Maize//Soybean Intercropping Improves Yield Stability and Sustainability in Red Soil under Different Phosphate Application Rates in Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Experiment Site
2.2. Experimental Design and Crop Management
2.3. Plant Sampling and Measurements
2.4. Indices Calculation
- (1)
- ‘Δ’ is defined as a symbol of relative quantity, which means the difference between the intercropping and monoculture involved yield (ΔYield), biomass (ΔYield), harvest index (ΔHI), etc.
- (2)
- Partial land equivalent ratio
- (3)
- Harvest index (HI, %)
- (4)
- Actual yield loss index (AYL)
- (5)
- Yield stability and sustainability
- (6)
- Contribution rate of soil capacity and fertilizer
- (7)
- Phosphate fertilizer application threshold
2.5. Statistics
3. Results
3.1. Effect of Intercropping on the Maize Yield and Harvest Index
3.2. Effect of Intercropping on the Land Equivalent Ratio and Actual Yield Loss Index
3.3. Effect of Intercropping on the Maize Yield Stability and Sustainability
3.4. Effect of Intercropping on Soil and Fertilizer Contribution Rate
3.5. Recommended Fertilizer Dosage Based on Optimal Yield under Intercropping
4. Discussions
4.1. Yield Advantage of Intercropping Affected by P Application
4.2. Yield Stability Sustainability of Intercropping
4.3. Soil and Fertilizer Contribution Rate of Intercropping
4.4. Synergies between Intercropping and Optimized P Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef]
- Brooker, R.W.; Bennett, A.E.; Cong, W.; Daniell, T.J.; George, T.S.; Hallett, P.D.; Hawes, C.; Iannetta, P.P.M.; Jones, H.G.; Karley, A.J.; et al. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytol. 2015, 206, 107–117. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef]
- Zhang, L.; Yuan, J.; Zhang, M.; Zhang, Y.; Wang, L.; Li, J. Long term effects of crop rotation and fertilization on crop yield stability in southeast China. Sci. Rep. 2022, 12, 14234. [Google Scholar] [CrossRef]
- Benitez-Alfonso, Y.; Soanes, B.K.; Zimba, S.; Sinanaj, B.; German, L.; Sharma, V.; Sharma, V.; Bohra, A.; Kolesnikova, A.; Dunn, J.A.; et al. Enhancing climate change resilience in agricultural crops. Curr. Biol. 2023, 33, 1246–1261. [Google Scholar] [CrossRef]
- Dang, P.; Lu, C.; Huang, T.; Zhang, M.; Yang, N.; Han, X.; Xu, C.; Wang, S.; Wang, C.; Qin, X.; et al. Enhancing intercropping sustainability: Manipulating soybean rhizosphere microbiome through cropping patterns. Sci. Total Environ. 2024, 931, 172714. [Google Scholar] [CrossRef]
- Stewart, W.M.; Dibb, D.W.; Johnston, A.E.; Smyth, T.J. The contribution of commercial fertilizer nutrients to food production. Agron. J. 2005, 97, 1–6. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Kundu, S.; Prakash, V.; Gupta, H.S. Sustainability under combined application of mineral and organic fertilizers in a rainfed soybean-wheat system of the Indian Himalayas. Eur. J. Agron. 2008, 28, 33–46. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Sun, S.; Cheng, s.; Shao, L.; Liu, X. Contribution of cultivar, fertilizer and weather to yield variation of winter wheat over three decades: A case study in the North China Plain. Eur. J. Agron. 2013, 50, 52–59. [Google Scholar] [CrossRef]
- Kiboi, M.N.; Ngetich, J.; Diels, J.; Mucheru-Muna, M.; Mugwe, J.; Mugendi, D.N. Minimum tillage, tied ridging and mulching for better maize yield and yield stability in the central highlands of Kenya. Soil Till. Res. 2017, 170, 157–166. [Google Scholar] [CrossRef]
- Chen, H.; Deng, A.; Zhang, W.; Li, W.; Qiao, Y.; Yang, T.; Zheng, C.; Cao, C.; Chen, F. Long-term inorganic plus organic fertilization increases yield and yield stability of winter wheat. Crop J. 2018, 6, 589–599. [Google Scholar] [CrossRef]
- Sun, S.; Yang, X.; Lin, X.; Sassenrath, G.F.; Li, K. Climate-smart management can further improve winter wheat in China. Agric. Syst. 2018, 162, 10–18. [Google Scholar] [CrossRef]
- Liu, X.; Rahman, T.; Song, C.; Su, B.; Yang, F.; Yong, T.; Wu, Y.; Zhang, C.; Yang, W. Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems. Field Crops Res. 2017, 200, 38–46. [Google Scholar] [CrossRef]
- Renard, D.; Tilman, D. National food production stabilized by crop diversity. Nature 2019, 571, 257–260. [Google Scholar] [CrossRef]
- Li, C.; Hoffland, E.; Kuyper, T.W.; Yu, Y.; Zhang, C.; Li, H.; Zhang, F.; Van Der Werf, W. Syndromes of production in intercropping impact yield gains. Nat. Plants 2020, 6, 653–660. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Bao, X.; Sun, J.; Yang, S.; Wang, P.; Wang, C.; Wu, J.; Liu, X.; Tian, X.; et al. Long-term increased grain yield and soil fertility from intercropping. Nat. Sustain. 2021, 4, 943–950. [Google Scholar] [CrossRef]
- Zhou, L.; Su, L.; Zhao, H.; Wang, S.; Zheng, Y.; Tang, L. Maize/soybean intercropping promoted activation of soil organic phosphorus fractions by enhancing more phosphatase activity in red soil under different phosphorus application rates. Plant Soil 2023, 1–20. [Google Scholar] [CrossRef]
- Wang, B.; Li, J.; Ren, Y.; Xin, J.; Hao, X.; Ma, Y.; Ma, X. Validation of a soil phosphorus accumulation model in the wheat-maize rotation production areas of China. Field Crops Res. 2015, 178, 42–48. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, W.; Li, L. Intercropping: Feed more people and build more sustainable agroecosystems. Front. Agric. Sci. Eng. 2021, 8, 373–386. [Google Scholar] [CrossRef]
- Koskey, G.; Leoni, F.; Carlesi, S.; Avio, L.; Bàrberi, P. Exploiting plant functional diversity in durum wheat-lentil relay intercropping to stabilize crop yields under contrasting climatic conditions. Agronomy 2022, 12, 210. [Google Scholar] [CrossRef]
- Raseduzzaman, M.; Jensen, E.S. Does intercropping enhance yield stability in arable crop production? A meta-analysis. Eur. J. Agron. 2017, 91, 25–33. [Google Scholar] [CrossRef]
- Chen, P.; Song, C.; Liu, X.; Zhou, L.; Yang, H.; Zhang, X.; Zhou, Y.; Du, Q.; Pang, T.; Fu, Z.; et al. Yield advantage and nitrogen fate in an additive maize-soybean relay intercropping system. Sci. Total. Environ. 2019, 657, 987–999. [Google Scholar] [CrossRef]
- Su, L.; Zhao, H.; Hou, X.; Chen, Y.; Xiao, J.; Zheng, Y.; Tang, L. Activation of phosphorus pools in red soil by maize and soybean intercropping and its response to phosphorus fertilizer. Chin. J. Eco-Agric. 2023, 31, 558–566. [Google Scholar] [CrossRef]
- Anonymous. Guide for Maize/Soybean Intercropping Released by Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Available online: http://www.moa.gov.cn/gk/nszd_1/2022/202201/t20220126_6387740.htm (accessed on 8 May 2022).
- Fan, Y.; Wang, Z.; Liao, D.; Raza, M.A.; Wang, B.; Zhang, J.; Chen, J.; Feng, L.; Wu, X.; Liu, C. Uptake and utilization of nitrogen, phosphorus and potassium as related to yield advantage in maize-soybean intercropping under different row configurations. Sci. Rep. 2020, 10, 9504. [Google Scholar] [CrossRef]
- Zhang, R.; Meng, L.; Li, Y.; Wang, X.; Ogundeji, A.O.; Li, X.; Sang, P.; Mu, Y.; Wu, H.; Li, S. Yield and nutrient uptake dissected through complementarity and selection effects in the maize/soybean intercropping. Food Energy Secur. 2021, 10, 379–393. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, X.; Zhang, S.; Palta, J.; Chen, Y. Influence of spatial arrangement in maize-soybean intercropping on root growth and water use efficiency. Plant Soil 2017, 415, 131–144. [Google Scholar] [CrossRef]
- Sun, T.; Feng, X.; La, R.; Cao, T.; Guo, J.; Deng, A.; Zheng, C.; Zhang, J.; Song, Z.; Zhang, W. Crop diversification practice faces a tradeoff between increasing productivity and reducing carbon footprints. Agric. Ecosyst. Environ. 2021, 321, 107614. [Google Scholar] [CrossRef]
- Liu, X.; Meng, L.; Yin, T.; Wang, X.; Zhang, S.; Cheng, Z.; Ogundeji, A.O.; Li, S. Maize/soybean intercrop over time has higher yield stability relative to matched monoculture under different nitrogen-application rates. Field Crops Res. 2023, 301, 109015. [Google Scholar] [CrossRef]
- He, Z.; Zhang, M.; Wilson, M. Distribution and classification of red soils in China. In The Red Soils of China: Their Nature, Management and Utilization; Springer: Dordrecht, The Netherlands, 2004; pp. 29–33. [Google Scholar] [CrossRef]
- Khonde, P.; Congo, R.; Tshiabukole, K.; Congo, R.; Kankolongo, M.; Congo, R.; Hauser, S.; Congo, R.; Vumilia, K.; Nkongolo, K. Evaluation of yield and competition indices for intercropped eight maize varieties, soybean and cowpea in the zone of savanna of South-West RD Congo. Open Access Libr. J. 2018, 5, 1. [Google Scholar] [CrossRef]
- Luo, S.; Yu, L.; Liu, Y.; Zhang, Y.; Yang, W.; Li, Z.; Wang, J. Effects of reduced nitrogen input on productivity and N2O emissions in a sugarcane/soybean intercropping system. Eur. J. Agron. 2016, 81, 78–85. [Google Scholar] [CrossRef]
- Han, X.; Hu, C.; Chen, Y.; Qiao, Y.; Liu, D.; Fan, J.; Li, S.; Zhang, Z. Crop yield stability and sustainability in a rice-wheat cropping system based on 34-year field experiment. Eur. J. Agron. 2020, 113, 125965. [Google Scholar] [CrossRef]
- Yan, P.; Yue, S.; Qiu, M.; Chen, X.; Cui, Z.; Chen, F. Using maize hybrids and in-season nitrogen management to improve grain yield and grain nitrogen concentrations. Field Crops Res. 2014, 166, 38–45. [Google Scholar] [CrossRef]
- Mudare, S.; Kanomanyanga, J.; Jiao, X.; Mabasa, S.; Ram Lamichhane, J.; Jing, J.; Cong, W. Yield and fertilizer benefits of maize/grain legume intercropping in China and Africa: A meta-analysis. Agron. Sustain. Dev. 2022, 42, 81. [Google Scholar] [CrossRef]
- Wang, Z.; Bao, X.; Li, X.; Jin, X.; Zhao, J.; Sun, J.; Christir, P.; Li, L. Intercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decade. Plant Soil 2015, 391, 265–282. [Google Scholar] [CrossRef]
- Xu, Z.; Li, C.; Zhang, C.; Yu, Y.; Van der Werf, W.; Zhang, F. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; A meta-analysis. Field Crops Res. 2020, 246, 107661. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Lachouani, P.; Knudsen, M.T.; Ambus, P.; Boelt, B.; Gislum, R. Productivity and carbon footprint of perennial grass–forage legume intercropping strategies with high or low nitrogen fertilizer input. Sci. Total Environ. 2016, 541, 1339–1347. [Google Scholar] [CrossRef]
- Tsialtas, I.T.; Baxevanos, D.; Vlachostergios, D.N.; Dordas, C.; Lithourgidis, A. Cultivar complementarity for symbiotic nitrogen fixation and water use efficiency in pea-oat intercrops and its effect on forage yield and quality. Field Crops Res. 2018, 226, 28–37. [Google Scholar] [CrossRef]
- Tariq, A.; Sardans, J.; Peñuelas, J.; Zhang, Z.; Graciano, C.; Zeng, F.; Olatunji, O.A.; Ullah, A.; Pan, K. Intercropping of leguminous and non-leguminous desert plant species does not facilitate phosphorus mineralization and plant nutrition. Cells 2022, 11, 998. [Google Scholar] [CrossRef]
- Mohammadkhani, F.; Pouryousef, M.; Yousefi, A.R. Growth and production response in saffron-chickpea intercropping under different irrigation regimes. Ind. Crops Prod. 2023, 193, 116256. [Google Scholar] [CrossRef]
- Xia, H.; Qiao, Y.; Li, X.; Xue, Y.; Wang, N.; Yan, W.; Xue, Y.; Cui, Z.; van der Werf, W. Moderation of nitrogen input and integration of legumes via intercropping enable sustainable intensification of wheat-maize double cropping in the North China Plain: A four-year rotation study. Agric. Syst. 2023, 204, 103540. [Google Scholar] [CrossRef]
- Yang, F.; Liao, D.; Fan, Y.; Gao, R.; Wu, X.; Rahman, T.; Yong, T.; Liu, W.; Liu, J.; Du, J. Effect of narrow-row planting patterns on crop competitive and economic advantage in maize–soybean relay strip intercropping system. Plant Prod. Sci. 2017, 20, 1–11. [Google Scholar] [CrossRef]
- Wei, W.; Liu, T.; Shen, L.; Wang, X.; Zhang, S.; Zhang, W. Effect of maize (Zeal mays) and soybean (Glycine max) intercropping on yield and root development in Xinjiang, China. Agriculture 2022, 12, 996. [Google Scholar] [CrossRef]
- Zan, Z.; Jiao, N.; Ma, R.; Wang, J.; Wang, Y.; Ning, T.; Zheng, B.; Liu, L.; Zhao, X.; Cong, W. Long-term maize intercropping with peanut and phosphorus application maintains sustainable farmland productivity by improving soil aggregate stability and P availability. Agronomy 2023, 13, 2846. [Google Scholar] [CrossRef]
- Mun, S.; Zachmann, J.; Chongtham, I.R.; Dhamala, N.R.; Hartung, J.; Jensen, E.S.; Carlsson, G. Yield stability and weed dry matter in response to field-scale soil variability in pea-oat intercropping. Plant Soil 2023, 1–20. [Google Scholar] [CrossRef]
- Liang, G. Nitrogen fertilization mitigates global food insecurity by increasing cereal yield and its stability. Glob. Food Secur. 2022, 34, 100652. [Google Scholar] [CrossRef]
- Martin, W.; Alison, J.K.; Adrian, C.N.; Lars, P.K.; Christoph, S.; Diego, R.; Eveline, A.; James, A.; Jana, B.; Silvia, P.; et al. Grain yield stability of cereal-legume intercrops is greater than sole crops in more productive condition. Agriculture 2021, 11, 255. [Google Scholar] [CrossRef]
- Wu, J.; Bao, X.; Zhang, J.; Lu, B.; Zhang, W.; Callaway, R.M.; Li, L. Temporal stability of productivity is associated with complementarity and competitive intensities in intercropping. Ecol. Appl. 2023, 33, e2731. [Google Scholar] [CrossRef]
- Li, L.; Li, S.; Sun, J.; Zhang, F. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc. Natl. Acad. Sci. USA 2007, 104, 11192–11196. [Google Scholar] [CrossRef]
- Wang, X.; Deng, X.; Tian, P.; Song, C.; Yong, T.; Yang, F.; Sun, X.; Liu, W.; Yan, Y.; Du, J.; et al. Contribution of interspecific interactions and phosphorus application to increasing soil phosphorus availability in relay intercropping systems. Field Crops Res. 2017, 204, 12–22. [Google Scholar] [CrossRef]
- Lu, M.; Zhao, J.; Lu, Z.; Li, M.; Yang, J.; Fullen, M.; Li, Y.; Fan, M. Maize–soybean intercropping increases soil nutrient availability and aggregate stability. Plant Soil 2023, 1–16. [Google Scholar] [CrossRef]
- Yu, R.; Yang, H.; Xing, Y.; Zhang, W.; Lambers, H.; Li, L. Belowground processes and sustainability in agroecosystems with intercropping. Plant Soil 2022, 476, 263–288. [Google Scholar] [CrossRef]
- Du, Q.; Zhou, L.; Chen, P.; Liu, X.; Song, C.; Yang, F.; Wang, X.; Liu, W.; Sun, X.; Du, J. Relay-intercropping soybean with maize maintains soil fertility and increases nitrogen recovery efficiency by reducing nitrogen input. Crop J. 2020, 8, 140–152. [Google Scholar] [CrossRef]
- An, R.; Yu, R.; Xing, Y.; Zhang, J.; Bao, X.; Lambers, H.; Li, L. Enhanced phosphorus-fertilizer-use efficiency and sustainable phosphorus management with intercropping. Agron. Sustain. Dev. 2023, 43, 43–57. [Google Scholar] [CrossRef]
- Zhang, S.; Meng, L.; Hou, J.; Liu, X.; Ogundeji, A.O.; Cheng, Z.; Yin, T.; Clarke, N.; Hu, B.; Li, S. Maize/soybean intercropping improves stability of soil aggregates driven by arbuscular mycorrhizal fungi in a black soil of northeast china. Plant Soil 2022, 481, 63–82. [Google Scholar] [CrossRef]
- Madembo, C.; Mhlanga, B.; Thierfelder, C. Productivity or stability? Exploring maize-legume intercropping strategies for smallholder conservation agriculture farmers in Zimbabwe. Agric. Syst. 2020, 185, 102921. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, H.; Peng, C.; Qiang, L.; Zhu, P.; Gao, Q. Variation trend of soil organic carbon, total nitrogen and the stability of maize yield in black soil under long-term organic fertilization. J. Plant Nutr. Fertil. 2019, 25, 1473–1481. [Google Scholar] [CrossRef]
- Cui, Z.; Yue, S.; Wang, G.; Meng, Q.; Wu, L.; Yang, Z.; Zhang, Q.; Li, S.; Zhang, F.; Chen, X. Closing the yield gap could reduce projected greenhouse gas emissions: A case study of maize production in China. Glob. Chang. Biol. 2013, 19, 2467–2477. [Google Scholar] [CrossRef]
- Chen, X.; Cui, Z.; Fan, M.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Rosen, C.J.; Kelling, K.A.; Stark, J.C.; Porter, G.A. Optimizing phosphorus fertilizer management in potato production. Am. J. Potato Res. 2014, 91, 145–160. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, X.; Wang, X.; Yang, L.; Yin, Y. Improving phosphorus use efficiency and optimizing phosphorus application rates for maize in the northeast plain of China for sustainable agriculture. Sustainability 2019, 11, 4799. [Google Scholar] [CrossRef]
- Liao, D.; Zhang, C.; Lambers, H.; Zhang, F. Changes in soil phosphorus fractions in response to long-term phosphate fertilization under sole cropping and intercropping of maize and faba bean on a calcareous soil. Plant Soil 2021, 463, 589–600. [Google Scholar] [CrossRef]
- Olesen, J.E.; Trnka, M.; Kersebaum, K.C.; Skjelvåg, A.O.; Seguin, B.; PeltonenSainio, P.; Rossi, F.; Kozyra, J.; Micale, F. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 2011, 34, 96–112. [Google Scholar] [CrossRef]
- Reckling, M.; Ahrends, H.; Chen, T.W.; Eugster, W.; Hadasch, S.; Knapp, S.; Laidig, F.; Linstädter, A.; Macholdt, J.; Piepho, H.P.; et al. Methods of yield stability analysis in long-term field experiments. A review. Agron. Sustain. Dev. 2021, 41, 27. [Google Scholar] [CrossRef]
- Mcdowell, R.; Pletnyakov, P.; Haygarth, P. Phosphorus applications adjusted to optimal crop yields can help sustain global phosphorus reserves. Nat. Food 2024, 5, 332–339. [Google Scholar] [CrossRef]
- Zhou, L.; Su, L.; Zhang, L.; Zhang, L.; Zheng, Y.; Tang, L. Effect of different types of phosphate fertilizer on phosphorus absorption and desorption in acidic red soil of southwest China. Sustainability 2022, 14, 9973. [Google Scholar] [CrossRef]
- Wu, L.; Wu, L.; Cui, Z.; Chen, X.; Zhang, F. Basic NPK fertilizer recommendation and fertilizer formula for maize production regions in China. Acta Pedol. Sin. 2015, 52, 802–817. [Google Scholar]
Factors | Df | Maize Yield | Biomass | HI |
---|---|---|---|---|
Year (Y) | 5 | 102.59 *** | 150.93 *** | 26.68 *** |
Phosphate application rates (P) | 3 | 851.08 *** | 2,619.88 *** | 7.02 *** |
Cropping system (C) | 1 | 351.54 *** | 575.34 *** | 15.38 *** |
Y × P | 15 | 29.644 *** | 86.91 *** | 12.62 *** |
Y × C | 5 | 7.76 *** | 14.63 *** | 2.83 * |
P × C | 3 | 36.17 *** | 26.70 *** | 11.59 *** |
Y × P × C | 15 | 3.68 *** | 5.32 *** | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Su, L.; Zhao, H.; Zhao, T.; Zheng, Y.; Tang, L. Maize//Soybean Intercropping Improves Yield Stability and Sustainability in Red Soil under Different Phosphate Application Rates in Southwest China. Agronomy 2024, 14, 1222. https://doi.org/10.3390/agronomy14061222
Zhou L, Su L, Zhao H, Zhao T, Zheng Y, Tang L. Maize//Soybean Intercropping Improves Yield Stability and Sustainability in Red Soil under Different Phosphate Application Rates in Southwest China. Agronomy. 2024; 14(6):1222. https://doi.org/10.3390/agronomy14061222
Chicago/Turabian StyleZhou, Long, Lizhen Su, Hongmin Zhao, Tilei Zhao, Yi Zheng, and Li Tang. 2024. "Maize//Soybean Intercropping Improves Yield Stability and Sustainability in Red Soil under Different Phosphate Application Rates in Southwest China" Agronomy 14, no. 6: 1222. https://doi.org/10.3390/agronomy14061222
APA StyleZhou, L., Su, L., Zhao, H., Zhao, T., Zheng, Y., & Tang, L. (2024). Maize//Soybean Intercropping Improves Yield Stability and Sustainability in Red Soil under Different Phosphate Application Rates in Southwest China. Agronomy, 14(6), 1222. https://doi.org/10.3390/agronomy14061222