0.459 | 0.896 | −1.550 | 0.641 | 0.892 | 0.454 | 0.891 | 0.962 | |
Luochuan | SVM | 0.490 | 0.975 | 0.357 | 0.937 | −0.019 | 1.047 | 0.777 | 0.727 | 0.711 | 0.000 |
PSO-SVM | 0.464 | 0.949 | 0.323 | 0.944 | −0.108 | 0.493 | 0.940 | 0.334 | 0.936 | 1.310 | |
WOA-SVM | 0.332 | 0.971 | 0.245 | 0.971 | 0.695 | 0.375 | 0.963 | 0.264 | 0.963 | 1.526 | |
Jinan | SVM | 0.667 | 0.986 | 0.535 | 0.884 | −0.976 | 1.527 | 0.531 | 1.216 | 0.384 | −1.633 |
PSO-SVM | 0.430 | 0.962 | 0.273 | 0.952 | 0.238 | 0.440 | 0.959 | 0.269 | 0.949 | 1.451 | |
WOA-SVM | 0.141 | 0.995 | 0.103 | 0.995 | 1.719 | 0.157 | 0.993 | 0.116 | 0.993 | 1.891 |
Station | Model | Training | Testing | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RMSE (mm/d) | R2 | MAE (mm/d) | NSE | GPI | RMSE (mm/d) | R2 | MAE (mm/d) | NSE | GPI | ||
Baise | SVM | 0.282 | 0.967 | 0.212 | 0.963 | 0.741 | 0.464 | 0.904 | 0.331 | 0.898 | 1.213 |
PSO-SVM | 0.320 | 0.952 | 0.238 | 0.952 | 0.393 | 0.359 | 0.939 | 0.256 | 0.939 | 1.466 | |
WOA-SVM | 0.329 | 0.949 | 0.246 | 0.949 | 0.309 | 0.361 | 0.939 | 0.261 | 0.938 | 1.459 | |
Shantou | SVM | 0.353 | 0.976 | 0.262 | 0.941 | 0.439 | 0.791 | 0.768 | 0.561 | 0.705 | 0.283 |
PSO-SVM | 0.223 | 0.977 | 0.161 | 0.977 | 1.149 | 0.279 | 0.963 | 0.187 | 0.963 | 1.654 | |
WOA-SVM | 0.242 | 0.972 | 0.174 | 0.972 | 1.003 | 0.289 | 0.961 | 0.188 | 0.961 | 1.640 | |
Dongfang | SVM | 0.479 | 0.984 | 0.386 | 0.892 | −0.324 | 1.112 | 0.552 | 0.868 | 0.416 | −0.986 |
PSO-SVM | 0.067 | 0.998 | 0.050 | 0.998 | 2.000 | 0.124 | 0.993 | 0.076 | 0.993 | 1.946 | |
WOA-SVM | 0.077 | 0.997 | 0.057 | 0.997 | 1.952 | 0.081 | 0.997 | 0.061 | 0.997 | 2.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Wu, L.; Wang, X.; Xing, X.; Zhang, J.; Qing, S.; Zhao, X. Optimization of Support Vector Machine with Biological Heuristic Algorithms for Estimation of Daily Reference Evapotranspiration Using Limited Meteorological Data in China. Agronomy 2024, 14, 1780. https://doi.org/10.3390/agronomy14081780
Guo H, Wu L, Wang X, Xing X, Zhang J, Qing S, Zhao X. Optimization of Support Vector Machine with Biological Heuristic Algorithms for Estimation of Daily Reference Evapotranspiration Using Limited Meteorological Data in China. Agronomy. 2024; 14(8):1780. https://doi.org/10.3390/agronomy14081780
Chicago/Turabian StyleGuo, Hongtao, Liance Wu, Xianlong Wang, Xuguang Xing, Jing Zhang, Shunhao Qing, and Xinbo Zhao. 2024. "Optimization of Support Vector Machine with Biological Heuristic Algorithms for Estimation of Daily Reference Evapotranspiration Using Limited Meteorological Data in China" Agronomy 14, no. 8: 1780. https://doi.org/10.3390/agronomy14081780
APA StyleGuo, H., Wu, L., Wang, X., Xing, X., Zhang, J., Qing, S., & Zhao, X. (2024). Optimization of Support Vector Machine with Biological Heuristic Algorithms for Estimation of Daily Reference Evapotranspiration Using Limited Meteorological Data in China. Agronomy, 14(8), 1780. https://doi.org/10.3390/agronomy14081780