Integrated Disease Management for the Sustainable Production of Colombian Coffee
Abstract
:1. Introduction
2. Legal Control
- Prohibition: This entails legally established quarantines and embargoes, prohibiting or restricting the importation of potential carriers of pathogens. The objective of plant quarantine is to prevent the introduction and spread of potentially harmful diseases. Prevention proves more cost-effective than managing introduced pests and necessitates investment in designing, evaluating, and implementing containment, eradication measures, or long-term control.
- Interception: This aims to detect pathogens by inspecting plants and their products both in the country of origin and at points of entry into the destination country. The entry of plant material subject to importation must be supported by a phytosanitary certificate issued by the official authority of the country of origin, guaranteeing freedom from quarantine pests. The sampling strategy and laboratory detection techniques must consider the biology and behavior of suspected pathogens to maximize detection opportunities and reduce the risk of false negatives.
- Elimination: this involves treatments, either physical or chemical, applied either at the point of origin or entry to ensure the destruction or removal of pathogens.
- Strictly regulate the importation of coffee seeds and seedlings.
- Strengthen sampling plans for imports and implement rapid diagnostic methods according to the biology of the pathogens.
- Conduct continuous field surveillance for the early detection of outbreaks.
- Promote the development of capacities and collaboration on quarantine pests at the regional level through agreements with neighboring countries.
- Enhance quarantine surveillance at high-risk entry points, particularly land ports.
- Strengthen early warning and rapid response capacity.
3. Cultural Control
4. Genetic Control
5. Physical Control
6. Biological Control
7. Chemical Control
- Selecting appropriate fungicides based on the disease and its stage of development (preventive or curative) and implementing a proper rotation of products with different modes of action to prevent fungal resistance. For CLR control, a combination of triazoles (like cyproconazole) and strobilurins (such as azoxystrobin) has been demonstrated to be efficient [14]. Fungal sensitivity to fungicides is tested in vitro [38] (Figure 2d)., and formulation efficacy is tested in field assays
- Timely application based on crop phenology and disease levels measured as incidence or severity. Considering the distribution of rainy periods throughout the country, the control of fungal diseases is determined mostly by flowering events, which, in the case of CLR, normally involves two sprays 60 and 120 days after floral anthesis [14].
- Utilizing appropriate application technology and dosification.
Common Name | Management Measure | Description | Effect | Reference |
---|---|---|---|---|
Quarantine diseases | Legal | Field surveillance, interception in ports, and exclusion by legal regulation of the movement of plants and their parts among countries. | Avoids the introduction of pathogens to disease-free areas. | [21,22] |
Coffee leaf rust (CLR) Hemileia vastatrix | Genetic | Resistant varieties: Colombia, Tabi, Castillo, Castillo® Regionales (North, Center and South), and Cenicafé 1 | Lowers infection rates Slows down epidemics. Long incubation period Low uredospore production | [44,48,75] |
Chemical | Fungicides applied based on any of the following criteria: 1. Fixed calendar 2. Main flowering time 3. Incidence of the disease | Reduction in disease progress: Inoculum eradication Lowers infection rate by preventing fungal infection, colonization, and reproduction | [14] | |
American leaf spot, gotera or ojo de gallo Mycena citricolor | Fungicides | Applied based on any of the following criteria: 1. Main flowering time 2. First symptom detection | Reduction in disease progress: Inoculum eradication Lowers infection rate by preventing fungal infection, colonization, and reproduction | [76,77] |
Cultural | Soil drainage to remove excess humidity. Shade regulation and proper light availability. Lowers plant density to favor aeration and diminishes humidity presence on leaves. Pruning of symptomatic organs. | Avoids proper environmental conditions for disease development. | [76,77] | |
Canker stain and wilt Ceratocystis fimbriata | Cultural combined with chemical control | Planting, pruning, and stumping during dry season. | Avoids climate conditions that benefit fungal infection. | [36,62] |
Disinfection of injuries | Chemical disinfection to protect the host | [36] | ||
Black root rot Dematophora pepo and Dematophora bunodes | Physical | Eradication of infected plants and site solarization | Inoculum eradication | [53] |
Damping off Rhizoctonia solani | Cultural | Elevating germination beds and clean substrate. | Avoids infection | [35] |
Biological | Trichoderma harzianum | Avoids infection, controlling primary inoculum by mycoparasitism, competition for resources, and antibiosis | [56] | |
Iron spot, berry blotch Cercospora coffeicola | Cultural | Proper plant nutrition. Shades plants | Avoids environmental conditions that favor disease development | [78] |
Pink disease Necator salmonicolor | Cultural | Improves aeration in the field Pruning of symptomatic branches during the dry season. Includes alternate hosts in close proximity | Avoids proper environmental conditions for disease development Elimination of inoculum reservoirs | [79] |
Dieback Phoma sp. | Cultural | Protects young plants from wind, planting beans or corn as physical barriers. | Protects plants from injuries caused by cold winds. | [80] |
Root knot Meloidogyne spp. | Cultural | Use of clean substrates in nurseries, followed by monitoring. Brings healthy plants to the field. Crop rotation in the field with non-host species | Avoids infection by controlling primary inoculum. | [38] |
Biological | Mix of Metarhizium anisopliae, Paecilomyces lilacinus, and Beauveria bassiana | Avoids infection by controlling primary inoculum by parasitism, competition for resources, and antibiosis | [59] |
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Federación Nacional de Cafeteros de Colombia. Informe del Gerente General; FNC: Bogotá, Colombia, 2023. [Google Scholar] [CrossRef]
- Krishnan, S. Sustainable coffee production. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- Federación Nacional de Cafeteros de Colombia. Plan Estratégico Nacional Cafetero 2019–2030; FNC: Bogotá, Colombia, 2023. [Google Scholar]
- Jaramillo, A. El Clima de la Caficultura en Colombia; Cenicafé: Manizales, Colombia, 2018; ISBN 978-958-8490-21-2. [Google Scholar]
- Farfán, F. Agroforestería y Sistemas Agroforestales Con Café; Cenicafé: Manizales, Colombia, 2014; ISBN 978-958-8490-16-8. [Google Scholar]
- Gaitán, Á.; Arias, J.; Flórez, C. Advances in Arabica Coffee Breeding: Developing and Selecting the Right Varieties. In Climate-smart Production of Coffee: Improving Social and Environmental Sustainability; Muschler, R., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK; New York, NY, USA, 2022; pp. 127–168. ISBN 978-1-78676-483-6. [Google Scholar]
- Gil Vallejo, L.F.; Castro Caicedo, B.L.; Cadena Gómez, G. (Eds.) Enfermedades del Cafeto en Colombia; Cenicafé: Manizales, Colombia, 2003; ISBN 958-97218-5-0. [Google Scholar]
- Cadena, G.; Gaitán, A. Las Enfermedades del Café: Logros y Desafíos para la Caficultura Colombiana del Siglo XXI; Manejo Integrado de Plagas y Agroecología: San José, Costa Rica, 2006; Volume 77, pp. 89–93. [Google Scholar]
- Gaitán, A.; Cristancho, M.; Castro, B.; Rivillas, C.; Cadena, G. Compendium of Coffee Diseases and Pests, APS Press: St. Paul, MN, USA, 2015; ISBN 978-0-89054-470-9.
- Castro, B.; Cortina, H. Evaluación de resistencia a Ceratocystis colombiana y Ceratocystis papillata en genotipos de café. Rev. Cenicafé 2012, 63, 23–30. [Google Scholar]
- Castro, B.L.; Carreño, A.J.; Galeano, N.F.; Roux, J.; Wingfield, M.J.; Gaitán, Á.L. Identification and Genetic Diversity of Rosellinia spp. Associated with Root Rot of Coffee in Colombia. Australas. Plant Pathol. 2013, 42, 515–523. [Google Scholar] [CrossRef]
- Moraes, S.; Furtado, G.; Scaloppi, É.; Barreto, M.; Júnior, M.; Sidnei, N. Sporulation of both Erythricium salmonicolor and its anamorphic stage Necator decretus, causal agent of citrus pink disease in Brazil. Fitopatol. Bras. 2006, 31, 519. [Google Scholar] [CrossRef]
- Galvis, C.A.; Leguizamón, J.E.; Gaitán, Á.L.; Mejía, J.F.; Álvarez, E.; Arroyave, J. Detection and identification of a Group 16SrIII-related Phytoplasma associated with Coffee Crispiness Disease in Colombia. Plant Dis. 2007, 91, 248–252. [Google Scholar] [CrossRef]
- Rivillas, C.A.; Serna, C.A.; Cristancho, M.A.; Gaitan, A. La Roya del Cafeto en Colombia Impacto, Manejo y Costos del Control; Bol-Téc: Centro Nacional de Investigaciones de Café: Manizales, Columbia, 2011; Volume 53, Available online: https://www.cenicafe.org/es/index.php/nuestras_publicaciones/boletines_tecnicos/boletin_tecnico_no._36:1-51._2011 (accessed on 19 March 2024).
- Salazar-Gutiérrez, L. Arvenses Frecuentes en el Cultivo del Café en Colombia; Cenicafé: Manizales, Colombia, 2021; ISBN 978-958-8490-48-9. [Google Scholar]
- Maldonado-Cepeda, J.D.; Gómez, J.H.; Benavides, P.; Jaramillo, J.; Gil, Z.N. Taxonomic and Functional Diversity of Flower-Visiting Insects in Coffee Crops. Insects 2024, 15, 143. [Google Scholar] [CrossRef]
- Salazar, M.; Buritica, P.; Cadena, G. Implicaciones de los Estudios Sobre Biodiversidad de los Uredinales (Royas) en la Región Cafetera Colombiana. Rev. Cenicafé 2002, 53, 219–238. [Google Scholar]
- Ogle, H.J. Disease Management: Exclusion, Eradication and Elimination. In Plant Pathogens and Plant Diseases; Brown, J.F., Ogle, H.J., Eds.; Australasian Plant Pathology Society: Toowoomba, Australia, 1997; pp. 358–372. Available online: https://www.appsnet.org/Publications/Brown_Ogle/23%20Control-exclusion%20&%20eradication%20(HJO).pdf (accessed on 19 March 2024).
- Buriticá, P. La Roya del Cafeto en Colombia: Realizaciones de Impacto Nacional e Internacional en el Siglo XX. Rev. Fac. Nac. Med. 2010, 63, 5285–5292. [Google Scholar]
- Kahn, R.P. Exclusion as a Plant Disease Control Strategy. Annu. Rev. Phytopathol. 1991, 29, 219–246. [Google Scholar] [CrossRef]
- Martin, R.R.; Constable, F.; Tzanetakis, I.E. Quarantine Regulations and the Impact of Modern Detection Methods. Annu. Rev. Phytopathol. 2016, 54, 189–205. [Google Scholar] [CrossRef]
- Vicent, A.; Blasco, J. When Prevention Fails. Towards More Efficient Strategies for Plant Disease Eradication. New Phytol. 2017, 214, 905–908. [Google Scholar] [CrossRef]
- Maloy, O.C. Plant Disease Control: Principles and Practice; John Wiley & Sons: New York, NY, USA, 1993; ISBN 978-0-471-57317-3. [Google Scholar]
- Instituto Colombiano Agropecuario Resolución 3593 de 2015-Por Medio del Cual Se Crea el Mecanismo Para Establecer, Mantener, Actualizar y Divulgar el Listado de Plagas Reglamentadas de Colombia; ICA: Bogotá, Colombia, 2015.
- Teferi, D.; Belachew, K. A Review of Coffee Diseases Research in Ethiopia. Int. J. Agric. Sci. 2018, 7, 65–70. [Google Scholar]
- Mulinge, S.K. Development of Coffee Berry Disease in Relation to the Stage of Berry Growth. Ann. Appl. Biol. 1970, 65, 269–276. [Google Scholar] [CrossRef]
- Hindorf, H.; Omondi, C.O. A Review of Three Major Fungal Diseases of Coffea arabica L. in the Rainforests of Ethiopia and Progress in Breeding for Resistance in Kenya. J. Adv. Res. 2011, 2, 109–120. [Google Scholar] [CrossRef]
- Chen, Z.; Liang, J.; Rodrigues, C.J. Colletotrichum Gloeosporioides Can Overgrow Colletotrichum Kahawae on Green Coffee Berries First Inoculated with C. kahawae. Biotechnol. Lett. 2005, 27, 679–682. [Google Scholar] [CrossRef]
- Mouen, J.A.; Cilas, C.; Nottéghem, J.L.; Bieysse, D. Effect of Temperatures and Rainfall Variations on the Development of Coffee Berry Disease Caused by Colletotrichum kahawae. Crop Prot. 2012, 31, 125–131. [Google Scholar] [CrossRef]
- Waller, J.M.; Bigger, M.; Hillocks, R.J. Coffee Pests, Diseases and Their Management; CABI: Wallingford, UK, 2007. [Google Scholar]
- Zewdie, B.; Tack, A.J.M.; Adugna, G.; Nemomissa, S.; Hylander, K. Patterns and Drivers of Fungal Disease Communities on Arabica Coffee along a Management Gradient. Basic Appl. Ecol. 2020, 47, 95–106. [Google Scholar] [CrossRef]
- Belachew, K.; Teferi, D.; Hundessa, N.; Tesfaye, S. The Statue and Management of Coffee Wilt Disease (Gibberella xylarioides) in Ethiopian Coffee Production. J. Nat. Sci. Res. 2016, 6, 16–21. [Google Scholar]
- Raimundi, M.K.; Souza, R.M.D.; Figueira, A.D.R.; Silva, G.M.; Santos, A.C.D.P.; Guimarães, S.D.S.C. Diagnosis of Leaf Bacterial Diseases of Coffee Reveals the Prevalence of Halo Blight. Cienc. Agrotec. 2021, 45, e000121. [Google Scholar] [CrossRef]
- Prasanna, B.M.; Carvajal-Yepes, M.; Kumar, P.L.; Kawarazuka, N.; Liu, Y.; Mulema, A.A.; McCutcheon, S.; Ibabao, X. Sustainable Management of Transboundary Pests Requires Holistic and Inclusive Solutions. Food Sec. 2022, 14, 1449–1457. [Google Scholar] [CrossRef]
- Castro, A.; Rivillas, C.; Serna, C.; Mejía, C. Germinadores de café construcción, manejo de Rhizoctonia solani y costos. Av. Téc. Cenicafé 2008, 368, 1–12. [Google Scholar]
- Castro, B. Nuevas recomendaciones para el control de la Llaga Macana del cafeto. Av. Téc. Cenicafé 1991, 160, 1–4. [Google Scholar]
- Menza, H.; Peláez, M. Alternativas para el manejo cultural de la muerte descendente del cafeto. Av. Téc. Cenicafé 2015, 456, 1–8. [Google Scholar] [CrossRef]
- Petiti, J.; Revel, L.; Divieto, C. Standard Operating Procedure to Optimize Resazurin-Based Viability Assays. Biosensors 2024, 14, 156. [Google Scholar] [CrossRef]
- Gaitán, A.; Villegas, C.; Rivillas-Osorio, C.; Hincapié, É.; Arcila, J. Almácigos de café: Calidad fitosanitaria, manejo y siembra en el campo. Av. Téc. Cenicafé 2011, 404, 1–8. [Google Scholar] [CrossRef]
- Cristancho, M.A.; Rozo, Y.; Escobar, C.; Rivillas, C.A.; Gaitán, A.L. Outbreak of Coffee Leaf Rust (Hemileia vastatrix) in Colombia. New Dis. Rep. 2012, 25, 19. [Google Scholar] [CrossRef]
- Centro Nacional de Investigaciones de Café. Guía Más Agronomía, Más Productividad, Más Calidad, 3rd ed.; Cenicafé: Manizales, Colombia, 2021; ISBN 978-958-8490-49-6. [Google Scholar]
- Salazar, L.; Hincapié, E. Las Arvenses y su manejo en los cafetales. In Sistemas de Producción de Café en Colombia; Arcila, J., Farfán, F., Moreno, A., Salazar, L.F., Hincapié, E., Eds.; Cenicafé: Manizales, Colombia, 2007; pp. 131–144. ISBN 978-958-98193-0-2. [Google Scholar]
- Tack, A.; Laine, A. Spatial Eco-Evolutionary Feedback in Plant-Pathogen Interactions. Eur. J. Plant Pathol. 2014, 138, 667–677. [Google Scholar] [CrossRef]
- Moreno, G.; Castillo, J. La variedad Colombia; una variedad de café con resistencia a la roya/Hemileia vastatrix/Berk y Br. Bol. Téc. Cenicafé, 1984; 1–26. [Google Scholar] [CrossRef]
- Cristancho, M.; Rozo, Y.; Escobar, C.; Rivillas, C.; Gaitán, A. Razas de roya: Epidemias de 2008 a 2011. Av. Téc. Cenicafé 2012, 425, 1–8. [Google Scholar] [CrossRef]
- Alvarado, G. El Café y la Roya: Estrategias de Resistencia Incompleta; Cenicafé: Chinchiná, Colombia, 2011; ISBN 978-958-8490-10-6. [Google Scholar]
- Talhinhas, P.; Batista, D.; Diniz, I.; Vieira, A.; Silva, D.N.; Loureiro, A.; Tavares, S.; Pereira, A.P.; Azinheira, H.G.; Guerra-Guimarães, L. The Coffee Leaf Rust Pathogen Hemileia Vastatrix: One and a Half Centuries around the Tropics. Mol. Plant Pathol. 2017, 18, 1039–1051. [Google Scholar] [CrossRef]
- Maldonado, C.E.; Ángel-Giraldo, L. Resistencia genética a la Enfermedad de la Cereza del Café en variedades cultivadas en Colombia. Rev. Cenicafé 2020, 71, 68–90. [Google Scholar] [CrossRef]
- Gimase, J.; Thagana, W.; Omondi, C.; Ithiru, J. Evaluation of Coffee Berry Disease Resistance (Colletotrichum kahawae) in F2 Populations Derived from Arabica Coffee Varieties Rume Sudan and SL 28. J. Plant Breed. Crop Sci. 2019, 11, 225–233. [Google Scholar] [CrossRef]
- Castro, B.; Cortina, H. Evaluación de Resistencia a Ceratocystis fimbriata Ell Halst. Hunt en progenies F5 de café Borbón resistente x caturra. Cenicafé 2009, 60, 115–125. [Google Scholar]
- Moreno, A. Evite pérdidas económicas al renovar por zoqueo: Resiembre los sitios perdidos. Av. Téc. Cenicafé 2010, 398, 1–4. [Google Scholar] [CrossRef]
- Duque, H.; Castro, B.; Montoya, E. Importancia económica de la llaga macana del cafeto. Av. Téc. Cenicafé 2003, 314, 1–4. [Google Scholar] [CrossRef]
- Gutierrez, R.; Castro, B.; Rivillas, C.A. Manejo de focos de llagas radicales en cafetales. Av. Téc. Cenicafé 2013, 327, 1–8. [Google Scholar]
- Stapleton, J.J. Soil solarization in various agricultural production systems. Crop Prot. 2000, 19, 837–841. [Google Scholar] [CrossRef]
- Rendón, J.R.; Giraldo-Herrera, A. Distribución de raíces en café variedad Castillo® bajo dos arreglos espaciales. Rev. Cenicafé 2019, 70, 7–17. [Google Scholar] [CrossRef]
- Castro, Á.; Rivillas-Osorio, C. Trichoderma spp. Modos de acción, eficacia y usos en el cultivo de café. Bol. Téc. Cenicafé 2012, 38, 1–31. [Google Scholar] [CrossRef]
- Rivillas, C.A.; Calle, C.M.; Ángel, C.A. Micorrizas Arbusculares. In Aplicación de Ciencia Tecnología e Innovación en el Cultivo del Café Ajustado a las Condiciones Particulares del Huila; Centro Nacional de Investigaciones de, Café, Ed.; Cenicafé: Manizales, Colombia, 2019; pp. 52–79. ISBN 978-958-8490-39-7. [Google Scholar]
- Gaitán, A.L.; Leguizamon, J.E. Biología y patogenesis de Rhizoctonia solani en café. Rev. Cenicafé 1994, 45, 14–24. [Google Scholar]
- Gaitán, A.; Rivillas, C.A.; Cortina, H. Colombia. In Plant-Parasitic Nematodes of Coffee; Souza, R., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 249–260. ISBN 978-1-4020-8719-6. [Google Scholar]
- Rivillas, C. Las micorrizas arbusculares en el cultivo del café. In Enfermedades del Cafeto en Colombia; Cenicafé: Chinchiná, Colombia, 2003; pp. 64–74. [Google Scholar]
- Castro, A.; Rivillas, C. Manejo sostenible de la Llaga Macana en cafetales renovados por zoca. Av. Téc. Cenicafé 2003, 312, 1–8. [Google Scholar]
- Marin, M.; Castro, B.; Gaitan, A.; Preisig, O.; Wingfield, B.D.; Wingfield, M.J. Relationships of Ceratocystis Fimbriata Isolates from Colombian Coffee-Growing Regions Based on Molecular Data and Pathogenicity. J. Phytopathol. 2003, 151, 395–405. [Google Scholar] [CrossRef]
- De Resende, M.L.V.; Pozza, E.A.; Reichel, T.; Botelho, D.M.S. Strategies for Coffee Leaf Rust Management in Organic Crop Systems. Agronomy 2021, 11, 1865. [Google Scholar] [CrossRef]
- Haddad, F.; Maffia, L.A.; Mizubuti, E.S.G.; Teixeira, H. Biological Control of Coffee Rust by Antagonistic Bacteria under Field Conditions in Brazil. Biol. Control 2009, 49, 114–119. [Google Scholar] [CrossRef]
- Cacefo, V.; de Araújo, F.; Pacheco, A. Biological control of Hemileia vastatrix Berk. & Broome with Bacillus subtilis Cohn and biochemical changes in the coffee. Coffee Sci. 2016, 11, 567–574. [Google Scholar]
- Sirinunta, A.; Akarapisan, A. Screening of antagonistic bacteria for controlling Cercospora Coffeicola in arabica coffee. J. Agric. Technol. 2015, 11, 1209–1218. [Google Scholar]
- Vilavong, S.; Soytong, K. Application of a new bio-formulation of Chaetomium cupreum for biocontrol of Colletotrichum gloeosporioides causing coffee anthracnose on arabica variety in Laos. Agrivita J. Agric. Sci. 2017, 39, 303–310. [Google Scholar] [CrossRef]
- Gisi, U.; Chet, I.; Gullino, M.L. (Eds.) Recent Developments in Management of Plant Diseases; Springer: Dordrecht, The Netherlands, 2009; ISBN 978-1-4020-8803-2. [Google Scholar]
- Tleuova, A.B.; Wielogorska, E.; Talluri, V.S.S.L.P.; Štěpánek, F.; Elliott, C.T.; Grigoriev, D.O. Recent Advances and Remaining Barriers to Producing Novel Formulations of Fungicides for Safe and Sustainable Agriculture. J. Control. Release 2020, 326, 468–481. [Google Scholar] [CrossRef] [PubMed]
- Kushalappa, A.C.; Chaves, G.M. An Analysis of the Development of Coffee Rust in the Field. Fitopatol. Bras. 1980, 5, 95–104. [Google Scholar]
- Avelino, J.; Muller, R.A.; Eskes, A.; Santacreo, R.; Holguin, F. La Roya Anaranjada del Cafeto: Mito y Realidad. In Desafios de la Caficultura en Centroamerica; Bertrand, B., Rapidel, B., Eds.; IICA: San José, Costa Rica, 1999; pp. 193–241. [Google Scholar]
- Montoya, E.C.; Sierra, C. Estudio de un Modelo de Simulación de La Roya del Cafeto en Colombia: Desarrollo Matemático e Implantación del Modelo. Fitopatol. Colomb. 1993, 17, 2–11. [Google Scholar]
- Arcila, J.; Farfán, F.; Moreno, A.; Salazar, L.; Hincapié, E. Sistemas de Producción de Café en Colombia; Cenicafé: Chinchiná, Colombia, 2007; 309p. [Google Scholar]
- Carrasco, L.; Di Piazza, G.; Dujardin, B.; Medina, P. The 2021 European Union report on pesticide residues in food. Eur. Food Saf. Auth. (EFSA) J. 2023, 21, e07939. [Google Scholar]
- Flórez, C.P.; Maldonado, C.E.; Cortina, H.A.; Moncada, M.d.P.; Montoya, E.C.; Ibarra, L.N.; Unigarro, C.A.; Rendón, J.R.; Orrego, H.D. Cenicafé 1: Nueva variedad de porte bajo altamente productiva resistente a la roya y al CBD con mayor calidad física del grano. Av. Téc. Cenicafé 2016, 469, 1–8. [Google Scholar] [CrossRef]
- Rivillas, C.; Castro, A. Ojo de gallo o gotera del cafeto Omphalia flavida Bol. Téc. Cenicafé 2011, 37. Available online: https://biblioteca.cenicafe.org/handle/10778/596 (accessed on 19 March 2024).
- Ángel, C.A.; Rivillas, C.A.; Arciniegas, N.; López, J.M. Bases para el manejo de la gotera u ojo de gallo del cafeto en Colombia. Av. Téc. Cenicafé 2018, 490, 1–8. [Google Scholar] [CrossRef]
- Angel-Calle, C.A. Mancha de hierro Cercospora coffeicola Berk. & Br. In Enfermedades del Cafeto en Colombia; Gil, F., Castro, B.L., Cadena, G., Eds.; Cenicafé: Manizales, Colombia, 2003; pp. 134–137. [Google Scholar]
- Ramirez, C.J.; Cadena, G. Estudio biológico de Corticium salmonicolor Berk y Br. agente causal del mal rosado del café. Rev. Cenicafé 1982, 33, 40–52. [Google Scholar]
- Gil, L.F.; Leguizamon, J.E. La muerte descendente del cafeto (Phoma spp.). Av. Téc. Cenicafé 2000, 278, 8. [Google Scholar]
- Federación Nacional de Cafeteros de Colombia. Boletín Estado Fitosanitario de la Caficultura Colombiana; Cenicafé: Manizales, Colombia, 2024; 8p. [Google Scholar] [CrossRef]
Common Name | Scientific Name * | Classification * | Plant Organ Affected | Reference |
---|---|---|---|---|
Coffee leaf rust (CLR) | Hemileia vastatrix Berk. & Br. | Fungi Basidiomycota Pucciniales | Leaves | [9] |
American leaf spot, Gotera or ojo de gallo | Mycena citricolor (Berk. & M.A. Curtis) Sacc (=Omphalia flavida Maubl, & Rang. Anamorph) | Fungi Basidiomycota Agaricales | Leaves, fruit, and stems. | [7] |
Canker stain and wilt | Ceratocystis fimbriata Ellis & Halst. sensu lato (s.l.). | Fungi Ascomycota Microascales | Stems | [10] |
Black root rot | Dematophora pepo (Pat.) C. Lambert, Wittstein & M. Stadler. Basionym: Rosellinia pepo Pat. | Fungi Ascomycota Xylariales | Roots | [11] |
Black root rot | Dematophora bunodes (Berk. & Broome) C. Lambert, K. Wittstein & M. Stadler. Basionym: Rosellinia bunodes (Berk. & Broome) Sacc. | Fungi Ascomycota Xylariales | Roots | [11] |
Damping off | Rhizoctonia solani J.G. Kühn | Fungi Basidiomycota Cantharellales | Seedling damping off | [7] |
Anthracnose | Colletotrichum spp. Corda | Fungi Ascomycota Glomerellales | Flowers, fruits, leaves, and stems | [7] |
Iron spot, brown eye spot, berry blotch | Cercospora coffeicola Berk. & Br. | Fungi Ascomycota Mycosphaerellales | Leaves and fruits | [7] |
Pink disease | Necator salmonicolor (Berk. & Broome) K.H. Larss., Redhead & T.W. May. Basionym: Corticium salmonicolor Berk. & Broome | Fungi Basidiomycota Corticiales | Stems and fruits | [12] |
Die back | Phoma Sacc. | Fungi Ascomycota Pleosporales | Sprouts and young leaves | [7] |
Thread blight | Corticium koleroga (Cooke) Höhn. Basionym: Pellicularia koleroga Cooke | Fungi Basidiomycota Corticiales | Leaves | [9] |
Oil spot | Colletotrichum Corda | Fungi Ascomycota Glomerellales | Leaves and fruits | [7] |
Root knot | Meloidogyne Goeldi spp. | Nematoda Tylenchida | Roots | [7] |
Coffee crispiness disease | Group 16SrIII-Related Phytoplasma | Systemic | [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrucho, R.L.; Marín-Ramírez, G.A.; Gaitan, A. Integrated Disease Management for the Sustainable Production of Colombian Coffee. Agronomy 2024, 14, 1286. https://doi.org/10.3390/agronomy14061286
Ferrucho RL, Marín-Ramírez GA, Gaitan A. Integrated Disease Management for the Sustainable Production of Colombian Coffee. Agronomy. 2024; 14(6):1286. https://doi.org/10.3390/agronomy14061286
Chicago/Turabian StyleFerrucho, Rosa Lilia, Gustavo Adolfo Marín-Ramírez, and Alvaro Gaitan. 2024. "Integrated Disease Management for the Sustainable Production of Colombian Coffee" Agronomy 14, no. 6: 1286. https://doi.org/10.3390/agronomy14061286
APA StyleFerrucho, R. L., Marín-Ramírez, G. A., & Gaitan, A. (2024). Integrated Disease Management for the Sustainable Production of Colombian Coffee. Agronomy, 14(6), 1286. https://doi.org/10.3390/agronomy14061286