Are Heat Shock Proteins Important in Low-Temperature-Stressed Plants? A Minireview
Abstract
:1. Introduction—Discovery, Classification and Structure of Heat Shock Proteins
2. Heat Shock Proteins—Localisation and Function in Plants
3. The Role of Heat Shock Proteins in High-Temperature (HT) Stressed Plants
4. Changes in the Heat Shock Proteins in Plants That Had Been Exposed to Low-Temperature Stress
4.1. Changes in HSP in Model Plants
4.2. Changes in HSP in Horticultural Plants
4.3. Changes in HSP in Agricultural Plants
4.4. Are HSPs Required for Acquiring Frost Tolerance?
5. Possible Molecular Mechanisms of HSPs Action in Plants under LT Conditions
6. Hormonal Control of HSPs Biosynthesis in LT-Exposed Plants
7. Conclusions and Further Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, Z.S.; Li, Z.Y.; Chen, Y.; Chen, M.; Li, L.C.; Ma, Y.Z. Heat Shock Protein 90 in Plants: Molecular Mechanisms and Roles in Stress Responses. Int. J. Mol. Sci. 2012, 13, 15706–15723. [Google Scholar] [CrossRef] [PubMed]
- Park, C.J.; Seo, Y.S. Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity. Plant Pathol. J. 2015, 31, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Vinocur, B.; Shoseyov, O.; Altman, A. Role of Plant Heat-Shock Proteins and Molecular Chaperones in the Abiotic Stress Response. Trends Plant Sci. 2004, 9, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Al-Whaibi, M.H. Plant Heat-Shock Proteins: A Mini Review. J. King Saud Univ.-Sci. 2011, 23, 139–150. [Google Scholar] [CrossRef]
- Ritossa, F. A New Puffing Pattern Induced by Temperature Shock and DNP in Drosophila. Experientia 1962, 18, 571–573. [Google Scholar] [CrossRef]
- Tissiéres, A.; Mitchell, H.K.; Tracy, U.M. Protein Synthesis in Salivary Glands of Drosophila Melanogaster: Relation to Chromosome Puffs. J. Mol. Biol. 1974, 84, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.S.; Chakradhar, T.; Reddy, R.A.; Nitnavare, R.B.; Mahanty, S.; Reddy, M.K. Role of Heat Shock Proteins in Improving Heat Stress Tolerance in Crop Plants. In Heat Shock Proteins and Plants; Asea, A., Kaur, P., Calderwood, S., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 283–307. [Google Scholar]
- ul Haq, S.; Khan, A.; Ali, M.; Khattak, A.M.; Gai, W.X.; Zhang, H.X.; Wei, A.M.; Gong, Z.H. Heat Shock Proteins: Dynamic Biomolecules to Counter Plant Biotic and Abiotic Stresses. Int. J. Mol. Sci. 2019, 20, 5321. [Google Scholar] [CrossRef] [PubMed]
- Majee, A.; Kumari, D.; Sane, V.A.; Singh, R.K. Novel Roles of HSFs and HSPs, Other than Relating to Heat Stress, in Temperature-Mediated Flowering. Ann. Bot. 2023, 132, 1103–1106. [Google Scholar] [CrossRef] [PubMed]
- Yurina, N.P. Heat Shock Proteins in Plant Protection from Oxidative Stress. Mol. Biol. 2023, 57, 951–964. [Google Scholar] [CrossRef]
- Khan, S.; Jabeen, R.; Deeba, F.; Waheed, U.; Khanum, P.; Iqbal, N. Heat Shock Proteins: Classification, Functions and Expressions in Plants during Environmental Stresses. J. Bioresour. Manag. 2021, 8, 85–97. [Google Scholar] [CrossRef]
- Gupta, S.C.; Sharma, A.; Mishra, M.; Mishra, R.K.; Chowdhuri, D.K. Heat Shock Proteins in Toxicology: How Close and How Far? Life Sci. 2010, 86, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, M.; Katiyar-Agarwal, S.; Grover, A. Plant Hsp100 Proteins: Structure, Function and Regulation. Plant Sci. 2002, 163, 397–405. [Google Scholar] [CrossRef]
- Pearl, L.H.; Prodromou, C. Structure and Mechanism of the Hsp90 Molecular Chaperone Machinery. Annu. Rev. Biochem. 2006, 75, 271–294. [Google Scholar] [CrossRef] [PubMed]
- Wayne, N.; Mishra, P.; Bolon, D.N. Hsp90 and Client Protein Maturation. In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2011; Volume 787, pp. 33–44. ISBN 9781617792946. [Google Scholar]
- Tichá, T.; Samakovli, D.; Kuchařová, A.; Vavrdová, T.; Šamaj, J. Multifaceted Roles of Heat Shock Protein 90 Molecular Chaperones in Plant Development. J. Exp. Bot. 2020, 71, 3966–3985. [Google Scholar] [CrossRef] [PubMed]
- Biebl, M.M.; Buchner, J. Structure, Function, and Regulation of the Hsp90 Machinery. Cold Spring Harb. Perspect. Biol. 2019, 11, 106. [Google Scholar] [CrossRef] [PubMed]
- Kadota, Y.; Shirasu, K. The HSP90 Complex of Plants. Biochim. Biophys. Acta-Mol. Cell Res. 2012, 1823, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Miernyk, J.A. The 70 KDa Stress-Related Proteins as Molecular Chaperones. Trends Plant Sci. 1997, 2, 180–187. [Google Scholar]
- Sung, D.-Y.; Kaplan, F.; Guy, C.L. Plant Hsp70 Molecular Chaperones: Protein Structure, Gene Family, Expression and Function. Physiol. Plant. 2001, 113, 443–451. [Google Scholar] [CrossRef]
- Sharma, D.; Masison, D. Hsp70 Structure, Function, Regulation and Influence on Yeast Prions. Protein Pept. Lett. 2009, 16, 571–581. [Google Scholar] [CrossRef]
- Usman, M.G.; Rafii, M.Y.; Martini, M.Y.; Yusuff, O.A.; Ismail, M.R.; Miah, G. Molecular Analysis of Hsp70 Mechanisms in Plants and Their Function in Response to Stress. Biotechnol. Genet. Eng. Rev. 2017, 33, 26–39. [Google Scholar] [CrossRef]
- Berka, M.; Kopecká, R.; Berková, V.; Brzobohatý, B.; Černý, M. Regulation of Heat Shock Proteins 70 and Their Role in Plant Immunity. J. Exp. Bot. 2022, 73, 1894–1909. [Google Scholar] [CrossRef] [PubMed]
- Ray, D.; Ghosh, A.; Mustafi, S.B.; Raha, S. Plant Stress Response: HSP70 in the Spotlight. In Heat Shock Proteins and Plants; Asea, A., Kaur, P., Calderwood, S., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 10, pp. 283–306. ISBN 978-3-319-46339-1. [Google Scholar]
- Waters, E.R.; Vierling, E. Plant Small Heat Shock Proteins – Evolutionary and Functional Diversity. New Phytol. 2020, 227, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Scharf, K.D.; Siddique, M.; Vierling, E. The Expanding Family of Arabidopsis Thaliana Small Heat Stress Proteins and a New Family of Proteins Containing α-Crystallin Domains (Acd Proteins). Cell Stress Chaperones 2001, 6, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Van Montagu, M.; Verbruggen, N. Small Heat Shock Proteins and Stress Tolerance in Plants. Biochim. Biophys. Acta 2002, 1577, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, H.; Khurana, N.; Nijhavan, A.; Khurana, J.P.; Khurana, P. The Wheat Chloroplastic Small Heat Shock Protein (SHSP26) Is Involved in Seed Maturation and Germination and Imparts Tolerance to Heat Stress. Plant Cell Environ. 2012, 35, 1912–1931. [Google Scholar] [CrossRef] [PubMed]
- Carra, S.; Alberti, S.; Arrigo, P.A.; Benesch, J.L.; Benjamin, I.J.; Boelens, W.; Bartelt-Kirbach, B.; Brundel, B.J.J.M.; Buchner, J.; Bukau, B.; et al. The Growing World of Small Heat Shock Proteins: From Structure to Functions. Cell Stress Chaperones 2017, 22, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Guihur, A.; Rebeaud, M.E.; Goloubinoff, P. How Do Plants Feel the Heat and Survive? Trends Biochem. Sci. 2022, 47, 824–838. [Google Scholar] [CrossRef] [PubMed]
- Leroux, M.R.; Melki, R.; Gordon, B.; Batelier, G.; Candido, E.P.M. Structure-Function Studies on Small Heat Shock Protein Oligomeric Assembly and Interaction with Unfolded Polypeptides. J. Biol. Chem. 1997, 272, 24646–24666. [Google Scholar] [CrossRef] [PubMed]
- Waters, E.R. The Evolution, Function, Structure, and Expression of the Plant SHSPs. J. Exp. Bot. 2013, 64, 391–403. [Google Scholar] [CrossRef]
- Nieto-Sotelo, J.; Martínez, L.M.; Ponce, G.; Cassab, G.I.; Alagón, A.; Meeley, R.B.; Ribaut, J.M.; Yang, R. Maize HSP101 Plays Important Roles in Both Induced and Basal Thermotolerance and Primary Root Growth. Plant Cell 2002, 14, 1621–1633. [Google Scholar] [CrossRef]
- Pandey, B.; Kaur, A.; Gupta, O.P.; Sharma, I.; Sharma, P. Identification of HSP20 Gene Family in Wheat and Barley and Their Differential Expression Profiling Under Heat Stress. Appl. Biochem. Biotechnol. 2014, 175, 2427–2446. [Google Scholar] [CrossRef] [PubMed]
- Chong, L.P.; Wang, Y.; Gad, N.; Anderson, N.; Shah, B.; Zhao, R. A Highly Charged Region in the Middle Domain of Plant Endoplasmic Reticulum (ER)-Localized Heat-Shock Protein 90 Is Required for Resistance to Tunicamycin or High Calcium-Induced ER Stresses. J. Exp. Bot. 2015, 66, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Korotaeva, N.E.; Antipina, A.I.; Grabelnykh, O.I.; Varakina, N.N.; Borovskii, G.B.; Voinikov, V.K. Mitochondrial Low-Molecular-Weight Heat-Shock Proteins and the Tolerance of Cereal Mitochondria to Hyperthermia. Russ. J. Plant Physiol. 2001, 48, 798–803. [Google Scholar] [CrossRef]
- Neumann, D.; Emmermann, M.; Thierfelder, J.-M.; zur Nieden, U.; Clericus, M.; Braun, H.-P.; Nover, L.; Schmitz, U.K. HSP68—A DnaK-like Heat-Stress Protein of Plant Mitochondria. Planta 1993, 190, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Sanmiya, K.; Suzuki, K.; Egawa, Y.; Shono, M. Mitochondrial Small Heat-Shock Protein Enhances Thermotolerance in Tobacco Plants. FEBS Lett. 2004, 557, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Krishna, P.; Gloor, G. The Hsp90 Family of Proteins in Arabidopsis Thaliana; Cell Stress Society International: Storrs, CT, USA, 2001; Volume 6. [Google Scholar]
- Sun, X.; Zhu, J.; Li, X.; Li, Z.; Han, L.; Luo, H. AsHSP26.8a, a Creeping Bentgrass Small Heat Shock Protein Integrates Different Signaling Pathways to Modulate Plant Abiotic Stress Response. BMC Plant Biol. 2020, 20, 184. [Google Scholar] [CrossRef] [PubMed]
- Heckathorn, S.A.; Downs, C.A.; Sharkey, T.D.; Coleman, J.S. The Small, Methionine-Rich Chloroplast Heat-Shock Protein Protects Photosystem II Electron Transport during Heat Stress. Plant Physiol. 1998, 116, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Neta-Sharir, I.; Isaacson, T.; Lurie, S.; Weiss, D. Dual Role for Tomato Heat Shock Protein 21: Protecting Photosystem II from Oxidative Stress and Promoting Color Changes during Fruit Maturation. Plant Cell 2005, 17, 1829–1838. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.Y.; Sun, Y.; Sun, A.Q.; Yi, S.Y.; Qin, J.; Li, M.H.; Liu, J. The Involvement of Chloroplast HSP100/ClpB in the Acquired Thermotolerance in Tomato. Plant Mol. Biol. 2006, 62, 385–395. [Google Scholar] [CrossRef]
- Song, H.; Zhao, R.; Fan, P.; Wang, X.; Chen, X.; Li, Y. Overexpression of AtHsp90.2, AtHsp90.5 and AtHsp90.7 in Arabidopsis Thaliana Enhances Plant Sensitivity to Salt and Drought Stresses. Planta 2009, 229, 955–964. [Google Scholar] [CrossRef]
- Bernfur, K.; Rutsdottir, G.; Emanuelsson, C. The Chloroplast-Localized Small Heat Shock Protein Hsp21 Associates with the Thylakoid Membranes in Heat-Stressed Plants. Protein Sci. 2017, 26, 1773–1784. [Google Scholar] [CrossRef] [PubMed]
- Helm, K.W.; Lafayette, P.R.; Nagao, R.T.; Key, J.L.; Vierling, E. Localization of Small Heat Shock Proteins to the Higher Plant Endomembrane System. Mol. Cell. Biol. 1993, 13, 238–247. [Google Scholar] [PubMed]
- Ukaji, N.; Kuwabara, C.; Takezawa, D.; Arakawa, K.; Yoshida, S.; Fujikawa, S. Accumulation of Small Heat-Shock Protein Homologs in the Endoplasmic Reticulum of Cortical Parenchyma Cells in Mulberry in Association with Seasonal Cold Acclimation 1. Plant Physiol. 1999, 120, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Bösl, B.; Grimminger, V.; Walter, S. The Molecular Chaperone Hsp104-A Molecular Machine for Protein Disaggregation. J. Struct. Biol. 2006, 156, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Kotak, S.; Larkindale, J.; Lee, U.; von Koskull-Döring, P.; Vierling, E.; Scharf, K.D. Complexity of the Heat Stress Response in Plants. Curr. Opin. Plant Biol. 2007, 10, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Bao, F.; Huang, X.; Zhu, C.; Zhang, X.; Li, X.; Yang, S. Arabidopsis HSP90 Protein Modulates RPP4-Mediated Temperature-Dependent Cell Death and Defense Responses. New Phytol. 2014, 202, 1320–1334. [Google Scholar] [CrossRef] [PubMed]
- Guy, C.L.; Li, Q.-B. The Organization and Evolution of the Spinach Stress 70 Molecular Chaperone Gene Family. Plant Cell 1998, 10, 539–556. [Google Scholar] [CrossRef] [PubMed]
- Ranson, N.A.; White, H.E.; Saibil, H.R. Chaperonins. Biochem J. 1998, 333, 233–242. [Google Scholar] [CrossRef]
- Nagaraju, M.; Kumar, A.; Jalaja, N.; Rao, D.M.; Kishor, P.B.K. Functional Exploration of Chaperonin (HSP60/10) Family Genes and Their Abiotic Stress-Induced Expression Patterns in Sorghum Bicolor. Curr. Genomics 2021, 22, 137–152. [Google Scholar] [CrossRef]
- Horváth, I.; Glatz, A.; Nakamoto, H.; Mishkind, M.L.; Munnik, T.; Saidi, Y.; Goloubinoff, P.; Harwood, J.L.; Vigh, L. Heat Shock Response in Photosynthetic Organisms: Membrane and Lipid Connections. Prog. Lipid Res. 2012, 51, 208–220. [Google Scholar] [CrossRef]
- Nover, L.; Scharf, K.D. Heat Stress Proteins and Transcription Factors. Cell. Mol. Life Sci. 1997, 53, 80–103. [Google Scholar] [CrossRef] [PubMed]
- Sadura, I.; Janeczko, A. Brassinosteroids and the Tolerance of Cereals to Low and High Temperature Stress: Photosynthesis and the Physicochemical Properties of Cell Membranes. Int. J. Mol. Sci. 2022, 23, 342. [Google Scholar] [CrossRef] [PubMed]
- Altschuler, M.; Mascarenhas, J.P. Heat Shock Proteins and Effects of Heat Shock in Plants. Plant Mol. Biol. 1982, 1, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Moisyadi, S.; Harrington, H.M. Characterization of the Heat Shock Response in Cultured Sugarcane Cells: I. Physiology of the Heat Shock Response and Heat Shock Protein Synthesis. Plant Physiol. 1989, 90, 1156–1162. [Google Scholar] [CrossRef] [PubMed]
- Dupuis, I.; Dumas, C. Influence of Temperature Stress on in Vitro Fertilization and Heat Shock Protein Synthesis in Maize (Zea mays L.) Reproductive Tissues. Plant Physiol. 1990, 94, 665–670. [Google Scholar] [CrossRef] [PubMed]
- DeRocher, A.E.; Helm, K.W.; Lauzon, L.M.; Vierling, E. Expression of a Conserved Family of Cytoplasmic Low Molecular Weight Heat Shock Proteins during Heat Stress and Recovery. Plant Physiol. 1991, 96, 1038–1047. [Google Scholar] [CrossRef] [PubMed]
- Hopf, N.; Plesofsky-Vig, N.; Brambl, R. The Heat Shock Response of Pollen and Other Tissues of Maize. Plant Mol. Biol. 1992, 19, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.B.; Haskell, D.W.; Guy, C.L. Coordinate and Non-Coordinate Expression of the Stress 70 Family and Other Molecular Chaperones at High and Low Temperature in Spinach and Tomato. Plant Mol. Biol. 1999, 39, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Dhaubhadel, S.; Chaudhary, S.; Dobinson, K.F.; Krishna, P. Treatment with 24-Epibrassinolide, a Brassinosteroid, Increases the Basic Thermotolerance of Brassica Napus and Tomato Seedlings. Plant Mol. Biol. 1999, 40, 333–342. [Google Scholar] [CrossRef]
- Ahn, Y.J.; Claussen, K.; Zimmerman, J.L. Genotypic Differences in the Heat-Shock Response and Thermotolerance in Four Potato Cultivars. Plant Sci. 2004, 166, 901–911. [Google Scholar] [CrossRef]
- Pavli, O.I.; Ghikas, D.V.; Katsiotis, A.; Skaracis, G.N. Differential Expression of Heat Shock Protein Genes in Sorghum (Sorghum bicolor L.) Genotypes under Heat Stress. Aust. J. Crop Sci. 2011, 5, 511–515. [Google Scholar]
- Yan, S.P.; Zhang, Q.Y.; Tang, Z.C.; Su, W.A.; Sun, W.N. Comparative Proteomic Analysis Provides New Insights into Chilling Stress Responses in Rice. Mol. Cell. Proteom. 2006, 5, 484–496. [Google Scholar] [CrossRef] [PubMed]
- Heidarvand, L.; Maali Amiri, R. What Happens in Plant Molecular Responses to Cold Stress? Acta Physiol. Plant 2010, 32, 419–431. [Google Scholar] [CrossRef]
- Ambroise, V.; Legay, S.; Guerriero, G.; Hausman, J.F.; Cuypers, A.; Sergeant, K. The Roots of Plant Frost Hardiness and Tolerance. Plant Cell Physiol. 2020, 61, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Hussain, H.A.; Hussain, S.; Khaliq, A.; Ashraf, U.; Anjum, S.A.; Men, S.; Wang, L. Chilling and Drought Stresses in Crop Plants: Implications, Cross Talk, and Potential Management Opportunities. Front. Plant Sci. 2018, 9, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Yamori, W.; Hikosaka, K.; Way, D.A. Temperature Response of Photosynthesis in C3, C4, and CAM Plants: Temperature Acclimation and Temperature Adaptation. Photosynth. Res. 2014, 119, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Shi, Y.; Yang, S. Advances and Challenges in Uncovering Cold Tolerance Regulatory Mechanisms in Plants. New Phytol. 2019, 222, 1690–1704. [Google Scholar] [CrossRef] [PubMed]
- Timperio, A.M.; Egidi, M.G.; Zolla, L. Proteomics Applied on Plant Abiotic Stresses: Role of Heat Shock Proteins (HSP). J. Proteomics 2008, 71, 391–411. [Google Scholar] [CrossRef] [PubMed]
- Achard, P.; Gong, F.; Cheminant, S.; Alioua, M.; Hedden, P.; Genschika, P. The Cold-Inducible CBF1 Factor-Dependent Signaling Pathway Modulates the Accumulation of the Growth-Repressing DELLA Proteins via Its Effect on Gibberellin Metabolism. Plant Cell 2008, 20, 2117–2129. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, H.; Wei, D.; Ma, H.; Lin, J. Arabidopsis CBF3 and DELLAs Positively Regulate Each Other in Response to Low Temperature. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef]
- Thomashow, M.F. Role of Cold-Responsive Genes in Plant Freezing Tolerance. Plant Physiol. 1998, 118, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.K. Cold Stress Tolerance Mechanisms in Plants. A Review. Agron. Sustain. Dev. 2010, 30, 515–527. [Google Scholar] [CrossRef]
- Nievola, C.C.; Carvalho, C.P.; Carvalho, V.; Rodrigues, E. Rapid Responses of Plants to Temperature Changes. Temperature 2017, 4, 371–405. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shi, X.; Chen, S.; Ma, C.; Xu, S. Evolutionary Origin, Gradual Accumulation and Functional Divergence of Heat Shock Factor Gene Family with Plant Evolution. Front. Plant Sci. 2018, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Koyro, H.-W.; Ahmad, P.; Geissler, N. Abiotic Stress Responses in Plants: An Overview. In Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change; Ahmad, P., Prasad, M., Eds.; Springer: New York, NY, USA, 2012; pp. 1–28. ISBN 978-1-4614-0815-4. [Google Scholar]
- Eremina, M.; Unterholzner, S.J.; Rathnayake, A.I.; Castellanos, M.; Khan, M.; Kugler, K.G.; May, S.T.; Mayer, K.F.X.; Rozhon, W.; Poppenberger, B. Brassinosteroids Participate in the Control of Basal and Acquired Freezing Tolerance of Plants. Proc. Natl. Acad. Sci. 2016, 113, 5982–5991. [Google Scholar] [CrossRef] [PubMed]
- Bae, M.S.; Cho, E.J.; Choi, E.Y.; Park, O.K. Analysis of the Arabidopsis Nuclear Proteome and Its Response to Cold Stress. Plant J. 2003, 36, 652–663. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, Y.; Uemura, M. Mass Spectrometric Approach for Identifying Putative Plasma Membrane Proteins of Arabidopsis Leaves Associated with Cold Acclimation. Plant J. 2003, 36, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Kagale, S.; Divi, U.K.; Krochko, J.E.; Keller, W.A.; Krishna, P. Brassinosteroid Confers Tolerance in Arabidopsis Thaliana and Brassica Napus to a Range of Abiotic Stresses. Planta 2007, 225, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, F.; Sung, D.-Y.; Haskell, D.; Riad, G.S.; Popp, M.; Amaya, M.; LaBoon, A.; Kawamura, Y.; Tominaga, Y.; Kopka, J.; et al. Could Ethanolic Fermentation During Cold Shock Be a Novel Plant Cold Stress Coping Strategy? In Plant Cold Hardiness: From the Laboratory to the Field; Gusta, L.V., Wisniewski, M.E., Tanino, K.K., Eds.; CAB International: Wallingford, UK, 2009; pp. 80–90. [Google Scholar]
- Sewelam, N.; Kazan, K.; Hüdig, M.; Maurino, V.G.; Schenk, P.M. The ATHSP17.4c1 Gene Expression Is Mediated by Diverse Signals That Link Biotic and Abiotic Stress Factors with Ros and Can Be a Useful Molecular Marker for Oxidative Stress. Int. J. Mol. Sci. 2019, 20, 3201. [Google Scholar] [CrossRef]
- Barrero-Gil, J.; Huertas, R.; Rambla, J.L.; Granell, A.; Salinas, J. Tomato Plants Increase Their Tolerance to Low Temperature in a Chilling Acclimation Process Entailing Comprehensive Transcriptional and Metabolic Adjustments. Plant Cell Environ. 2016, 39, 2303–2318. [Google Scholar] [CrossRef]
- Qi, C.; Dong, D.; Li, Y.; Wang, X.; Guo, L.; Liu, L.; Dong, X.; Li, X.; Yuan, X.; Ren, S.; et al. Heat Shock-induced Cold Acclimation in Cucumber through CsHSFA1d-activated JA Biosynthesis and Signaling. Plant J. 2022, 111, 85–102. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Tan, R.; Zhao, J. Chilling Tolerance in Maize: Insights into Advances—Toward Physio-Biochemical Responses’ and QTL/Genes’ Identification. Plants 2022, 11, 2082. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Muhammad, I.; Lan, H.; Xia, C. Recent Advances in the Analysis of Cold Tolerance in Maize. Front. Plant Sci. 2022, 13, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.V.; Li, Q.-B.; Haskell, D.W.; Guy, C.L. Structural Organization of the Spinach Endoplasmic Reticulum - Luminal 70- Kilodalton Heat - Shock Cognate Gene and Expression of 70-Kilodalton Heat-Shock Genes during Cold Acclimation. Plant Physiol. 1994, 104, 1359–1370. [Google Scholar] [CrossRef] [PubMed]
- Taylor, N.L.; Heazlewood, J.L.; Day, D.A.; Millar, A.H. Differential Impact of Environmental Stresses of the Pea Mitochondrial Proteome. Mol. Cell. Proteom. 2005, 4, 1122–1133. [Google Scholar] [CrossRef] [PubMed]
- Degand, H.; Faber, A.M.; Dauchot, N.; Mingeot, D.; Watillon, B.; Van Cutsem, P.; Morsomme, P.; Boutry, M. Proteomic Analysis of Chicory Root Identifies Proteins Typically Involved in Cold Acclimation. Proteomics 2009, 9, 2903–2907. [Google Scholar] [CrossRef] [PubMed]
- Dumont, E.; Bahrman, N.; Goulas, E.; Valot, B.; Sellier, H.; Hilbert, J.L.; Vuylsteker, C.; Lejeune-Hénaut, I.; Delbreil, B. A Proteomic Approach to Decipher Chilling Response from Cold Acclimation in Pea (Pisum sativum L.). Plant Sci. 2011, 180, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Kubienová, L.; Sedlářová, M.; Vítečková-Wünschová, A.; Piterková, J.; Luhová, L.; Mieslerová, B.; Lebeda, A.; Navrátil, M.; Petřivalský, M. Effect of Extreme Temperatures on Powdery Mildew Development and Hsp70 Induction in Tomato and Wild Solanum spp. Plant Prot. Sci. 2013, 49, 41–54. [Google Scholar] [CrossRef]
- Sabehat, A.; Weiss, D.; Lurie, S. The Correlation between Heat-Shock Protein Accumulation and Persistence and Chilling Tolerance in Tomato Fruit. Plant Physiol. 1996, 110, 531–537. [Google Scholar] [CrossRef]
- Ru, L.; Jiang, L.; Wills, R.B.H.; Golding, J.B.; Huo, Y.; Yang, H.; Li, Y. Chitosan Oligosaccharides Induced Chilling Resistance in Cucumber Fruit and Associated Stimulation of Antioxidant and HSP Gene Expression. Sci. Hortic. 2020, 264, 109187. [Google Scholar] [CrossRef]
- Cabané, M.; Calvet, P.; Vincens, P.; Boudet, A.M. Characterization of Chilling-Acclimation-Related Proteins in Soybean and Identification of One as a Member of the Heat Shock Protein (HSP 70) Family. Planta 1993, 190, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Krishna, P.; Sacco, M.; Cherutti, J.F.; Hill, S. Cold-Induced Accumulation of Hsp90 Transcripts in Brassica Napus. Plant Physiol. 1995, 107, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Pareek, A.; Singla, S.L.; Grover, A. Immunological Evidence for Accumulation of Two High-Molecular-Weight (104 and 90 KDa) HSPs in Response to Different Stresses in Rice and in Response to High Temperature Stress in Diverse Plant Genera. Plant Mol. Biol. 1995, 29, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Huang, F.; Wang, J.; Ma, X.; Cheng, Y.; Liu, J. A Proteomic Analysis of Cold Stress Responses in Rice Seedlings. Proteomics 2005, 5, 3162–3172. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-G.; Ahsan, N.; Lee, S.-H.; Lee, J.J.; Bahk, J.D.; Kang, K.Y.; Lee, B.H. Chilling Stress-Induced Proteomic Changes in Rice Roots. J. Plant Physiol. 2009, 166, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Renaut, J.; Planchon, S.; Oufir, M.; Hausman, J.-F.; Hoffman, L.; Evers, D. Identification of Proteins from Potato Leaves Submitted to Chilling Temperature. In Plant Cold Hardiness: From the Laboratory to the Field; Gusta, L.V., Wisniewski, M.E., Tanino, K.K., Eds.; CAB International: Wallingford, UK, 2009; pp. 279–292. [Google Scholar]
- Vítámvás, P.; Prášil, I.T.; Kosová, K.; Planchon, S.; Renaut, J. Analysis of Proteome and Frost Tolerance in Chromosome 5A and 5B Reciprocal Substitution Lines between Two Winter Wheats during Long-Term Cold Acclimation. Proteomics 2012, 12, 68–85. [Google Scholar] [CrossRef] [PubMed]
- Hlaváčková, I.; Vítámvás, P.; Šantrůček, J.; Kosová, K.; Zelenková, S.; Prášil, I.; Ovesná, J.; Hynek, R.; Kodíček, M. Proteins Involved in Distinct Phases of Cold Hardening Process in Frost Resistant Winter Barley (Hordeum vulgare L.) Cv Luxor. Int. J. Mol. Sci. 2013, 14, 8000–8024. [Google Scholar] [CrossRef] [PubMed]
- Sadura, I.; Libik-Konieczny, M.; Jurczyk, B.; Gruszka, D.; Janeczko, A. HSP Transcript and Protein Accumulation in Brassinosteroid Barley Mutants Acclimated to Low and High Temperatures. Int. J. Mol. Sci. 2020, 21, 1889. [Google Scholar] [CrossRef] [PubMed]
- Stachurska, J.; Sadura, I.; Rys, M.; Dziurka, M.; Janeczko, A. Insight into Hormonal Homeostasis and the Accumulation of Selected Heat Shock Proteins in Cold Acclimated and Deacclimated Winter Oilseed Rape (Brassica napus L.). Agriculture 2023, 13, 641. [Google Scholar] [CrossRef]
- Sadura, I.; Pociecha, E.; Dziurka, M.; Oklestkova, J.; Novak, O.; Gruszka, D.; Janeczko, A. Mutations in the HvDWARF, HvCPD and HvBRI1 Genes-Involved in Brassinosteroid Biosynthesis/Signalling: Altered Photosynthetic Efficiency, Hormonal Homeostasis and Tolerance to High/Low Temperatures in Barley. J. Plant Growth Regul. 2019, 38, 1062–1081. [Google Scholar] [CrossRef]
- Bourgine, B.; Guihur, A. Heat Shock Signaling in Land Plants: From Plasma Membrane Sensing to the Transcription of Small Heat Shock Proteins. Front. Plant Sci. 2021, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Scharf, K.D.; Berberich, T.; Ebersberger, I.; Nover, L. The Plant Heat Stress Transcription Factor (Hsf) Family: Structure, Function and Evolution. Biochim. Biophys. Acta-Gene Regul. Mech. 2012, 1819, 104–119. [Google Scholar] [CrossRef] [PubMed]
- Dhaubhadel, S.; Browning, K.S.; Gallie, D.R.; Krishna, P. Brassinosteroid Functions to Protect the Translational Machinery and Heat-Shock Protein Synthesis Following Thermal Stress. Plant J. 2002, 29, 681–691. [Google Scholar] [CrossRef] [PubMed]
Plant Species | Temperature | Duration of Low-Temperature Exposure | HSP Transcripts HSP Proteins | HSP Accumulation Compared to the Control Conditions | Reference |
---|---|---|---|---|---|
Soybean (Glycine max. L.) cv. Verdon, Maple Arrow | 14/8 °C (d/n) | 5 days | HSP70 | increase | [97] |
Spinach (Spinacia oleracea L.) cv. Bloomsdale | 5 °C | 1, 2, 3, 4 and 7 days | HSP70 | increase | [90] |
Oilseed rape (Brassica napus L.) cv. Westar | 5 °C | 7 days | HSP90 HSP90 | increase | [98] |
Rice (Oryza sativa L.) | 5 ± 2 °C | 96 h | HSP90 | increase | [99] |
Arabidopsis thaliana | 4 °C | 6 h | HSP70 | increase | [81] |
Arabidopsis thaliana | 2 °C | 1, 2, 3 and 7 days | Chaperonin 20 | 1 d decrease 2 d increase | [82] |
Arabidopsis thaliana | 0 °C | 3, 6, 12 h | HSP17.4CI | 3, 6, 12 h increase | [85] |
Pea (Pisum sativum L.) | 4 °C | 36 h | HSP90, HSP70, HSP22 | increase | [91] |
Rice (Oryza sativa L.) | 15, 10 and 5 °C | 24 h for each exposure | HSP70 | gradual increase with decreasing temperature | [100] |
Rice (Oryza sativa L.) cv. Nipponbare | 6 °C | 24 h | HSP70 HSP26 | increase | [66] |
Arabidopsis thaliana | 2 °C | 3 days | HSP90 | increase | [83] |
Chicory roots (Cichorium intybus L.) | ≤ 5 °C | several days | HSP70 | increase | [92] |
Arabidopsis thaliana | 4 °C | up to 96 h | HSP70 | increase after 12 h and especially 24 h of LT exposure | [84] |
Potato (Solanum tuberosum L.) cv. PS3, Desiree | 4 °C | 21 days | HSP70 | increase | [102] |
Rice (Oryza sativa L.) | 10 °C | 24 and 72 h | HSP70 | gradual increase with time of cold acclimation | [101] |
Pea (Pisum sativum L.) cv. Champagne, Terese | 10/2 °C (d/n) | 11 days | HSP70 | increase | [93] |
Winter wheat (Triticum aestivum L.) | 6 °C | 12 weeks | HSP70 HSP90 | HSP70—3 d, 21 d and 84 d increase HSP90—21 d and 84 d decrease | [103] |
Winter barley (Hordeum vulgare L.) cv. Luxor | 3/2 °C (d/n) | 21 days | HSP70 | increase | [104] |
Tomato (Solanum lycopersicum L., Solanum habrochaites L., Solanum chmielewskii L.) | 10 and 4 °C | 1, 4 and 24 h | HSP70 | 4 °C (1 h, 4 h, 24 h)—increase (S. habrochaites); 10 °C (1 h, 4 h, 24 h)—slight decrease (S. lycopersicum, S. habrochaites) | [94] |
Spring barley (Hordeum vulgare L.) cv. Delisa, Bowman | 5 °C | 21 days | HSP70 HSP90 HSP70 HSP90 | HSP70 cv. Delisa—increase cv. Bowman—decrease HSP90 cv. Delisa and Bowman—decrease HSP70 cv. Delisa—NC cv. Bowman—increase HSP90 cv. Delisa—increase cv. Bowman—increase | [105] |
Oilseed rape (Brassica napus L.) cv. Bojan, President, Feliks, Rokas | 4 °C | 3 weeks | HSP70 cytoplasmic, HSP70 chloroplastic, HSP90 | cv. Bojan, President, Feliks—increase cv. Rokas—decrease | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadura, I.; Janeczko, A. Are Heat Shock Proteins Important in Low-Temperature-Stressed Plants? A Minireview. Agronomy 2024, 14, 1296. https://doi.org/10.3390/agronomy14061296
Sadura I, Janeczko A. Are Heat Shock Proteins Important in Low-Temperature-Stressed Plants? A Minireview. Agronomy. 2024; 14(6):1296. https://doi.org/10.3390/agronomy14061296
Chicago/Turabian StyleSadura, Iwona, and Anna Janeczko. 2024. "Are Heat Shock Proteins Important in Low-Temperature-Stressed Plants? A Minireview" Agronomy 14, no. 6: 1296. https://doi.org/10.3390/agronomy14061296