The Relation between Soil Moisture Phase Transitions and Soil Pore Structure under Freeze–Thaw Cycling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Experimental Design
2.1.1. Physicochemical Properties of Experimental Soil
2.1.2. Soil Moisture Sensor and Thermal Characteristic Sensor
2.1.3. Experimental Design
2.2. Model for Soil Ice Contents Calculation
2.3. X-CT Imaging and Data Processing
2.4. Statistical Analysis
3. Results
3.1. Changes in Soil Temperature and Soil Moisture Phase Transition under Freeze–Thaw Cycling
3.2. Changes in Soil Pore Structure under Freeze–Thaw Cycling
3.2.1. Soil Pore Size Distribution Calculated by X-CT Images
3.2.2. Soil Pore Characteristics Derived from X-CT Images
3.2.3. Changes in Soil Pores Evolution under Freeze–Thaw Cycling
3.3. The Relationship between Initial Soil Conditions, Soil Freeze–Thaw Strength and Soil Porosity
3.4. The Relationship between Initial Soil Conditions, Soil Freeze–Thaw Strength and Changes in Soil Pore Characteristic Parameters
4. Discussion
5. Conclusions
- (1)
- The pores within the range of 200–300 μm (ϕ2) and 300–400 μm (ϕ3) contributed the most significantly to ϕ>60mm (50–60%), and the IMC and bulk density had a high explanatory power for soil pores within the mentioned pore size range. The initial moisture content of soil could significantly affect soil pore structure. In the case of higher initial moisture content, the freeze–thaw cycling promoted the thaw collapse of soil particles, blocked some pores, and reduced the imaged porosity.
- (2)
- The hydraulic conductivity of the soil in this study was estimated using MRLL and HR, the result showed that changes in bulk density from 1.10 g·cm−3 to 1.30 g·cm−3, as well as single freeze–thaw cycles, did not affect the permeability of black soil. The soil pores transformed into finer and more regular shapes in elevated bulk density following freeze–thaw cycling.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fu, Q.; Zhao, H.; Li, T.; Hou, R.; Liu, D.; Ji, Y.; Zhou, Z.; Yang, L. Effects of biochar addition on soil hydraulic properties before and after freezing-thawing. Catena 2019, 176, 112–124. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, K.; Jabro, J.D.; Ren, L.; Liu, H. Freeze-thaw cycles effects on soil physical properties under different degraded conditions in Northeast China. Environ. Earth Sci. 2019, 78, 321. [Google Scholar] [CrossRef]
- Miranda-Velez, J.F.; Leuther, F.; Koehne, J.M.; Munkholm, L.J.; Vogeler, I. Effects of freeze-thaw cycles on soil structure under different tillage and plant cover management practices. Soil Tillage Res. 2023, 225, 105540. [Google Scholar] [CrossRef]
- Hou, R.; Li, T.; Fu, Q.; Liu, D.; Li, M.; Zhou, Z.; Li, Q.; Zhao, H.; Yu, P.; Yan, J. Effects of biochar and straw on greenhouse gas emission and its response mechanism in seasonally frozen farmland ecosystems. Catena 2020, 194, 104735. [Google Scholar] [CrossRef]
- Song, Y.; Zou, Y.; Wang, G.; Yu, X. Altered soil carbon and nitrogen cycles due to the freeze-thaw effect: A meta-analysis. Soil Biol. Biochem. 2017, 109, 35–49. [Google Scholar] [CrossRef]
- Leuther, F.; Schlueter, S. Impact of freeze-thaw cycles on soil structure and soil hydraulic properties. Soil 2021, 7, 179–191. [Google Scholar] [CrossRef]
- Rooney, E.C.; Bailey, V.L.; Patel, K.F.; Dragila, M.; Battu, A.K.; Buchko, A.C.; Gallo, A.C.; Hatten, J.; Possinger, A.R.; Qafoku, O.; et al. Soil pore network response to freeze-thaw cycles in permafrost aggregates. Geoderma 2022, 411, 115674. [Google Scholar] [CrossRef]
- Sivarajan, S.; Maharlooei, M.; Bajwa, S.G.; Nowatzki, J. Impact of soil compaction due to wheel traffic on corn and soybean growth, development and yield. Soil Tillage Res. 2018, 175, 234–243. [Google Scholar] [CrossRef]
- Xia, W.; Niu, C.; Yu, Q.; Wang, Q.; Wang, J.; Sun, X.; Wang, Z.; Shan, X. Experimental investigation of the erodibility of soda saline-alkali soil under freeze-thaw cycle from a microscopic view. Catena 2023, 232, 107430. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, F.; Li, H.; Cheng, D.; Sun, B. The Influence Mechanism of Freeze-Thaw on Soil Erosion: A Review. Water 2021, 13, 1010. [Google Scholar] [CrossRef]
- Zou, Y.; Jiang, H.; Wang, E.; Liu, X.; Du, S. Variation and prediction of unfrozen water content in different soils at extremely low temperature conditions. J. Hydrol. 2023, 624, 129900. [Google Scholar] [CrossRef]
- Bai, R.; Lai, Y.; Zhang, M.; Yu, F. Theory and application of a novel soil freezing characteristic curve. Appl. Therm. Eng. 2018, 129, 1106–1114. [Google Scholar] [CrossRef]
- Gao, Y.; Li, T.; Fu, Q.; Li, H.; Liu, D.; Ji, Y.; Li, Q.; Cai, Y. Biochar application for the improvement ofwater-soil environments and carbon emissions under freeze-thaw conditions: An in-situ field trial. Sci. Total Environ. 2020, 723, 138007. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, T.; Liu, D.; Fu, Q.; Hou, R.; Cui, S. The effect of biochar on the water-soil environmental system in freezing-thawing farmland soil: The perspective of complexity. Sci. Total Environ. 2022, 807, 150746. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Jing, E.-c.; Nie, Z.; Jiao, P.; Dong, H. Analysis on the characteristics of soil moisture transfer during freezing and thawing period. Adv. Water Sci. 2002, 13, 298–302. [Google Scholar]
- Cheng, Q.; Sun, Y.; Qin, Y.; Xue, X.; Cai, X.; Sheng, W.; Zhao, Y. In situ measuring soil ice content with a combined use of dielectric tube sensor and neutron moisture meter in a common access tube. Agric. For. Meteorol. 2013, 171, 249–255. [Google Scholar] [CrossRef]
- Wang, F.; Han, X.; Li, H.; Miao, S. A Technique of Distinguishing the Content of Solid and Liquid Water during Freezing-thawing Period. J. Soil Sci. 2007, 38, 1036–1037. [Google Scholar]
- Chen, Y.; Zhou, Z.; Wang, J.; Zhao, Y.; Dou, Z. Quantification and division of unfrozen water content during the freezing process and the influence of soil properties by low-field nuclear magnetic resonance. J. Hydrol. 2021, 602, 126719. [Google Scholar] [CrossRef]
- Tian, H.; Wei, C.; Wei, H.; Yan, R.; Chen, P. An NMR-Based Analysis of Soil-Water Characteristics. Appl. Magn. Reson. 2014, 45, 49–61. [Google Scholar] [CrossRef]
- Tian, Z.; Ren, T.; Kojima, Y.; Lu, Y.; Horton, R.; Heitman, J.L. An improved thermo-time domain reflectometry method for determination of ice contents in partially frozen soils. J. Hydrol. 2017, 555, 786–796. [Google Scholar] [CrossRef]
- Tian, Z.; Kojima, Y.; Heitman, J.L.; Horton, R.; Ren, T. Advances in thermo-time domain reflectometry technique: Measuring ice content in partially frozen soils. Soil Sci. Soc. Am. J. 2020, 84, 1519–1526. [Google Scholar] [CrossRef]
- Schlueter, S.; Sammartino, S.; Koestel, J. Exploring the relationship between soil structure and soil functions via pore-scale imaging. Geoderma 2020, 370, 114370. [Google Scholar] [CrossRef]
- Qian, Y.; Yang, X.; Zhang, Z.; Li, X.; Zheng, J.; Peng, X. Estimating the permeability of soils under different tillage practices and cropping systems: Roles of the three percolating pore radii derived from X-ray CT. Soil Tillage Res. 2024, 235, 105903. [Google Scholar] [CrossRef]
- Rabot, E.; Wiesmeier, M.; Schlueter, S.; Vogel, H.J. Soil structure as an indicator of soil functions: A review. Geoderma 2018, 314, 122–137. [Google Scholar] [CrossRef]
- Liu, B.; Fan, H.; Han, W.; Zhu, L.; Zhao, X.; Zhang, Y.; Ma, R. Linking soil water retention capacity to pore structure characteristics based on X-ray computed tomography: Chinese Mollisol under freeze-thaw effect. Geoderma 2021, 401, 115170. [Google Scholar] [CrossRef]
- Ma, R.; Jiang, Y.; Liu, B.; Fan, H. Effects of pore structure characterized by synchrotron-based micro-computed tomography on aggregate stability of black soil under freeze-thaw cycles. Soil Tillage Res. 2021, 207, 104855. [Google Scholar] [CrossRef]
- de Vries, D.A. Physics of Plant Environment; van Wijk, W.R., Ed.; North Holland: Amsterdam, The Netherlands, 1963; pp. 210–235. [Google Scholar]
- Taber, S. The Mechanics of Frost Heaving. J. Geol. 1930, 38, 303–317. [Google Scholar] [CrossRef]
- Hou, R.-J.; Li, T.-X.; Fu, Q.; Liu, D.; Li, M.; Zhou, Z.-Q.; Yan, J.-W.; Zhang, S. Research on the distribution of soil water, heat, salt and their response mechanisms under freezing conditions. Soil Tillage Res. 2020, 196, 104486. [Google Scholar] [CrossRef]
- Zheng, C.; Simunek, J.; Zhao, Y.; Lu, Y.; Liu, X.; Shi, C.; Li, H.; Yu, L.; Zeng, Y.; Su, Z. Development of the Hydrus-1D freezing module and its application in simulating the coupled movement of water, vapor, and heat. J. Hydrol. 2021, 598, 126250. [Google Scholar] [CrossRef]
- Chen, S.; Burras, C.L.; Zhang, X. Soil Aggregate Response to Three Freeze-Thaw Methods in a Northeastern China Mollisol. Pol. J. Environ. Stud. 2019, 28, 3635–3645. [Google Scholar] [CrossRef]
- Dan, C.; Jiankun, L. Review of the influence of freeze-thaw cycles on the physical and mechanical properties of soil. Sci. Cold Arid Reg. 2013, 5, 457–460. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.; Tian, Z.; Lu, Y.; Gao, W.; Ren, T. Structural Changes of Compacted Soil Layers in Northeast China due to Freezing-Thawing Processes. Sustainability 2020, 12, 1587. [Google Scholar] [CrossRef]
- Jiang, R.; Li, T.; Liu, D.; Fu, Q.; Hou, R.; Li, Q.; Cui, S.; Li, M. Soil infiltration characteristics and pore distribution under freezing-thawing conditions. Cryosphere 2021, 15, 2133–2146. [Google Scholar] [CrossRef]
- Starkloff, T.; Larsbo, M.; Stolte, J.; Hessel, R.; Ritsema, C. Quantifying the impact of a succession of freezing-thawing cycles on the pore network of a silty clay loam and a loamy sand topsoil using X-ray tomography. Catena 2017, 156, 365–374. [Google Scholar] [CrossRef]
- Fomin, D.S.; Yudina, A.V.; Romanenko, K.A.; Abrosimov, K.N.; Karsanina, M.V.; Gerke, K.M. Soil pore structure dynamics under steady-state wetting-drying cycle. Geoderma 2023, 432, 116401. [Google Scholar] [CrossRef]
- Xu, J.; Ren, J.; Wang, Z.; Wang, S.; Yuan, J. Strength behaviors and meso-structural characters of loess after freeze-thaw. Cold Reg. Sci. Technol. 2018, 148, 104–120. [Google Scholar] [CrossRef]
- Ahmadi, A.; Neyshabouri, M.-R.; Rouhipour, H.; Asadi, H. Fractal dimension of soil aggregates as an index of soil erodibility. J. Hydrol. 2011, 400, 305–311. [Google Scholar] [CrossRef]
- Zhang, Z.; Peng, X. Bio-tillage: A new perspective for sustainable agriculture. Soil Tillage Res. 2021, 206, 104844. [Google Scholar] [CrossRef]
Treatment | IMC (cm3·cm−3) | MIC (cm3·cm−3) | SFS (°C·h−1) | MTC (W·m−1·K−1) | NTD (h) | AT (°C) |
---|---|---|---|---|---|---|
NC upper | 0.357 | 0.292 | 0.677 | 1.408 | 54 | −5.790 |
SC upper | 0.399 | 0.285 | 0.643 | 1.409 | 52 | −5.610 |
LC upper | 0.397 | 0.262 | 0.723 | 1.563 | 53 | −5.965 |
NC lower | 0.425 | 0.294 | 0.784 | 1.420 | 69 | −5.987 |
SC lower | 0.435 | 0.260 | 0.756 | 1.507 | 63 | −5.937 |
LC lower | 0.444 | 0.265 | 0.811 | 1.576 | 61 | −6.063 |
Treatment | ϕ (cm cm−3) | ϕ>60μm (cm cm−3) | SA (m−1) | CP | FD | DA | Γ | MRLL (mm) | HR (mm) | |
---|---|---|---|---|---|---|---|---|---|---|
Before freeze–thaw cycling | NC upper | 0.583 a (0.001) | 0.096 b (0.007) | 9.860 (0.717) | 430.333 (38.877) | 2.665 (0.071) | 0.605 (0.064) | 0.148 (0.015) | 0.202 (0.069) | 0.102 (0.008) |
SC upper | 0.584 a (0.001) | 0.125 Aa (0.009) | 9.065 (1.050) | 532.672 (113.281) | 2.666 (0.043) | 0.673 (0.076) | 0.214 (0.060) | 0.175 (0.033) | 0.111 (0.013) | |
LC upper | 0.513 b (0.001) | 0.062 c (0.014) | 10.110 (0.308) | 270.804 (84.330) | 2.502 (0.059) | 0.645 (0.309) | 0.127 (0.025) | 0.161 (0.060) | 0.099 (0.003) | |
NC lower | 0.585 a (0.001) | 0.099 a (0.023) | 11.081 (0.236) | 404.851 (99.625) | 2.740 a (0.068) | 0.414 (0.089) | 0.096 A (0.012) | 0.158 (0.004) | 0.090 (0.002) | |
SC lower | 0.510 a (0.001) | 0.056 b (0.007) | 11.059 (0.709) | 228.446 (142.759) | 2.604 b (0.054) | 0.332 (0.043) | 0.073 (0.057) | 0.170 (0.019) | 0.090 (0.006) | |
LC lower | 0.512 b (0.001) | 0.054 b (0.005) | 11.210 (0.153) | 153.089 (79.725) | 2.619 b (0.016) | 0.426 (0.104) | 0.044 (0.038) | 0.173 (0.040) | 0.089 (0.001) | |
After freeze–thaw cycling | NC upper | - | 0.069 ab (0.015) | 9.785 (0.662) | 299.588 (148.093) | 2.581 (0.053) | 0.577 (0.041) | 0.140 (0.063) | 0.160 (0.012) | 0.103 (0.007) |
SC upper | - | 0.081 Ba (0.007) | 9.659 (0.809) | 373.716 (153.230) | 2.599 (0.048) | 0.482 (0.237) | 0.162 (0.085) | 0.148 (0.009) | 0.104 (0.008) | |
LC upper | - | 0.055 b (0.001) | 9.213 (1.758) | 238.640 (131.294) | 2.487 (0.040) | 0.411 (0.006) | 0.190 (0.039) | 0.189 (0.089) | 0.110 (0.021) | |
NC lower | - | 0.082 a (0.016) | 11.194 (0.119) | 260.516 (54.388) | 2.709 a (0.059) | 0.413 (0.057) | 0.066 B (0.003) | 0.173 (0.017) | 0.089 (0.001) | |
SC lower | - | 0.048 b (0.012) | 11.308 (0.483) | 188.993 (155.813) | 2.556 b (0.067) | 0.341 (0.022) | 0.079 (0.093) | 0.159 (0.007) | 0.089 (0.001) | |
LC lower | - | 0.051 b (0.008) | 11.283 (0.131) | 159.714 (113.973) | 2.583 b (0.053) | 0.358 (0.073) | 0.048 (0.043) | 0.156 (0.011) | 0.089 (0.004) |
Stepwise Multiple Regression Model | R2 | F | p | VIF |
---|---|---|---|---|
ϕ1 = 0.733 NTD | 0.504 | 16.259 | 0.001 | - |
ϕ2 = 0.526 MIC | 0.224 | 5.342 | 0.037 | - |
ϕ2 = 0.876 MIC + 0.643 IMC | 0.501 | 8.524 | 0.004 | 1.422 |
ϕ3 = −0.726 BD | 0.493 | 15.570 | 0.001 | - |
ϕ4 = −0.830 BD | 0.667 | 31.076 | 0.000 | - |
ϕ4 = −0.811 BD − 0.376 NTD | 0.804 | 31.753 | 0.000 | 1.003 |
ϕ5 = −0.629 SFS | 0.353 | 9.176 | 0.009 | - |
ϕ>60μm = −0.779 BD | 0.578 | 21.542 | 0.000 | - |
Indicators | Δ SA | Δ CP | Δ FD | Δ Γ | Δ DA | Δ MRLL | Δ HR |
---|---|---|---|---|---|---|---|
BD | 0.227 | 0.774 ** | −0.331 | 0.739 ** | −0.216 | 0.335 | 0.186 |
IMC | 0.269 | 0.526 * | −0.136 | 0.415 | −0.280 | 0.140 | 0.223 |
MIC | −0.200 | −0.817 | 0.347 | −0.801 | 0.253 | −0.359 | −0.141 |
SFS | 0.263 | 0.291 | −0.096 | 0.193 | −0.103 | 0.081 | 0.264 |
MTC | 0.241 | 0.740 ** | −0.233 | 0.597 * | −0.164 | 0.225 | 0.273 |
NTD | 0.202 | −0.043 | −0.023 | −0.030 | −0.085 | 0.022 | 0.154 |
AT | −0.258 | −0.290 | 0.113 | −0.201 | 0.042 | −0.097 | −0.294 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Qian, Y.; Wang, Y.; Peng, X. The Relation between Soil Moisture Phase Transitions and Soil Pore Structure under Freeze–Thaw Cycling. Agronomy 2024, 14, 1608. https://doi.org/10.3390/agronomy14081608
Li Q, Qian Y, Wang Y, Peng X. The Relation between Soil Moisture Phase Transitions and Soil Pore Structure under Freeze–Thaw Cycling. Agronomy. 2024; 14(8):1608. https://doi.org/10.3390/agronomy14081608
Chicago/Turabian StyleLi, Qinglin, Yongqi Qian, Yuekai Wang, and Xinhua Peng. 2024. "The Relation between Soil Moisture Phase Transitions and Soil Pore Structure under Freeze–Thaw Cycling" Agronomy 14, no. 8: 1608. https://doi.org/10.3390/agronomy14081608
APA StyleLi, Q., Qian, Y., Wang, Y., & Peng, X. (2024). The Relation between Soil Moisture Phase Transitions and Soil Pore Structure under Freeze–Thaw Cycling. Agronomy, 14(8), 1608. https://doi.org/10.3390/agronomy14081608