The Role of Crop Wild Relatives and Landraces of Forage Legumes in Pre-Breeding as a Response to Climate Change
Abstract
:1. Introduction
2. Crop Wild Relatives of the Most Widespread Perennial Forage Legumes
2.1. Alfalfa
2.2. Clover
3. Pre-Breeding
3.1. Genetic Resources
3.2. Phenotypic and Genotypic Characterization and Evaluation of Collected Germplasm, Crossing, and Development of Pre-Breeding Populations
3.2.1. Phenotypic Characterization and Evaluation
3.2.2. Genotypic Characterization and Evaluation, Crossing and Development of Pre-Breeding Populations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate change and livestock: Impacts, adaptation, and mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Font-i-Furnols, M. Meat Consumption, Sustainability and Alternatives: An Overview of Motives and Barriers. Foods 2023, 12, 2144. [Google Scholar] [CrossRef] [PubMed]
- Adesogan, A.T.; Dahl, G.E. MILK Symposium Introduction: Dairy production in developing countries. J. Dairy Sci. 2020, 103, 9677–9680. [Google Scholar] [CrossRef] [PubMed]
- Michalk, D.L.; Kemp, D.R.; Badgery, W.B.; Wu, J.; Zhang, Y.; Thomassin, P.J. Sustainability and future food security—A global perspective for livestock production. Land Degrad. Dev. 2019, 30, 561–573. [Google Scholar] [CrossRef]
- del Portillo, D.G.; Arroyo, B.; Morales, M.B. The adequacy of alfalfa crops as an agri-environmental scheme: A review of agronomic benefits and effects on biodiversity. J. Nat. Conserv. 2022, 69, 126253. [Google Scholar] [CrossRef]
- Tucak, M.; Horvat, D.; Cupic, T.; Krizmanic, G.; Tomas, V.; Ravlic, M.; Popovic, S. Forage legumes as sources of bioactive phytoestrogens for use in pharmaceutics: A review. Curr. Pharm. Biotechnol. 2018, 19, 537–544. [Google Scholar] [CrossRef]
- Chowdhury, M.R.; Wilkinson, R.G.; Sinclair, L.A. Feeding lower-protein diets based on red clover and grass or alfalfa and corn silage does not affect milk production but improves nitrogen use efficiency in dairy cows. J. Dairy Sci. 2023, 106, 1773–1789. [Google Scholar] [CrossRef]
- El-Ramady, H.; Abdalla, N.; Kovacs, S.; Domokos-Szabolcsy, É.; Bákonyi, N.; Fari, M.; Geilfus, C.M. Alfalfa growth under changing environments: An overview. Env. Biodivers. Soil Sec. 2020, 4, 201–224. [Google Scholar] [CrossRef]
- Wang, S.; Fang, D.; Ameen, A.; Li, X.; Guo, K.; Liu, X.; Han, L. Dynamics of spring regrowth and comparative production performance of 50 autumn-sown alfalfa cultivars in the coastal saline soil of North China. Life 2021, 11, 1436. [Google Scholar] [CrossRef]
- Müller, J.V.; Cockel, C.P.; Gianella, M.; Guzzon, F. Treasuring crop wild relative diversity: Analysis of success from the seed collecting phase of the ‘Adapting Agriculture to Climate Change’ project. Genet. Resour. Crop. Evol. 2021, 68, 2749–2756. [Google Scholar] [CrossRef]
- Eastwood, R.J.; Tambam, B.B.; Aboagye, L.M.; Akparov, Z.I.; Aladele, S.E.; Allen, R.; Amri, A.; Anglin, N.L.; Araya, R.; Arrieta-Espinoza, G.; et al. Adapting agriculture to climate change: A synopsis of coordinated national crop wild relative seed collecting programs across five continents. Plants 2022, 11, 1840. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Li, J. Breeding future crops to feed the world through de novo domestication. Nat. Commun. 2022, 13, 1171. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Guzman, M.; Cellini, F.; Fotopoulos, V.; Balestrini, R.; Arbona, V. New approaches to improve crop tolerance to biotic and abiotic stresses. Physiol. Plant. 2022, 174, e13547. [Google Scholar] [CrossRef]
- Anderson, R.; Bayer, P.E.; Edwards, D. Climate change and the need for agricultural adaptation. Curr. Opin. Plant Biol. 2020, 56, 197–202. [Google Scholar] [CrossRef]
- Indu, I.; Mehta, B.K.; Shashikumara, P.; Gupta, G.; Dikshit, N.; Chand, S.; Yadav, P.K.; Ahmed, S.; Singhal, R.K. Forage crops: A repository of functional trait diversity for current and future climate adaptation. Crop. Pasture Sci. 2022, 74, 961–977. [Google Scholar] [CrossRef]
- Rivero, R.M.; Mittler, R.; Blumwald, E.; Zandalinas, S.I. Developing climate-resilient crops: Improving plant tolerance to stress combination. Plant J. 2022, 109, 373–389. [Google Scholar] [CrossRef]
- Galluzzi, G.; Seyoum, A.; Halewood, M.; Lopez Noriega, I.; Welch, E.W. The role of genetic resources in breeding for climate change: The case of public breeding programmes in eighteen developing countries. Plants 2020, 9, 1129. [Google Scholar] [CrossRef] [PubMed]
- Tucak, M.; Ravlić, M.; Horvat, D.; Čupić, T. Improvement of forage nutritive quality of alfalfa and red clover through plant breeding. Agronomy 2021, 11, 2176. [Google Scholar] [CrossRef]
- Jing, F.; Shi, S.; Guan, J.; Lu, B.; Wu, B.; Wang, W.; Ma, R.; Nan, P. Analysis of Phenotypic and Physiological Characteristics of Plant Height Difference in Alfalfa. Agronomy 2023, 13, 1744. [Google Scholar] [CrossRef]
- Kilian, B.; Dempewolf, H.; Guarino, L.; Werner, P.; Coyne, C.; Warburton, M.L. Crop Science special issue: Adapting agriculture to climate change: A walk on the wild side. Crop. Sci. 2021, 61, 32–36. [Google Scholar] [CrossRef]
- Allen, E.; Gaisberger, H.; Magos Brehm, J.; Maxted, N.; Thormann, I.; Lupupa, T.; Dulloo, M.E.; Kell, S.P. A crop wild relative inventory for Southern Africa: A first step in linking conservation and use of valuable wild populations for enhancing food security. Plant Genet. Resour. Char. Util. 2019, 17, 128–139. [Google Scholar] [CrossRef]
- Balasundram, S.K.; Shamshiri, R.R.; Sridhara, S.; Rizan, N. The Role of Digital Agriculture in Mitigating Climate Change and Ensuring Food Security: An Overview. Sustainability 2023, 15, 5325. [Google Scholar] [CrossRef]
- Begna, T.; Teressa, T.; Gichile, H. Pre-Breeding’s Role in Crop Genetic Improvement. Int. J. Res. Stud. Agri. Sci. 2023, 9, 1–15. [Google Scholar]
- Dempewolf, H.; Baute, G.; Anderson, J.; Kilian, B.; Smith, C.; Guarino, L. Past and future use of wild relatives in crop breeding. Crop. Sci. 2017, 57, 1070–1082. [Google Scholar] [CrossRef]
- Abebe, A.; Tafa, Z. Pre-breeding concept and role in crop improvement. Int. J. Res. Appl. Sci. Biotechnol. 2021, 8, 275–279. [Google Scholar]
- Meena, A.K.; Gurjar, D.; Kumhar, B.L. Pre-breeding is a bridge between wild species and improved genotypes—A review. Chem. Sci. Rev. Lett. 2017, 6, 1141–1151. [Google Scholar]
- Sharma, S. Prebreeding using wild species for genetic enhancement of grain legumes at ICRISAT. Crop. Sci. 2017, 57, 1132–1144. [Google Scholar] [CrossRef]
- Purugganan, M.D. Evolutionary insights into the nature of plant domestication. Curr. Biol. 2019, 29, R705–R714. [Google Scholar] [CrossRef] [PubMed]
- Bohra, A.; Kilian, B.; Sivasankar, S.; Caccamo, M.; Mba, C.; McCouch, S.R.; Varshney, R.K. Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 2022, 40, 412–431. [Google Scholar] [CrossRef]
- Curtin, S.; Qi, Y.; Peres, L.E.; Fernie, A.R.; Zsögön, A. Pathways to de novo domestication of crop wild relatives. Plant Physiol. 2022, 188, 1746–1756. [Google Scholar] [CrossRef] [PubMed]
- FAO. Building on Gender, Agrobiodiversity and Local Knowledge; Food and Agriculture Organization of the United Nations: Rome, Italy, 2004. [Google Scholar]
- Salgotra, R.K.; Chauhan, B.S. Genetic diversity, conservation, and utilization of plant genetic resources. Genes 2023, 14, 174. [Google Scholar] [CrossRef] [PubMed]
- Humphries, A.W.; Ovalle, C.; Hughes, S.; del Pozo, A.; Inostroza, L.; Barahona, V.; Yu, L.; Yerzhanova, S.; Rowe, T.; Hill, J.; et al. Characterization and pre-breeding of diverse alfalfa wild relatives originating from drought-stressed environments. Crop. Sci. 2021, 61, 69–88. [Google Scholar] [CrossRef]
- Rajpal, V.R.; Singh, A.; Kathpalia, R.; Thakur, R.K.; Khan, M.; Pandey, A.; Hamurcu, M.; Raina, S.N. The prospects of gene introgression from crop wild relatives into cultivated lentil for climate change mitigation. Front. Plant Sci. 2023, 14, 1127239. [Google Scholar] [CrossRef] [PubMed]
- Kapazoglou, A.; Gerakari, M.; Lazaridi, E.; Kleftogianni, K.; Sarri, E.; Tani, E.; Bebeli, P.J. Crop wild relatives: A valuable source of tolerance to various abiotic stresses. Plants 2023, 12, 328. [Google Scholar] [CrossRef] [PubMed]
- El Haddad, N.; Kabbaj, H.; Zaïm, M.; El Hassouni, K.; Tidiane Sall, A.; Azouz, M.; Ortiz, R.; Baum, M.; Amri, A.; Gamba, F.; et al. Crop wild relatives in durum wheat breeding: Drift or thrift? Crop. Sci. 2021, 61, 37–54. [Google Scholar] [CrossRef]
- Fernández-Calleja, M.; Boutin, C.; Dyrszka, E.; Manès, Y.; Reif, J.C.; Zhao, Y.; Aparicio, N.; Ciudad, F.J.; Casas, A.M.; Igartua, E. Identification of adapted breeding lines to improve barley hybrids for Spain. Crop. Sci. 2023, 63, 186–203. [Google Scholar] [CrossRef]
- Gorjanc, G.; Jenko, J.; Hearne, S.J.; Hickey, J.M. Initiating maize pre-breeding programs using genomic selection to harness polygenic variation from landrace populations. BMC Genom. 2016, 17, 30. [Google Scholar] [CrossRef] [PubMed]
- da Silva-Rodrigues, J.I.; Antunes-Arruda, K.M.; Deniz-Piovesan, N.; Gonçalves-de Barros, E. Plant pre-breeding for increased protein content in soybean Glycine max (L.) Merrill. Acta AgronÓM. 2017, 66, 618–624. [Google Scholar] [CrossRef]
- Mangat, P.K.; Shim, J.; Gannaban, R.B.; Singleton, J.J.; Angeles-Shim, R.B. Alien introgression and morpho-agronomic characterization of diploid progenies of Solanum lycopersicoides monosomic alien addition lines (MAALs) toward pre-breeding applications in tomato (S. lycopersicum). Theor. Appl. Genet. 2021, 134, 1133–1146. [Google Scholar] [CrossRef]
- Micke, B.; Parsons, D. Using botanical resources to select wild forage legumes for domestication in temperate grassland agricultural systems. Agron. Sustain. Dev. 2023, 43, 1. [Google Scholar] [CrossRef]
- Petereit, J.; Bayer, P.E.; Thomas, W.J.W.; Tay Fernandez, C.G.; Amas, J.; Zhang, Y.; Batley, J.; Edwards, D. Pangenomics and Crop Genome Adaptation in a Changing Climate. Plants 2022, 11, 1949. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, M.; Santos, C.S.; Rubiales, D.; Vasconcelos, M.W. Challenges in pea breeding for tolerance to drought: Status and prospects. Ann. Appl. Biol. 2023, 183, 108–120. [Google Scholar] [CrossRef]
- Inostroza, L.; Espinoza, S.; Barahona, V.; Gerding, M.; Humphries, A.; Del Pozo, A.; Ovalle, C. Phenotypic diversity and productivity of Medicago sativa subspecies from drought-prone environments in Mediterranean type climates. Plants 2021, 10, 862. [Google Scholar] [CrossRef] [PubMed]
- Şakiroğlu, M.; İlhan, D. Medicago sativa species complex: Revisiting the century-old problem in the light of molecular tools. Crop. Sci. 2021, 61, 827–838. [Google Scholar] [CrossRef]
- Yin, M.; Zhang, S.; Du, X.; Mateo, R.G.; Guo, W.; Li, A.; Wang, Z.; Wu, S.; Chen, J.; Liu, J.; et al. Genomic analysis of Medicago ruthenica provides insights into its tolerance to abiotic stress and demographic history. Mol. Ecol. Resour. 2021, 21, 1641–1657. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Ren, L.; Li, C.; Zhang, D.; Zhang, X.; Zhou, G.; Gao, D.; Chen, R.; Chen, Y.; Whang, Z.; et al. The genome of a wild Medicago species provides insights into the tolerant mechanisms of legume forage to environmental stress. BMC Biol. 2021, 19, 96. [Google Scholar] [CrossRef] [PubMed]
- Guan, B.; Zhou, D.; Zhang, H.; Tian, Y.; Japhet, W.; Wang, P. Germination responses of Medicago ruthenica seeds to salinity, alkalinity, and temperature. J. Arid Environ. 2009, 73, 135–138. [Google Scholar] [CrossRef]
- El-Shafey, N.M.; Al-Sherif, E. Wild medics from different original habitats can be used as forage legumes in salt affected soil. J. Clean WAS (JCleanWAS) 2020, 4, 47–55. [Google Scholar] [CrossRef]
- Sarri, E.; Termentzi, A.; Abraham, E.M.; Papadopoulos, G.K.; Baira, E.; Machera, K.; Loukas, V.; Komaitis, F.; Tani, E. Salinity stress alters the secondary metabolic profile of M. sativa, M. arborea and their hybrid (Alborea). Int. J. Mol. Sci. 2021, 22, 4882. [Google Scholar] [CrossRef]
- Pennycooke, J.C.; Cheng, H.; Stockinger, E.J. Comparative genomic sequence and expression analyses of Medicago truncatula and alfalfa subspecies falcata COLD-ACCLIMATION-SPECIFIC genes. Plant Physiol. 2008, 146, 1242–1254. [Google Scholar] [CrossRef]
- Can, E.; Arslan, M.; Sener, O.; Daghan, H. Response of strawberry clover (Trifolium fragiferum L.) to salinity stress. Res. Crops 2013, 14, 576–584. [Google Scholar]
- Andersone-Ozola, U.; Jēkabsone, A.; Purmale, L.; Romanovs, M.; Ievinsh, G. Abiotic stress tolerance of coastal accessions of a promising forage species, Trifolium fragiferum. Plants 2021, 10, 1552. [Google Scholar] [CrossRef] [PubMed]
- Jēkabsone, A.; Andersone-Ozola, U.; Karlsons, A.; Romanovs, M.; Ievinsh, G. Effect of salinity on growth, ion accumulation and mineral nutrition of different accessions of a crop wild relative legume species, Trifolium fragiferum. Plants 2022, 11, 797. [Google Scholar] [CrossRef] [PubMed]
- Dūmiņš, K.; Andersone-Ozola, U.; Samsone, I.; Elferts, D.; Ievinsh, G. Growth and physiological performance of a coastal species Trifolium fragiferum as affected by a coexistence with Trifolium repens, NaCl treatment and inoculation with rhizobia. Plants 2021, 10, 2196. [Google Scholar] [CrossRef] [PubMed]
- Zanotto, S.; Palmé, A.; Helgadóttir, Á.; Daugstad, K.; Isolahti, M.; Öhlund, L.; Marum, P.; Moen, M.A.; Veteläinen, M.; Rognli, O.A.; et al. Trait characterization of genetic resources reveals useful variation for the improvement of cultivated Nordic red clover. J. Agron. Crop. Sci. 2021, 207, 492–503. [Google Scholar] [CrossRef]
- Zanotto, S.; Bertrand, A.; Purves, R.W.; Olsen, J.E.; Elessawy, F.M.; Ergon, Å. Biochemical changes after cold acclimation in Nordic red clover (Trifolium pratense L.) accessions with contrasting levels of freezing tolerance. Physiol. Plant. 2023, 175, e13953. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.R.; Hassanzadeh, A.; Mahdipour, A.; Anahid, S.; Safari, S. Forage yield in some Iranian wild Trifolium genetic resources under different climatic and irrigation conditions. J. Agric. Sci. Tech. 2019, 21, 993–1004. [Google Scholar]
- Raubach, S.; Kilian, B.; Dreher, K.; Amri, A.; Bassi, F.M.; Boukar, O.; Cook, D.; Cruickshank, A.; Fatokun, C.; El Haddad, N.; et al. From bits to bites: Advancement of the Germinate platform to support prebreeding informatics for crop wild relatives. Crop. Sci. 2021, 61, 1538–1566. [Google Scholar] [CrossRef]
- Tani, E.; Chronopoulou, E.G.; Labrou, N.E.; Sarri, E.; Goufa, Μ.; Vaharidi, X.; Tornesaki, A.; Psychogiou, M.; Bebeli, P.J.; Abraham, Ε.M. Growth, physiological, biochemical, and transcriptional responses to drought stress in seedlings of Medicago sativa L.; Medicago arborea L. and their hybrid (Alborea). Agronomy 2019, 9, 38. [Google Scholar] [CrossRef]
- Yousfi, N.; Slama, I.; Ghnaya, T.; Savouré, A.; Abdelly, C. Effects of water deficit stress on growth, water relations and osmolyte accumulation in Medicago truncatula and M. laciniata populations. Comptes Rendus Biol. 2010, 333, 205–213. [Google Scholar] [CrossRef]
- Badri, M.; Toumi, G.; Mahfoudh, S.; Hessini, K.; Abdel-Laouar, M.; Abdelguerfi, A.; Aouani, M.E.; Abdelly, C.; Djébali, N. Diversity of Response to Drought in a Collection of Lines of Medicago truncatula, M. ciliaris, and M. polymorpha. Crop. Sci. 2016, 56, 3125–3132. [Google Scholar] [CrossRef]
- Zhang, C.; Shi, S.; Liu, Z.; Yang, F.; Yin, G. Drought tolerance in alfalfa (Medicago sativa L.) varieties is associated with enhanced antioxidative protection and declined lipid peroxidation. J. Plant Physiol. 2019, 232, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Karam, N.; Choueiry, Z.; Al-Beyrouthy, J.; Shehadeh, A.; Chalak, L.; Yazbek, M. Phenotypic diversity of Medicago crop wild relatives growing in Lebanon. Genet. Resour. Crop. Evol. 2023, 70, 1487–1499. [Google Scholar] [CrossRef]
- Kanchupati, P.; Wang, Y.; Anower, M.R.; Boe, A.; Hu, T.; Wu, Y. The CBF-Like gene family in alfalfa: Expression analyses and identification of potential functional homologs of Arabidopsis CBF3. Crop. Sci. 2017, 57, 2051–2063. [Google Scholar] [CrossRef]
- Limami, A.M.; Ricoult, C.; Planchet, E.; González, E.M.; Ladrera, R.; Larrainzar, E.; Arrese-Igor, C.; Merchan, F.; Crespi, M.; Frugier, F.; et al. Response of Medicago truncatula to abiotic stress. In Medicago truncatula Handbook; Mathesius, U., Journet, E., Sumner, L., Eds.; Noble Research Institute: Ardmore, OK, USA, 2007; pp. 1–32. [Google Scholar]
- Zhang, L.L.; Zhao, M.G.; Tian, Q.Y.; Zhang, W.H. Comparative studies on tolerance of Medicago truncatula and Medicago falcata to freezing. Planta 2011, 234, 445–457. [Google Scholar] [CrossRef] [PubMed]
- Cui, G.; Chai, H.; Yin, H.; Yang, M.; Hu, G.; Guo, M.; Yi, R.; Zhang, P. Full-length transcriptome sequencing reveals the low-temperature-tolerance mechanism of Medicago falcata roots. BMC Plant Biol. 2019, 19, 575. [Google Scholar] [CrossRef]
- Miao, Z.; Xu, W.; Li, D.; Hu, X.; Liu, J.; Zhang, R.; Tong, Z.; Dong, J.; Su, Z.; Zhang, L.; et al. De novo transcriptome analysis of Medicago falcata reveals novel insights about the mechanisms underlying abiotic stress-responsive pathway. BMC Genom. 2015, 16, 818. [Google Scholar] [CrossRef]
- Ruņģis, D.E.; Andersone-Ozola, U.; Jēkabsone, A.; Ievinsh, G. Genetic diversity and structure of Latvian Trifolium fragiferum populations, a crop wild relative legume species, in the context of the Baltic Sea region. Diversity 2023, 15, 473. [Google Scholar] [CrossRef]
- Petrauskas, G.; Norkevičienė, E.; Stukonis, V.; Kemešytė, V. Phenotypic traits for wild red clover seed yield under drought conditions. Czech J. Genet. Plant Breed. 2020, 56, 140–149. [Google Scholar] [CrossRef]
- Asci, O.O. Salt tolerance in red clover (Trifolium pratense L.) seedlings. Afr. J. Biotechnol. 2011, 10, 8774–8781. [Google Scholar] [CrossRef]
- Zanotto, S.; Ruttink, T.; Pégard, M.; Skøt, L.; Grieder, C.; Kölliker, R.; Ergon, Å. A genome-wide association study of freezing tolerance in red clover (Trifolium pratense L.) germplasm of European origin. Front. Plant Sci. 2023, 14, 1189662. [Google Scholar] [CrossRef] [PubMed]
- Kawtar, B. Trifolium isthmocarpum Brot, a salt-tolerant wild leguminous forage crop in salt-affected soils. J. Stress Physiol. Biochem. 2013, 9, 299–317. [Google Scholar]
- Aschi-Smiti, S.; Chaïbi, W.I.D.E.D.; Brouquisse, R.; Ricard, B.; Saglio, P. Assessment of enzyme induction and aerenchyma formation as mechanisms for flooding tolerance in Trifolium subterraneum ‘Park’. Ann. Bot. 2003, 91, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Striker, G.G.; Colmer, T.D. Flooding tolerance of forage legumes. J. Exp. Bot. 2017, 68, 1851–1872. [Google Scholar] [CrossRef] [PubMed]
- Nass, L.L.; Paterniani, E. Pre-breeding: A link between genetic resources and maize breeding. Sci. Agric. 2000, 57, 581–587. [Google Scholar] [CrossRef]
- Anđelković, V.; Babić, V.; Kravić, N. Genetic resources in maize breeding. Sel. I Semen. 2017, 23, 37–48. [Google Scholar] [CrossRef]
- Cockel, C.P.; Guzzon, F.; Gianella, M.; Müller, J.V. The importance of conserving crop wild relatives in preparing agriculture for climate change. CABI Rev. 2022, 17, 031. [Google Scholar] [CrossRef]
- Sharma, S.; Upadhyaya, H.D.; Varshney, R.K.; Gowda, C.L.L. Pre-breeding for diversification of primary gene pool and genetic enhancement of grain legumes. Front. Plant Sci. 2013, 4, 309. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Barrett, B.; Brummer, E.C.; Julier, B.; Marshall, A.H. Achievements and challenges in improving temperate perennial forage legumes. Crit. Rev. Plant Sci. 2015, 34, 327–380. [Google Scholar] [CrossRef]
- Tyack, N.; Dempewolf, H.; Khoury, C.K. The potential of payment for ecosystem services for crop wild relative conservation. Plants 2020, 9, 1305. [Google Scholar] [CrossRef]
- Tirnaz, S.; Zandberg, J.; Thomas, W.J.; Marsh, J.; Edwards, D.; Batley, J. Application of crop wild relatives in modern breeding: An overview of resources, experimental and computational methodologies. Front. Plant Sci. 2022, 13, 1008904. [Google Scholar] [CrossRef] [PubMed]
- Maxted, N.; Magos Brehm, J. Maximizing the crop wild relative resources available to plant breeders for crop improvement. Front. Sustain. Food Syst. 2023, 7, 1010204. [Google Scholar] [CrossRef]
- Engels, J.M.; Ebert, A.W.; van Hintum, T. Collaboration between Private and Public Genebanks in Conserving and Using Plant Genetic Resources. Plants 2024, 13, 247. [Google Scholar] [CrossRef] [PubMed]
- Dulloo, M.E.; Thormann, I.; Fiorino, E.; De Felice, S.; Rao, V.R.; Snook, L. Trends in research using plant genetic resources from germplasm collections: From 1996 to 2006. Crop. Sci. 2013, 53, 1217–1227. [Google Scholar] [CrossRef]
- Wambugu, P.W.; Ndjiondjop, M.N.; Henry, R.J. Role of genomics in promoting the utilization of plant genetic resources in genebanks. Brief. Funct. Genom. 2018, 17, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Parra-Quijano, M.; Iriondo, J.M.; Lamas, E.T. Strategies for the collecting of wild species. Collecting plant genetic diversity. In Technical Guidelines; UN Environment Programme: Nairobi, Kenya, 2012; pp. 1–23. [Google Scholar]
- Mariotti, M.; Magrini, S. The RIBES Seed Banks for the Conservation of the Crop Wild Relatives (CWR); RIBES Series 2; IRIS UniPA: Palermo, Italy, 2016. [Google Scholar]
- Irish, B.M.; Greene, S.L. Germplasm collection, genetic resources, and gene pools in alfalfa. In The Alfalfa Genome; Yu, L.X., Kole, C., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 43–64. [Google Scholar]
- Saad, M.S.; Rao, V.R. Establishment and Management of Field Genebank, a Training Manual; IPGRI-APO: Serdang, Malaysia, 2001. [Google Scholar]
- Cowling, W.A.; Li, L.; Siddique, K.H.; Henryon, M.; Berg, P.; Banks, R.G.; Kinghorn, B.P. Evolving gene banks: Improving diverse populations of crop and exotic germplasm with optimal contribution selection. J. Exp. Bot. 2017, 68, 1927–1939. [Google Scholar] [CrossRef] [PubMed]
- Cântar, I.C.; Dincă, L. Trifolium genus species present in “Alexandru Beldie” Herbarium from “Marin Drăcea” National Institute for Research and Development in Forestry. Ann. West Univ. Timis. Ser. Biol. 2018, 21, 123–132. [Google Scholar]
- Egan, L.M.; Hofmann, R.W.; Ghamkhar, K.; Hoyos-Villegas, V. Prospects for Trifolium improvement through germplasm characterisation and pre-breeding in New Zealand and beyond. Front. Plant Sci. 2021, 12, 653191. [Google Scholar] [CrossRef] [PubMed]
- Anglin, N.L.; Amri, A.; Kehel, Z.; Ellis, D. A case of need: Linking traits to genebank accessions. Biopreserv. Biobank. 2018, 16, 337–349. [Google Scholar] [CrossRef]
- Li, X.; Brummer, E.C. Applied genetics and genomics in alfalfa breeding. Agronomy 2012, 2, 40–61. [Google Scholar] [CrossRef]
- Egan, L.M.; Hofmann, R.W.; Ghamkhar, K.; Hoyos-Villegas, V. Identification of founding accessions and patterns of relatedness and inbreeding derived from historical pedigree data in a red clover germplasm collection in New Zealand. Crop. Sci. 2019, 59, 2100–2108. [Google Scholar] [CrossRef]
- Amanov, M. Microsatellite marker-based genetic diversity analysis and developing synthetic varieties in Alfalfa (Medicago sativa L.). Master’s Thesis, Swedish University of Agricultural Sciences (SLU), Faculty of Landscape Planning, Alnarp, Sweden, 2013. [Google Scholar]
- Tucak, M.; Popović, S.; Čupić, T.; Šimić, G.; Gantner, R.; Meglič, V. Evaluation of alfalfa germplasm collection by multivariate analysis based on phenotypic traits. Rom. Agric. Res. 2009, 26, 47–52. [Google Scholar]
- Solberg, S.O.; Yndgaard, F.; Palme, A. Morphological and phenological consequences of ex situ conservation of natural populations of red clover (Trifolium pratense L.). Plant Genet. Res. 2017, 15, 97–108. [Google Scholar] [CrossRef]
- Petrauskas, G.; Stukonis, V.; Norkevičienė, E. Defining a phenotypic variability and productivity in wild type red clover germplasm. J. Agric. Sci. 2020, 12, 52–61. [Google Scholar] [CrossRef]
- Riday, H.; Brummer, E.C. Performance of intersubspecific alfalfa hybrids in sward versus space planted plots. Euphytica 2004, 138, 107–112. [Google Scholar] [CrossRef]
- Rotili, P.; Gnocchi, G.; Scotti, C.; Zannone, L. Some Aspects of Breeding Methodology in Alfalfa. The Alfalfa Genome. 1999. Available online: https://www.naaic.org/TAG/TAGpapers/rotili/rotili.html (accessed on 28 March 2024).
- Lutatenekwa, D.L.; Mtengeti, E.J.; Msalya, G.M. A review of plant characterization: First step towards sustainable forage production in challenging environments. Afr. J. Plant Sci. 2020, 14, 350–357. [Google Scholar] [CrossRef]
- Sukumaran, S.; Rebetzke, G.; Mackay, I.; Bentley, A.R.; Reynolds, M.P. Pre-breeding strategies. In Wheat Improvement: Food Security in a Changing Climate; Reynolds, M.P., Braun, H.J., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 451–469. [Google Scholar]
- Renganayaki, K.; Read, J.C.; Fritz, A.K. Genetic diversity among Texas bluegrass genotypes (Poa arachnifera Torr.) revealed by AFLP and RAPD markers. Theor. Appl. Genet. 2001, 102, 1037–1045. [Google Scholar] [CrossRef]
- Mishra, A.; Singh, P.K.; Bhandawat, A.; Sharma, V.; Sharma, V.; Singh, P.; Roy, J.; Sharma, H. Analysis of SSR and SNP Markers. In Bioinformatics; Singh, D.B., Pathak, R.K., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 131–144. [Google Scholar] [CrossRef]
- Sharma, A.; Sekhon, B.S.; Kumar, R.; Sharma, S.; Mahajan, R. Marker-assisted selection in pea breeding. In Accelerated Plant Breeding; Gosal, S., Wani, S., Eds.; Springer: Cham, Switzerland, 2020; Volume 2, pp. 137–154. [Google Scholar] [CrossRef]
- Kulkarni, K.P.; Tayade, R.; Asekova, S.; Song, J.T.; Shannon, J.G.; Lee, J.D. Harnessing the potential of forage legumes, alfalfa, soybean, and cowpea for sustainable agriculture and global food security. Front. Plant Sci. 2018, 9, 1314. [Google Scholar] [CrossRef]
- Primorac, J.; Šarčević, H.; Knezović, Z.; Vokurka, A.; Mandić, A.; Bolarić, S. Changes in Allele Frequencies and Genetic Diversity in Red Clover after Selection for Cold Tolerance Using SSR Markers. Agriculture 2023, 13, 2019. [Google Scholar] [CrossRef]
- Qiang, H.; Chen, Z.; Zhang, Z.; Wang, X.; Gao, H.; Wang, Z. Molecular diversity and population structure of a worldwide collection of cultivated tetraploid alfalfa (Medicago sativa subsp. sativa L.) germplasm as revealed by microsatellite markers. PLoS ONE 2015, 10, e0124592. [Google Scholar] [CrossRef]
- Bagavathiannan, M.V.; Julier, B.; Barre, P.; Gulden, R.H.; Van Acker, R.C. Genetic diversity of feral alfalfa (Medicago sativa L.) populations occurring in Manitoba, Canada and comparison with alfalfa cultivars: An analysis using SSR markers and phenotypic traits. Euphytica 2010, 173, 419–432. [Google Scholar] [CrossRef]
- Osterman, J.; Hammenhag, C.; Ortiz, R.; Geleta, M. Discovering candidate SNPs for resilience breeding of red clover. Front. Plant Sci. 2022, 13, 997860. [Google Scholar] [CrossRef] [PubMed]
- Petrauskas, G.; Norkevičienė, E.; Baistruk-Hlodan, L. Genetic differentiation of red clover (Trifolium pratense L.) cultivars and their wild relatives. Agriculture 2023, 13, 1008. [Google Scholar] [CrossRef]
- McCord, P.; Gordon, V.; Saha, G.; Hellinga, J.; Vandemark, G.; Larsen, R.; Smith, M.; Miller, D. Detection of QTL for forage yield, lodging resistance and spring vigor traits in alfalfa (Medicago sativa L.). Euphytica 2014, 200, 269–279. [Google Scholar] [CrossRef]
Genus | Species | Germplasm | Tolerance to Stress | Authors |
---|---|---|---|---|
Medicago | M. sativa | Wild | Drought | [59] |
M. arborea | Wild | Salt, drought | [50,60] | |
M. laciniata | Wild | Drought | [61] | |
M. ciliaris | Wild | Drought | [62] | |
M. intertexta | Wild | Salt | [49] | |
M. sativa cv. Longzhong | Landrace | Drought | [63] | |
M. ruthenica | Wild | Drought, cold, salt | [46,47,48] | |
M. polymorpha | Wild | Drought | [64] | |
M. truncatula | Wild | Drought, cold | [65,66] | |
M. falcata | Wild | Drought, cold, salt, alkalinity | [67,68,69] | |
Trifolium | T. fragiferum | Wild | Salt, flood | [53,54,55,70] |
T. pratense var. pratense Hyrkäs me0101 | Landrace | Cold | [57] | |
T. pratense | Wild, landrace | Drought, salt, freezing | [56,71,72,73] | |
T. purpureum | Wild | Drought | [58] | |
T. isthmocarpum | Wild | Salt | [74] | |
T. subterraneum | Wild | Waterlogging | [75] | |
T. michelianum | Wild | Waterlogging | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perić, K.; Čupić, T.; Krizmanić, G.; Tokić, B.; Andrić, L.; Ravlić, M.; Meglič, V.; Tucak, M. The Role of Crop Wild Relatives and Landraces of Forage Legumes in Pre-Breeding as a Response to Climate Change. Agronomy 2024, 14, 1385. https://doi.org/10.3390/agronomy14071385
Perić K, Čupić T, Krizmanić G, Tokić B, Andrić L, Ravlić M, Meglič V, Tucak M. The Role of Crop Wild Relatives and Landraces of Forage Legumes in Pre-Breeding as a Response to Climate Change. Agronomy. 2024; 14(7):1385. https://doi.org/10.3390/agronomy14071385
Chicago/Turabian StylePerić, Katarina, Tihomir Čupić, Goran Krizmanić, Branimir Tokić, Luka Andrić, Marija Ravlić, Vladimir Meglič, and Marijana Tucak. 2024. "The Role of Crop Wild Relatives and Landraces of Forage Legumes in Pre-Breeding as a Response to Climate Change" Agronomy 14, no. 7: 1385. https://doi.org/10.3390/agronomy14071385