Examining the Effect of Agrochemicals on Soil Microbiological Activity, Micronutrient Availability, and Uptake by Maize (Zea mays L.) Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Intervention Approach of the Study
2.2. Study Setting
2.3. Sample Collection from Farming Sites
2.4. Experimental Design and Treatment
2.5. Preparation of Compost Samples
2.6. Moisture Contents (MC), Organic Matter (OM), and Ash Contents (AC)
2.7. Determination of pH and Electrical Conductivity from Soil Samples
2.8. Determination of Micronutrients from Soil Samples
2.9. Determination of Total Mesophilic Bacteria and Fungi Counts in Soil Samples
2.10. Quantification and Quality Analysis of Harvested Maize
2.10.1. Sample Preparation for Proximate Composition
2.10.2. Total Carbohydrates and Energy Gross
2.11. Statistical Analysis
3. Results
3.1. Soil Physicochemical Properties
3.1.1. Soil Moisture (MC), Ash (AC), and Organic Matter (OM) Content
3.1.2. Electrical Conductivity (EC) and pH
3.1.3. Total Mesophilic Bacterial Count (TMBC) and Fungus (TMFC)
3.1.4. Soil Micronutrient Level Analyzed from Pot Experiment
3.2. Maize Yield Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Edmeades, G.O.; Trevisan, W.L.; Prasanna, B.M.; Campos, H. Tropical maize (Zea mays L.). In Genetic Improvement of Tropical Crops; Springer: Berlin/Heidelberg, Germany, 2017; pp. 57–109. [Google Scholar]
- Nadarajah, K.; Abdul Rahman, N.S.N. The Microbial Connection to Sustainable Agriculture. Plants 2023, 12, 2307. [Google Scholar] [CrossRef] [PubMed]
- Tefera, M.L.; Carletti, A.; Altea, L.; Rizzu, M.; Migheli, Q.; Seddaiu, G. Land degradation and the upper hand of sustainable agricultural intensification in sub-Saharan Africa–A systematic review. J. Agric. Rural. Dev. Trop. Subtrop. 2024, 125, 63–68. [Google Scholar]
- Idowu, J.; Ghimire, R.; Flynn, R.; Ganguli, A. Soil Health: Importance, Assessment, and Management; College of Agricultural, Consumer and Environmental Sciences: Urbana, IL, USA, 2019. [Google Scholar]
- Meena, R.S.; Kumar, S.; Datta, R.; Lal, R.; Vijayakumar, V.; Brtnicky, M.; Sharma, M.P.; Yadav, G.S.; Jhariya, M.K.; Jangir, C.K.; et al. Impact of agrochemicals on soil microbiota and management: A review. Land 2020, 9, 34. [Google Scholar] [CrossRef]
- Abera, Y.; Kassa, S. Status of soil micronutrients in Ethiopian soils: A review. J. Environ. Earth Sci. 2017, 7, 85–90. [Google Scholar]
- Afata, T.N.; Mekonen, S.; Shekelifa, M.; Tucho, G.T. Prevalence of pesticide use and occupational exposure among small-scale farmers in Western Ethiopia. Environ. Health Insights 2022, 16, 11786302211072950. [Google Scholar] [CrossRef] [PubMed]
- Pogrzeba, M.; Rusinowski, S.; Sitko, K.; Krzyżak, J.; Skalska, A.; Małkowski, E.; Ciszek, D.; Werle, S.; McCalmont, J.P.; Mos, M.; et al. Relationships between soil parameters and physiological status of Miscanthus x giganteus cultivated on soil contaminated with trace elements under NPK fertilisation vs. microbial inoculation. Environ. Pollut. 2017, 225, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Parida, S.P.; Binod, K.B.; Prajna, P.G.; Sonali, S.; Prajna, C.; Sanjeeta, R.; Kasturi, P.; Sourav, B. (Eds.) Micronutrient Deficiency; Newredmars Education Pvt Ltd.: Bhubaneswar, India, 2023. [Google Scholar]
- Afata, T.N.; Mekonen, S.; Tucho, G.T. Serum concentration of zinc, copper, iron, and its associated factors among pregnant women of small-scale farming in western Ethiopia. Sci. Rep. 2023, 13, 4197. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.R.; Akash, S.; Jony, M.H.; Alam, M.N.; Nowrin, F.T.; Rahman, M.M.; Rauf, A.; Thiruvengadam, M. Exploring the potential function of trace elements in human health: A therapeutic perspective. Mol. Cell. Biochem. 2023, 478, 2141–2171. [Google Scholar] [CrossRef] [PubMed]
- Jatav, H.S.; Sharma, L.D.; Sadhukhan, R.; Singh, S.K.; Singh, S.; Rajput, V.D.; Parihar, M.; Jatav, S.S.; Jinger, D.; Kumar, S.; et al. An overview of micronutrients: Prospects and implication in crop production. In Plant Micronutrients: Deficiency and Toxicity Management; Springer: Cham, Switzerland, 2020; pp. 1–30. [Google Scholar]
- Kumar, D.; Patel, K.P.; Ramani, V.P.; Shukla, A.K.; Meena, R.S. Management of micronutrients in soil for the nutritional security. In Nutrient Dynamics for Sustainable Crop Production; Springer: Singapore, 2020; pp. 103–134. [Google Scholar]
- Safdar, H.; Amin, A.; Shafiq, Y.; Ali, A.; Yasin, R.; Shoukat, A.; Ul Hussan, M.; Sarwar, M.I. A review: Impact of salinity on plant growth. Nat. Sci. 2019, 17, 34–40. [Google Scholar]
- Losak, T.; Hlusek, J.; Martinec, J.; Jandak, J.; Szostkova, M.; Filipcik, R.; Manasek, J.; Prokes, K.; Peterka, J.; Varga, L.; et al. Nitrogen fertilization does not affect micronutrient uptake in grain maize (Zea mays L.). Acta Agric. Scand. Sect. B Soil Plant Sci. 2011, 61, 543–550. [Google Scholar]
- Devi, K.D.; Beena, S.; Abraham, C. Effect of 2, 4-D residues on soil microflora. J. Trop. Agric. 2008, 46, 76–78. [Google Scholar]
- Paul, N.; Sur, P.; Das, D.K.; Mukherjee, D. Effect of pesticides on available cationic micronutrients along with viable bacteria and fungi in soil. Afr. J. Microbiol. Res. 2013, 7, 2764–2769. [Google Scholar] [CrossRef]
- Kepler, R.M.; Schmidt, D.J.E.; Yarwood, S.A.; Cavigelli, M.A.; Reddy, K.N.; Duke, S.; Bradley, C.; Williams, M.M.; Buyer, J.S.; Maul, J.E. Soil Microbial Communities in Diverse Agroecosystems Exposed to the Herbicide Glyphosate. Appl. Environ. Microbiol. 2020, 86, e01744-19. [Google Scholar] [CrossRef]
- Dill, G.M.; Sammons, R.D.; Feng, P.C.C.; Kohn, F.; Kretzmer, K.; Mehrsheikh, A.; Bleeke, M.; Honegger, J.L.; Farmer, D.; Wright, D.; et al. Glyphosate: Discovery, development, applications, and properties. Glyphosate Resist. Crops Weeds Hist. Dev. Manag. 2010, 1, 344. [Google Scholar]
- Imfeld, G.; Vuilleumier, S. Measuring the effects of pesticides on bacterial communities in soil: A critical review. Eur. J. Soil Biol. 2011, 49, 22–30. [Google Scholar] [CrossRef]
- Davet, P. Microbial Ecology of Soil and Plant Growth; CRC Press: London, UK, 2004. [Google Scholar]
- Tripathi, S.; Srivastava, P.; Devi, R.S.; Bhadouria, R. Chapter 2—Influence of synthetic fertilizers and pesticides on soil health and soil microbiology. In Agrochemicals Detection, Treatment and Remediation; Prasad, M.N.V., Ed.; Butterworth-Heinemann: Oxford, UK, 2020; pp. 25–54. [Google Scholar]
- Prashar, P.; Shah, S. Impact of fertilizers and pesticides on soil microflora in agriculture. Sustain. Agric. Rev. 2016, 19, 331–361. [Google Scholar]
- Lane, M.; Lorenz, N.; Saxena, J.; Ramsier, C.; Dick, R.P. Microbial activity, community structure and potassium dynamics in rhizosphere soil of soybean plants treated with glyphosate. Pedobiologia 2012, 55, 153–159. [Google Scholar] [CrossRef]
- Luo, P.; Han, X.; Wang, Y.; Han, M.; Shi, H.; Liu, N.; Bai, H. Influence of long-term fertilization on soil microbial biomass, dehydrogenase activity, and bacterial and fungal community structure in a brown soil of northeast China. Ann. Microbiol. 2014, 65, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, M.; Zhou, Q.; Zhang, T. Effects of continuous cropping Jiashi muskmelon on rhizosphere microbial community. Front. Microbiol. 2023, 13, 1086334. [Google Scholar] [CrossRef]
- Girma, K. Minerals and trace elements in the soil-plant-animal continuum in Ethiopia: A review. Afr. J. Food Agric. Nutr. Dev. 2016, 16, 11219–11235. [Google Scholar]
- Laekemariam, F.; Tsehai, K.K.; Mamo, T.; Gebrekidan, H. Soil–plant nutrient status and their relations in maize-growing fields of Wolaita Zone, southern Ethiopia. Commun. Soil Sci. Plant Anal. 2016, 47, 1343–1356. [Google Scholar] [CrossRef]
- Laekemariam, F.; Kibret, K. Explaining Soil Fertility Heterogeneity in Smallholder Farms of Southern Ethiopia. Appl. Environ. Soil Sci. 2020, 2020, 6161059. [Google Scholar] [CrossRef]
- PSA. Summary and Statistical Report of the 2007 Population and Housing Census. Population Size by Age and Sex. 2008. Available online: https://www.ethiopianreview.com/pdf/001/Cen2007 (accessed on 17 May 2024).
- EDHS. Central Statistical Agency (CSA) [Ethiopia] and ICF. In Ethiopia Demographic and Health Survey 2016; CSA: Addis Ababa, Ethiopia; ICF: Rockville, MD, USA, 2016; pp. 1–551. [Google Scholar]
- Gonfa, R.; Gadisa, T.; Habitamu, T. The diversity, abundance and habitat association of medium and large-sized mammals of Dati Wolel National Park, Western Ethiopia. Int. J. Biodivers. Conserv. 2015, 7, 112–118. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC: Rockville, MD, USA, 2005. [Google Scholar]
- FAO. Food energy-methods of analysis and conversion factors. In Report of a Technical Workshop; FAO: Rome, Italy, 2003. [Google Scholar]
- Aulakh, C.S.; Sharma, S.; Thakur, M.; Kaur, P. A review of the influences of organic farming on soil quality, crop productivity and produce quality. J. Plant Nutr. 2022, 45, 1884–1905. [Google Scholar] [CrossRef]
- Somenahally, A.C.; Hollister, E.B.; Loeppert, R.H.; Yan, W.; Gentry, T.J. Microbial communities in rice rhizosphere altered by intermittent and continuous flooding in fields with long-term arsenic application. Soil Biol. Biochem. 2011, 43, 1220–1228. [Google Scholar] [CrossRef]
- Onet, A.; Dincă, L.C.; Grenni, P.; Laslo, V.; Teusdea, A.C.; Vasile, D.L.; Enescu, R.E.; Crisan, V.E. Biological indicators for evaluating soil quality improvement in a soil degraded by erosion processes. J. Soils Sediments 2019, 19, 2393–2404. [Google Scholar] [CrossRef]
- Ashworth, A.; DeBruyn, J.; Allen, F.; Radosevich, M.; Owens, P. Microbial community structure is affected by cropping sequences and poultry litter under long-term no-tillage. Soil Biol. Biochem. 2017, 114, 210–219. [Google Scholar] [CrossRef]
- Sannino, F.; Gianfreda, L. Pesticide influence on soil enzymatic activities. Chemosphere 2001, 45, 417–425. [Google Scholar] [CrossRef]
- Govedarica, M.M.; Jarak, M.N.; Milošević, N.A.; Đurić, S.; Đorđević, S.; Najdenovska, O.; Milošev, D.S. Herbicides and microbiological activity in soil under the corn. Letop. Naučnih Rad. Poljopr. Fak. 2002, 26, 24–31. [Google Scholar]
- Wolmarans, K. The Effect of Glyphosate and Glyphosate-Resistant Maize and Soyabeans on Soil Micro-Organisms and the Incedence of Disease. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa, 2013. [Google Scholar]
- Srinivasulu, M.; Ortiz, D.R. Effect of Pesticides on Bacterial and Fungal Populations in Ecuadorian Tomato Cultivated Soils. Environ. Process. 2017, 4, 93–105. [Google Scholar] [CrossRef]
- Baboo, M.; Pasayat, M.; Samal, A.; Kujur, M.; Maharana, J.K.; Patel, A.K. Effect of four herbicides on soil organic carbon, microbial biomass-c, enzyme activity and microbial populations in agricultural soil. Int. J. Res. Environ. Sci. 2013, 3, 100–112. [Google Scholar]
- Chen, F.; Dixon, R.A. Lignin modification improves fermentable sugar yields for biofuel production. Nat. Biotechnol. 2007, 25, 759–761. [Google Scholar] [CrossRef]
- Mishra, P.K.; Ekielski, A. The Self-Assembly of Lignin and Its Application in Nanoparticle Synthesis: A Short Review. Nanomaterials 2019, 9, 243. [Google Scholar] [CrossRef]
- Hussain, S.; Siddique, T.; Saleem, M.; Arshad, M.; Khalid, A. Chapter 5 Impact of Pesticides on Soil Microbial Diversity, Enzymes, and Biochemical Reactions. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2009; pp. 159–200. [Google Scholar]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef]
- Nardi, S.; Concheri, G.; Pizzeghello, D.; Sturaro, A.; Rella, R.; Parvoli, G. Soil organic matter mobilization by root exudates. Chemosphere 2000, 41, 653–658. [Google Scholar] [CrossRef]
- Hassink, J. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 1997, 191, 77–87. [Google Scholar] [CrossRef]
- Rousk, J.; Bååth, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef] [PubMed]
- El-Ramady, H.; Brevik, E.C.; Abowaly, M.; Ali, R.; Moghanm, F.S.; Gharib, M.S.; Mansour, H.; Fawzy, Z.F.; Prokisch, J. Soil Degradation under a Changing Climate: Management from Traditional to Nano-Approaches. Egypt. J. Soil Sci. 2024, 64, 287–298. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. Methods Soil Anal. Part 3 Chem. Methods 1996, 5, 961–1010. [Google Scholar]
- El Bey, N.; Maazoun, A.M.; Nahdi, O.; Krima, N.B.; Aounallah, M.K.; Mahdy, H.A.; Abdelmawgoud, A.M.; Fawzy, Z.F.; Ibrahim, H.A.; Kumar, M.; et al. Department of Horticulture & Postharvest Technology, Institute of Agriculture, Visva-Bharati, Sriniketan-731236, West Bengal. Corresponding e-mail: Debprld@ yahoo. com. J. Appl. Hortic. 2024, 26, 1. [Google Scholar]
- Lane, M.; Lorenz, N.; Saxena, J.; Ramsier, C.; Dick, R.P. The effect of glyphosate on soil microbial activity, microbial community structure, and soil potassium. Pedobiologia 2012, 55, 335–342. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Benjamin, J.G. Impacts of soil organic carbon on soil physical behavior. Quantifying Model. Soil Struct. Dyn. 2013, 3, 11–40. [Google Scholar]
- Baweja, P.; Kumar, S.; Kumar, G. Fertilizers and pesticides: Their impact on soil health and environment. Soil Health 2020, 59, 265–285. [Google Scholar]
- Sebiomo, A.; Ogundero, V.; Bankole, S. Effect of four herbicides on microbial population, soil organic matter and dehydrogenase activity. Afr. J. Biotechnol. 2011, 10, 770–778. [Google Scholar]
- Shu, X.; He, J.; Zhou, Z.; Xia, L.; Hu, Y.; Zhang, Y.; Zhang, Y.; Luo, Y.; Chu, H.; Liu, W.; et al. Organic amendments enhance soil microbial diversity, microbial functionality and crop yields: A meta-analysis. Sci. Total Environ. 2022, 829, 154627. [Google Scholar] [CrossRef] [PubMed]
- Laetitia, C.; van Beek, C.; Elias, E.; Selassie, Y.G.; Gebresamuel, G.; Tsegaye, A.; Hundessa, F.; Tolla, M.; Munaye, M.; Yemane, G.; et al. Soil organic matter depletion as a major threat to agricultural intensification in the highlands of Ethiopia. Ethiop. J. Sci. Technol. 2018, 11, 271–285. [Google Scholar]
- Bàrberi, P. Weed management in organic agriculture: Are we addressing the right issues? Weed Res. 2002, 42, 177–193. [Google Scholar] [CrossRef]
- Franz, J.E.; Mao, M.K.; Sikorski, J.A. Glyphosate: A Unique Global Herbicide; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Khan, Z.I.; Hussain, A.; Ashraf, M.; McDowell, L.R. Mineral status of soils and forages in Southwestern Punjab-Pakistan: Micro-minerals. Asian-Australas. J. Anim. Sci. 2006, 19, 1139–1147. [Google Scholar] [CrossRef]
- Bala, B.K. Drying and Storage of Cereal Grains; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Ullah, I.; Ali, M.; Farooqi, A. Chemical and nutritional properties of some maize (Zea mays L.) varieties grown in NWFP, Pakistan. Pak. J. Nutr. 2010, 9, 1113–1117. [Google Scholar] [CrossRef]
- Ogunyemi, A.M.; Otegbayo, B.O.; Fagbenro, J.A. Effects of NPK and biochar fertilized soil on the proximate composition and mineral evaluation of maize flour. Food Sci. Nutr. 2018, 6, 2308–2313. [Google Scholar] [CrossRef]
- Tizhe, T.D.; Alonge, S.O.; Iortsuun, D.N.; Adekpe, D.I.; Batta, K. Evaluation of the effect of nicosulfuron at different times of application on the chemical component of maize (Zea mays). Nusant. Biosci. 2022, 14, 122–127. [Google Scholar] [CrossRef]
- Sagbo, F.S.; Aïssi, M.V.; Hounkpatin, W.A.; Houedo, C.; Dansi, A.; Soumanou, M.M. Physicochemical and pasting properties of some local and improved maize varieties cultivated in Benin. Int. J. Biol. Chem. Sci. 2017, 11, 1753–1765. [Google Scholar] [CrossRef]
- Adugna, G. A review on impact of compost on soil properties, water use and crop productivity. Acad. Res. J. Agric. Sci. Res. 2016, 4, 93–104. [Google Scholar]
- Ray, K.; Banerjee, H.; Dutta, S.; Sarkar, S.; Murrell, T.S.; Singh, V.K.; Majumdar, K. Macronutrient management effects on nutrient accumulation, partitioning, remobilization, and yield of hybrid maize cultivars. Front. Plant Sci. 2020, 11, 535999. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Enyisi, I.S.; Umoh, V.J.; Whong, C.M.Z.; Abdullahi, I.O.; Alabi, O. Chemical and nutritional values of maize and maize products obtained from selected markets in Kaduna. J. Pharm. Allied Sci. 2014, 11, 2106–2113. [Google Scholar]
- Adegbite, J.A.; Lajide, L.; Aladesanwa, R.D.; Aiyesanmi, A.F.; Abiodun, O.A.; Adepeju, A.B.; Oladapo, S.A. Effect of herbicide application on residue content and nutritional composition of maize from a pilot maize farm. Am. J. Agric. Sci. 2016, 3, 35–39. [Google Scholar]
- Ndukwe, O.K.; Edeoga, H.; Omosun, G. Varietal differences in some nutritional composition of ten maize (Zea mays L.) varieties grown in Nigeria. Int. J. Acad. Res. Reflect. 2015, 3, 1–11. [Google Scholar]
- Mohajan, H.K. Food Insecurity and Malnutrition of Africa: A Combined Attempt Can Reduce Them. J. Econ. Dev. Environ. People 2022, 11, 24–34. [Google Scholar] [CrossRef]
- Mäder, P.; Fliessbach, A.; Dubois, D.; Gunst, L.; Fried, P.; Niggli, U. Soil fertility and biodiversity in organic farming. Science 2002, 296, 1694–1697. [Google Scholar] [CrossRef]
- Fahrurrozi, F.; Muktamar, Z.; Dwatmadji, D.; Setyowati, N.; Sudjatmiko, S.; Chozin, M. Growth and yield responses of three sweet corn (Zea mays L. var. Saccharata) varieties to local-based liquid organic fertilizer. Int. J. Adv. Sci. Eng. Inf. Technol. 2016, 6, 319–323. [Google Scholar]
- Bouis, H.E.; Hotz, C.; McClafferty, B.; Meenakshi, J.V.; Pfeiffer, W.H. Biofortification: A new tool to reduce micronutrient malnutrition. Food Nutr. Bull. 2011, 32 (Suppl. 1), S31–S40. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wang, L.; Sun, D.; Luo, L.; Banson, K.E. The Impact of Climate Change on Yield Potential of Maize across China. Int. J. Plant Prod. 2017, 11, 47–64. [Google Scholar]
- Kabir, S.; Das, A.; Rahman, M.; Singh, M.; Morshed, M.; Marma, A. Effect of genotype on proximate composition and biological yield of maize (Zea mays L.). Arch. Agric. Environ. Sci. 2019, 4, 185–189. [Google Scholar] [CrossRef]
- Cumming, G.S.; Buerkert, A.; Hoffmann, E.M.; Schlecht, E.; Von Cramon-Taubadel, S.; Tscharntke, T. Implications of agricultural transitions and urbanization for ecosystem services. Nature 2014, 515, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, K.; Dey, P.; Tewatia, R. Current nutrient management approaches. Indian J. Fertil. 2014, 10, 14–27. [Google Scholar]
- Abadía, J.; Vázquez, S.; Rellán-Álvarez, R.; El-Jendoubi, H.; Abadía, A.; Álvarez-Fernández, A.; López-Millán, A.F. Towards a knowledge-based correction of iron chlorosis. Plant Physiol. Biochem. 2011, 49, 471–482. [Google Scholar] [CrossRef]
- Mukherjee, A.B.; Kabata Pendias, A. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
Treatments | Added Fertilizers |
---|---|
A | Macronutrient fertilizers |
B | Macronutrient fertilizers and glyphosates |
C | Micronutrient’s fertilizers |
D | Glyphosates |
E | Control (free of any treatments) |
F | Compost and glyphosates |
G | Compost |
Macro and Micro Fertilizers | Source | Rate kg/ha | Required for 16 kg Soil (Each Pot) |
---|---|---|---|
N | NH4NO3 | 120 | 0.96 |
P | P2O5 | 60 | 0.48 |
K | K2O | 50 | 0.4 |
Zn | ZnSO4·5H2O | 60 | 0.48 |
Fe | FeSO4·7H2O | 15 | 0.12 |
Cu | CuSO4·5H2O | 2 | 0.02 |
Mn | MnSO4·H2O | 360 | 2.88 |
Sampling Days | Parameters | Treatments (g/kg) | ||||||
---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | ||
5 | Moisture contents | 25.6 | 27.6 | 24.4 | 26.2 | 25.8 | 35.4 | 28.6 |
Ash contents | 93.2 | 93.2 | 93 | 93.2 | 93 | 91.4 | 89.4 | |
Organic matter | 6.8 | 6.8 | 7 | 6.8 | 7 | 8.6 | 10.6 | |
10 | Moisture contents | 18.8 | 26 | 25.4 | 22 | 21.8 | 23.8 | 23.6 |
Ash contents | 89.2 | 87.6 | 91.2 | 91 | 91.2 | 91.2 | 85 | |
Organic matter | 10.8 | 12.4 | 8.8 | 9 | 8.8 | 8.8 | 15 | |
20 | Moisture contents | 23 | 24.6 | 24 | 24.4 | 24.4 | 28.2 | 27.6 |
Ash contents | 91.4 | 91.6 | 91.6 | 92 | 91.8 | 88.6 | 88.4 | |
Organic matter | 8.6 | 8.4 | 8.4 | 8 | 8.2 | 11.4 | 11.6 | |
40 | Moisture contents | 24.51 | 21.34 | 22.57 | 25.1 | 23.55 | 27.06 | 23.21 |
Ash contents | 91.74 | 91.7 | 91.88 | 92.16 | 92.02 | 89.02 | 89.48 | |
Organic matter | 8.26 | 8.3 | 8.12 | 7.84 | 7.98 | 10.98 | 10.52 | |
80 | Moisture contents | 24.8 | 22.9 | 22.38 | 23.06 | 22.42 | 23.38 | 21.43 |
Ash contents | 92.26 | 92.59 | 91.88 | 92.25 | 91.67 | 88.98 | 90.08 | |
Organic matter | 7.74 | 7.41 | 8.12 | 7.75 | 8.33 | 11.02 | 9.92 | |
120 | Moisture contents | 17.69 | 23.1 | 20.2 | 24.97 | 15.22 | 18.81 | 16.75 |
Ash contents | 91.05 | 91.61 | 92.4 | 90.95 | 90.91 | 87.72 | 89.51 | |
Organic matter | 8.95 | 8.39 | 7.6 | 9.05 | 9.09 | 12.28 | 10.49 |
Sampling Days | Parameters | Treatments | ||||||
---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | ||
5 | pH | 5.32 | 5.45 | 5.72 | 6.21 | 6.28 | 5.95 | 6.55 |
EC | 80.1 | 68.64 | 90.62 | 78.35 | 78.28 | 68.64 | 328.6 | |
10 | pH | 5.58 | 5.63 | 5.4 | 6.2 | 6.04 | 6.5 | 6.51 |
EC | 68.08 | 80.37 | 117.6 | 70.55 | 95.8 | 139.8 | 164.1 | |
20 | pH | 5.31 | 5.13 | 6.17 | 5.42 | 6.43 | 6.4 | 6.35 |
EC | 125.5 | 115 | 194.3 | 138.9 | 140.2 | 242.1 | 260.1 | |
40 | pH | 5.47 | 5.04 | 6.42 | 6.23 | 5.84 | 6.39 | 6.42 |
EC | 83.52 | 78.44 | 89.95 | 86.3 | 93.15 | 152.2 | 152.2 | |
80 | pH | 5.72 | 5.93 | 5.9 | 5.9 | 6.3 | 6.35 | 6.34 |
EC | 37 | 39.1 | 41.9 | 48.1 | 50.1 | 123.1 | 120.4 | |
120 | pH | 5.82 | 5.5 | 5.89 | 6.26 | 5.96 | 6.36 | 6.45 |
EC | 91 | 69.7 | 55.9 | 47.9 | 36.2 | 120.4 | 79.7 |
Sampling Days | Microbial Count | Treatment (cfu/g) | ||||||
---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | ||
5 | TMBC | 8 × 105 | 2.3 × 105 | 1 × 105 | 1 × 106 | 2 × 105 | 2.4 × 106 | 8 × 105 |
TMFC | 9.8 × 104 | 3.8 × 104 | 3.5 × 104 | 1.07 × 105 | 1 × 103 | 7 × 103 | 5 × 103 | |
10 | TMBC | 1 × 106 | 3 × 105 | 1.3 × 106 | 1.4 × 106 | 2.5 × 106 | 4 × 105 | 5 × 105 |
TMFC | 1.02 × 105 | 5.2 × 104 | 9 × 103 | 1.32 × 105 | 3 × 103 | 2.9 × 104 | 2.1 × 104 | |
20 | TMBC | 1.4 × 106 | 6.1 × 105 | 3.6 × 106 | 1.5 × 106 | 6.2 × 105 | 3.7 × 106 | 4 × 106 |
TMFC | 1.11 × 105 | 4.2 × 104 | 4.7 × 105 | 6.5 × 105 | 6.2 × 105 | 5.1 × 105 | 5.7 × 105 | |
40 | TMBC | 5 × 106 | 6 × 106 | 6 × 106 | 5 × 106 | 7 × 106 | 7.5 × 106 | 9 × 106 |
TMFC | 5 × 104 | 4 × 104 | 5 × 104 | 7 × 104 | 2 × 104 | 8 × 104 | 7 × 104 | |
80 | TMBC | 1.9 × 106 | 7 × 105 | 9 × 105 | 6 × 105 | 4 × 105 | 1.1 × 106 | 1.5 × 106 |
TMFC | 4 × 104 | 2 × 104 | 3 × 103 | 2 × 103 | 1 × 103 | 6 × 103 | 4 × 103 | |
120 | TMBC | 7 × 104 | 4 × 104 | 1 × 104 | 4 × 104 | 2 × 104 | 5 × 104 | 9 × 104 |
TMFC | 2 × 103 | 2 × 103 | 1 × 103 | 2 × 103 | 2 × 103 | 3 × 103 | 5 × 103 |
Sampling Days | Parameters | Treatments (ppm) | ||||||
---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | ||
5 | Fe | 20.38 | 22.99 | 222.49 | 23.57 | 226.56 | 223.94 | 218.85 |
Mn | 60.95 | 65.69 | 210.67 | 64.22 | 244.62 | 208.76 | 238.18 | |
Cu | 4.35 | 4.22 | 6.93 | 4.99 | 6.96 | 5.39 | 5.94 | |
Zn | 2.18 | 2.81 | 23.41 | 2.4 | 25.58 | 30.81 | 29.8 | |
10 | Fe | 29.72 | 30.71 | 258.37 | 27.66 | 289.37 | 253.53 | 305.84 |
Mn | 71.59 | 74.48 | 111.9 | 82.8 | 162.63 | 109.03 | 238.71 | |
Cu | 4.12 | 3.36 | 2.89 | 1.1 | 1.75 | 3.26 | 4.02 | |
Zn | 1.45 | 2.1 | 19.21 | 6.5 | 1.33 | 7.96 | 8.65 | |
20 | Fe | 23.1 | 21.54 | 300.79 | 20.52 | 257.68 | 273.21 | 270.37 |
Mn | 121.48 | 204.4 | 127.91 | 88.38 | 114.01 | 222.73 | 170.17 | |
Cu | 1.75 | 3.09 | 4.74 | 2.44 | 1.99 | 7.49 | 2.41 | |
Zn | 4.84 | 16.75 | 1.12 | 1.06 | 5.79 | 20.86 | 22.75 | |
40 | Fe | 27.22 | 28.13 | 308.89 | 30.51 | 305.89 | 349.26 | 292.95 |
Mn | 80.67 | 96.53 | 393.38 | 128.49 | 272.51 | 285.57 | 283.72 | |
Cu | 3.06 | 5.18 | 7.25 | 7.04 | 5.81 | 7.9 | 2.3 | |
Zn | 1.49 | 2.77 | 40.59 | 3.87 | 29.93 | 37.9 | 54.94 | |
80 | Fe | 22.18 | 20.18 | 234.93 | 23.86 | 227.94 | 232.11 | 247.46 |
Mn | 103.34 | 82.67 | 288.48 | 121.83 | 220.87 | 223.59 | 260.21 | |
Cu | 6.01 | 4.92 | 7.5 | 4.06 | 4.92 | 5.69 | 5.5 | |
Zn | 1.53 | 1.74 | 24.67 | 1.11 | 24.36 | 24.12 | 23.63 | |
120 | Fe | 23.74 | 21.96 | 235.36 | 22.98 | 226.27 | 232.87 | 233.06 |
Mn | 122.18 | 20.35 | 305.37 | 118.05 | 203.89 | 237.84 | 234.14 | |
Cu | 4.79 | 3.71 | 7.06 | 5.05 | 3.61 | 6.04 | 4.79 | |
Zn | 1.93 | 1.31 | 19.94 | 1.83 | 12.36 | 35.19 | 27.02 | |
Overall mean | Fe | 24.39 | 24.25 | 260.14 | 24.85 | 255.62 | 255.49 | 261.42 |
Mn | 93.37 | 90.69 | 239.62 | 100.63 | 203.09 | 214.59 | 237.52 | |
Cu | 4.01 | 4.08 | 6.06 | 4.11 | 4.17 | 5.97 | 4.16 | |
Zn | 2.24 | 4.58 | 21.49 | 2.8 | 16.56 | 26.14 | 27.8 |
Parameters | A | B | C | D | E | F | G |
---|---|---|---|---|---|---|---|
MC (g/100 g) | 14.41 ± 0.15 ** | 12.76 ± 0.05 | 13.23 ± 0.25 | 12.63 ± 0.1 | 14.2 ± 0.25 | 13.25 ± 0.1 | 12.265 ± 0.13 * |
AC (g/100 g) | 8.855 ± 0.03 | 7.53 ± 0.1 | 11.2 ± 0.25 ** | 8.62 ± 0.1 | 8.14 ± 0.25 | 8.51 ± 0.05 | 1.685 ± 0.1 * |
PC (g/100 g) | 9.48 ± 0.25 | 11.29 ± 0.8 | 8.569 ± 0.25 * | 9.688 ± 0.3 | 10.57 ± 0.3 | 10.825 ± 0.7 | 11.42 ± 0.8 ** |
TF (g/100 g) | 2.675 ± 0.1 * | 2.21 ± 0.2 * | 3.21 ± 0.1 | 3.977 ± 0.01 * | 3.22 ± 0.1 | 3.48 ± 0.2 | 3.535 ± 0.13 |
CF (g/100 g) | 6.265 ± 0.1 * | 8.195 ± 0.03 * | 8.21 ± 0.2 | 7.835 ± 0.03 | 6.585 ± 0.13 | 6.64 ± 0.1 | 6.855 ± 0.03 |
CHO (g/100 g) | 58.915 ± 0.03 | 59.315 ± 0.2 | 66.23 ± 0.1 ** | 57.34 ± 0.1 * | 58.41 ± 0.2 | 58.53 ± 0.15 | 65.49 ± 0.2 |
Gross energy (kcal/100 g) | 308.375 ± 0.13 * | 313.265 ± 0.13 | 343.845 ± 0.03 | 320.16 ± 0.1 | 315.37 ± 0.05 | 317.23 ± 0.10 | 348.465 ± 0.08 ** |
Fe (ppm) | 48.165 ± 0.1 | 79.495 ± 0.03 | 78.545 ± 0.03 | 19.9875 ± 0.04 * | 54.905 ± 0.03 | 45.84 ± 0.05 | 81.4650.13 ** |
Mn (ppm) | 6.1 ± 0.05 | 5.9575 ± 0.05 | 9.845 ± 0.03 ** | 3.13 ± 0.1 * | 4.375 ± 0.13 | 6.0125 ± 0.06 | 4.585 ± 0.13 |
Cu (ppm) | 1.17 ± 0.2 | 0.775 ± 0.01 * | 1.425 ± 0.2 | 1.24 ± 0.25 | 0.9675 ± 0.08 | 1.27 ± 0.15 | 1.995 ± 0.14 ** |
Zn (ppm) | 38.5 ± 0.05 | 37.095 ± 0.08 | 48.375 ± 0.1 | 36.615 ± 0.08 * | 38.435 ± 0.1 | 37.8 ± 0.05 | 50.855 ± 0.03 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afata, T.N.; Mekonen, S.; Sogn, T.A.; K. Pandey, M.; Janka, E.; Tucho, G.T. Examining the Effect of Agrochemicals on Soil Microbiological Activity, Micronutrient Availability, and Uptake by Maize (Zea mays L.) Plants. Agronomy 2024, 14, 1321. https://doi.org/10.3390/agronomy14061321
Afata TN, Mekonen S, Sogn TA, K. Pandey M, Janka E, Tucho GT. Examining the Effect of Agrochemicals on Soil Microbiological Activity, Micronutrient Availability, and Uptake by Maize (Zea mays L.) Plants. Agronomy. 2024; 14(6):1321. https://doi.org/10.3390/agronomy14061321
Chicago/Turabian StyleAfata, Tariku Neme, Seblework Mekonen, Trine Aulstad Sogn, Manoj K. Pandey, Eshetu Janka, and Gudina Terefe Tucho. 2024. "Examining the Effect of Agrochemicals on Soil Microbiological Activity, Micronutrient Availability, and Uptake by Maize (Zea mays L.) Plants" Agronomy 14, no. 6: 1321. https://doi.org/10.3390/agronomy14061321
APA StyleAfata, T. N., Mekonen, S., Sogn, T. A., K. Pandey, M., Janka, E., & Tucho, G. T. (2024). Examining the Effect of Agrochemicals on Soil Microbiological Activity, Micronutrient Availability, and Uptake by Maize (Zea mays L.) Plants. Agronomy, 14(6), 1321. https://doi.org/10.3390/agronomy14061321