Micropropagation of Al-Taif Rose: Effects of Medium Constituents and Light on In Vitro Rooting and Acclimatization
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Effect of Auxin Type and Concentration on In Vitro Rooting of Al-Taif Rose
2.3. Effect of Medium Salt Strength and Sucrose Concentration on In Vitro Rooting of Al-Taif Rose
2.4. Effect of Sucrose Concentration and Light Spectra on In Vitro Rooting of Al-Taif Rose
2.5. Effect of Light Intensity and AC on In Vitro Rooting of Al-Taif Rose
2.6. Acclimatization of Al-Taif Rose Plantlets
2.7. DNA Extraction and ISSR-PCR Amplification
2.8. Experimental Design, Data Recording, and Statistical Analysis
3. Results and Discussion
3.1. Effect of Auxin Type and Concentration on the In Vitro Rooting Behavior of Al-Taif Rose Microshoots
3.2. Effect of Medium Salt Strength, Sucrose Concentration, and Light Spectrum on the In Vitro Rooting of Al-Taif Rose Microshoots
3.3. Effect of Light Intensity and Activated Charcoal on In Vitro Rooting of Al-Taif Rose Microshoots
3.4. Acclimatization of Micropropagated Al-Taif Rose Plantlets
3.5. Genetic Fidelity of Micropropagated Al-Taif Rose Plantlets
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ozkan, G.; Sagdic, O.; Baydar, N.G.; Baydar, H. Antioxidant and antibacterial activities of Rosa damascena flower extracts. Food Sci. Technol. Int. 2004, 10, 277–281. [Google Scholar] [CrossRef]
- Achuthan, C.R.; Babu, B.H.; Padikkala, J. Antioxidant and hepatoprotective effects of Rosa damascena. Pharm. Biol. 2003, 41, 357–361. [Google Scholar] [CrossRef]
- Mahmood, N.; Piacente, S.; Pizza, C.; Burke, A.; Khan, A.; Hay, A. The anti-HIV activity and mechanisms of action of pure compounds isolated from Rosa damascene. Biochem. Biophys. Res. Commun. 1996, 229, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Ginova, A.; Tsvetkov, I.; Kondakova, V. Rosa damascena Mill.—An overview for evaluation of propagation methods. Bulg. J. Agric. Sci. 2012, 18, 545–556. [Google Scholar]
- Bahaffi, S.O. Volatile oil composition of Taif rose. J. Saudi Chem. Soc. 2005, 9, 401–406. [Google Scholar]
- Kürkçüoglu, M.; Abdel-Megeed, A.; Başer, K. The composition of Taif rose oil. J. Essent. Oil Res. 2013, 25, 364–367. [Google Scholar] [CrossRef]
- Bazaid, S.A. Protein and DNA fragments variation in relation to low temperature in four Rosa hybirida cultivars in Taif, Saudi Arabia. J. Egypt. Acad. Dev. 2004, 5, 77–90. [Google Scholar]
- George, E.F.; Debergh, P.C. Micropropagation: Uses and methods. In Plant Propagation by Tissue Culture, 3rd ed.; George, E.F., Hall, M.A., De Klerk, G.J., Eds.; Spinger: Dordrecht, The Netherlands, 2008; pp. 29–64. [Google Scholar]
- Pospisilova, J.; Ticha, I.; Kadleck, P.; Haisel, D.; Plazakova, S. Acclimatization of micropropagated plants to ex vitro conditions. Biol. Plant. 1999, 42, 481–497. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Murthy, H.N.; Ammar, M.H.; Alghamdi, S.S.; Al-Suhaibani, N.A.; Alsadon, A.A.; Paek, K.Y. In vitro rooting of leguminous plants: Difficulties, alternatives, and strategies for improvement. Hortic. Environ. Biotechnol. 2016, 57, 311–322. [Google Scholar] [CrossRef]
- Van Huylenbroeck, J.; Piqueras, A.; Debergh, P. Photosynthesis and carbon metabolism in leaves formed prior and during ex vitro acclimatization of micropropagated plants. Plant Sci. 1998, 134, 21–30. [Google Scholar] [CrossRef]
- Diaz, L.P.; Namur, J.J.; Bollati, S.A.; Arce, O.E.A. Acclimatization of Phalaenopsis and Cattleya obtained by micropropagation. Rev. Colomb. Biotecnol. 2010, 12, 27–40. [Google Scholar]
- Pati, P.K.; Rath, S.P.; Sharma, M.; Sood, A.; Ahuja, P.S. In vitro propagation of rose—A review. Biotechnol. Adv. 2006, 24, 94–114. [Google Scholar] [CrossRef] [PubMed]
- Kirichenko, E.B.; Kuzmina, T.A.; Kataeva, N.V. Factors in optimizing the multiplication of ornamental and essential oil roses in vitro. Byulleten Gl. Bot. Sada 1991, 159, 61–67. [Google Scholar]
- Horan, I.; Walker, S.; Roberts, A.V.; Mottley, J.; Simpkins, I. Micropropagation of roses: The benefits of pruned mother-plantlets at stage-II and a greenhouse environment at stage III. J. Hort. Sci. 1995, 70, 799–806. [Google Scholar]
- Huettman, C.A.; Preece, J.E. Thidiazuron: A potent cytokinin for woody plant tissue culture. Plant Cell Tissue Org. Cult. 1993, 33, 105–119. [Google Scholar] [CrossRef]
- Podwyszynska, M. Rooting of micropropagated shoot (Cell Tissue and Organ culture). In Encyclopedia of Rose Science; Roberts, A.V., Debener, T., Gudin, S., Eds.; Elsevier Press: Amsterdam, The Netherlands, 2003; pp. 66–76. [Google Scholar]
- Hasegawa, P.M. Factors affecting shoot and root initiation from cultured rose shoot tips. J. Am. Soc. Hortic. Sci. 1980, 105, 216–220. [Google Scholar] [CrossRef]
- Al-Ali, A.M.; Dewir, Y.H.; Al-Obeed, R.S. Influence of cytokinins, dark incubation and air-Lift bioreactor culture on axillary shoot proliferation of Al-Taif rose (Rosa damascena trigintipetala (Diek) R. Keller). Horticulturae 2023, 9, 1109. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant 1962, 15, 473–495. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Al-Ali, A.M.; Rihan, H.Z.; Alshahrani, T.; Alwahibi, M.S.; Almutairi, K.F.; Naidoo, Y.; Fuller, M.P. Effects of artificial light spectra and sucrose on the leaf pigments, growth, and rooting of blackberry (Rubus fruticosus) microshoots. Agronomy 2023, 13, 89. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. Isolation of plant DNA from fresh tissue. Focus 1990, 12, 13–15. [Google Scholar]
- Alsemaan, T. Micro-propagation of Damask rose (Rosa damascena Mill.) cv. Almarah. Int. J. Agric. Res. 2013, 8, 172–177. [Google Scholar] [CrossRef]
- Mirshahi, H.; Mahdinezhad, N.; Soloki, M.; Samiei, L. Effect of plant growth adjuvants on direct regeneration of Mohammadi flower (Rosa damascena Mill.) using thin cell layering technique. Acta Sci. Pol. Hortorum Cultus. 2020, 19, 167–177. [Google Scholar] [CrossRef]
- Khosh-Khui, M.; Sink, K.C. Micropropagation of new and old world species. J. Hort. Sci. 1982, 57, 315–319. [Google Scholar] [CrossRef]
- Jabbarzadeh, Z.; Khosh-Khui, M. Factors affecting tissue culture of Damask rose (Rosa damascene Mill.). Sci. Hortic. 2005, 105, 475–482. [Google Scholar] [CrossRef]
- Kumar, A.; Sood, A.; Palni, U.; Gupta, A.; Palni, L.M. Micropropagation of Rosa damascena Mill. from mature bushes using thidiazuron. J. Hortic. Sci. Biotechnol. 2001, 76, 30–34. [Google Scholar] [CrossRef]
- Bhoomsiri, C.; Masomboon, N. Multiple shoot induction and plant regeneration of Rosa damascena Mill. Silpakorn Univ. Int. J. 2003, 3, 229–239. [Google Scholar]
- Kornova, K.; Mihailova, J.; Stefanova, A. Propagation of Rosa Kazanlika Top. (Rosa damascena var. Trigintipetala) using the in vitro method. Sci. Work. 2001, 46, 61–66. [Google Scholar]
- Kornova, K.; Michailova, J.; Astadjov, N. Application of in vitro techniques for propagation of Rosa kazanlika Top. (Rosa damascena var. trigintipetala). Biotechnol. Biotechnol. Equip. 2000, 14, 78–81. [Google Scholar] [CrossRef]
- Mamaghani, B.A.; Ghorbanli, M.; Assareh, M.H.; Zare, A.G. In vitro propagation of three Damask roses accessions. Iran. J. Plant Physiol. 2010, 1, 85–94. [Google Scholar]
- Noodezh, H.M.; Moieni, A.; Baghizadeh, A. In vitro propagation of the Damask rose (Rosa damascena Mill.). Vitr. Cell. Dev. Biol.-Plant 2012, 48, 530–538. [Google Scholar] [CrossRef]
- Kornova, K.M.; Michailova, J. Study of the in vitro rooting of Kazanlak oil-bearing rose (Rosa damascena Mill.). J. Essent. Oil Res. 1994, 6, 485–492. [Google Scholar] [CrossRef]
- Pati, P.K.; Sharma, M.; Sood, A.; Ahuja, P.S. Direct shoot regeneration from leaf explants of Rosa damascena Mill. Vitr. Cell. Dev. Biol.-Plant 2004, 40, 192–195. [Google Scholar] [CrossRef]
- Pati, P.K.; Sharma, M.; Sood, A.; Ahuja, P.S. Micropropagation of Rosa damascena and R. bourboniana in liquid cultures. In Liquid Systems for In Vitro Mass Propagation of Plants; Hvoslef-Eide, A.K., Preil, W., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2005; Volume III, pp. 373–385. [Google Scholar]
- Nak-Udom, N.; Kanchanapoom, K.; Kanchanapoom, K. Micropropagation from cultured nodal explants of rose (Rosa hybrida L. cv.‘Perfume Delight’). Songklanakarin J. Sci. Technol. 2009, 31, 583–586. [Google Scholar]
- Nizamani, F.; Nizamani, G.S.; Nizamani, M.R.; Ahmed, S.; Ahmed, N. Propagation of rose (Rosa hybrida L.) under tissue culture technique. Int. J. Biol. Res. 2016, 1, 23–27. [Google Scholar]
- Pawlicki, N.; Welander, M. Influence of carbohydrate source, auxin concentration and time of exposure on adventitious rooting of the apple rootstock Jork 9. Plant Sci. 1995, 106, 167–176. [Google Scholar] [CrossRef]
- Hasançebi, S.; Turgut Kara, N.; Çakir, Ö.; Ari, S. Micropropagation and root culture of Turkish endemic Astragalus chrysochlorus (Leguminosae). Turk. J. Bot. 2011, 35, 203–210. [Google Scholar] [CrossRef]
- Aasim, M.; Day, S.; Rezai, F.; Hajyzadeh, M.; Mahmud, S.T.; Ozcan, S. In vitro shoot regeneration from pre-conditioned explants of chickpea (Cicer arietinum L.) cv. Gokce. Afr. J. Biotechnol. 2011, 10, 2020–2023. [Google Scholar]
- Vinterhalter, D.; Grubisic, D.; Vinterhalter, B.; Konjevic, R. Light controlled root elongation in in vitro cultures of Dracaena fragrans Ker-Gawl. Plant Cell Tissue Org. Cult. 1990, 22, 1–6. [Google Scholar] [CrossRef]
- Mohamed, S.J.; Rihan, H.Z.; Aljafer, N.; Fuller, M.P. The Impact of Light Spectrum and Intensity on the Growth, Physiology, and Antioxidant Activity of Lettuce (Lactuca sativa L.). Plants 2021, 10, 2162. [Google Scholar] [CrossRef]
- Skirvin, R.M.; Chu, M.C. The effect of light quality on root development on in vitro grown miniature roses. Hortic Sci. 1984, 19, 575. [Google Scholar]
- Skirvin, R.M.; Chu, M.C.; Young, H.J. Rose. In Handbook of Plant Cell Culture; Ammirato, P.V., Sharp, W.R., Evans, D.A., Eds.; McGraw Hill Publishing Co., Ltd.: New York, NY, USA, 1990; Volume 5, pp. 716–743. [Google Scholar]
- Kumar, A.; Palni, L.M.S.; Nandi, S.K. The effect of light source and gelling agent on micropropagation of Rosa damascena Mill. and Rhynchostylis retusa (L.) Bl. J. Hortic. Sci. Biotechnol. 2003, 78, 786–792. [Google Scholar] [CrossRef]
- Pawłowska, B.; Szewczyk-Taranek, B.; Dziedzic, E.; Żupnik, M. Rooting response under LED systems in Rosa canina in vitro cultures. Acta Hortic. 2017, 1155, 519–524. [Google Scholar] [CrossRef]
- Al-Rekaby, L.S. Response of Two Rosa sp. to light quality in vitro. Iraqi J. Sci. 2023, 64, 5064–5072. [Google Scholar] [CrossRef]
- Chen, M.; Blankenship, R.E. Expanding the solar spectrum used by photosynthesis. Trends Plant Sci. 2011, 16, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.C.; Lin, C.C. Red light-emitting diode light irradiation improves root and leaf formation in difficult-to-propagate Protea cynaroides L. plantlets in vitro. HortScience 2012, 47, 1490–1494. [Google Scholar] [CrossRef]
- Budiarto, K. Spectral quality affects morphogenesis on Anthurium plantlet during in vitro culture. Agrivita 2010, 32, 234–240. [Google Scholar]
- Kurilčik, A.; Miklušytė-Čanova, R.; Dapkūnienė, S.; Žilinskaitė, S.; Kurilčik, G.; Tamulaitis, G.; Duchovskis, P.; Žukauskas, A. In vitro culture of Chrysanthemum plantlets using light-emitting diodes. Cent. Eur. J. Biol. 2008, 3, 161–167. [Google Scholar] [CrossRef]
- Bressan, P.H.; Kim, Y.J.; Hyndman, S.E.; Hasegawa, P.M.; Bressan, R.A. Factors affecting in vitro propagation of rose. J. Am. Soc. Hortic. Sci. 1982, 107, 979–990. [Google Scholar] [CrossRef]
- Thomas, T.D. The role of activated charcoal in plant tissue culture. Biotechnol. Adv. 2008, 26, 618–631. [Google Scholar] [CrossRef]
- Siddique, I.; Anis, M. In vitro shoot multiplication and plantlet regeneration from nodal explants of Cassia angustifolia (Vahl.): A medicinal plant. Acta Physiol. Plant 2007, 29, 233–238. [Google Scholar] [CrossRef]
- Druart, P.; Kevers, C.; Boxus, P.; Gaspar, T. In vitro promotion of root formation by apple shoots through darkness effect on endogenous phenols and peroxidases. Z. Pflanzen. Physiol. 1982, 108, 429–436. [Google Scholar] [CrossRef]
- Rout, G.R.; Samantaray, S.; Mottley, J.; Das, P. Biotechnology of the rose: A review of recent progress. Sci. Hortic. 1999, 81, 201–228. [Google Scholar] [CrossRef]
- Jabbarzadeh, Z.; Khosh-khui, M.; Salehi, H.; Saberivand, A. Inter simple sequence repeat (ISSR) markers as reproducible and specific tools for genetic diversity analysis of rose species. Afr. J. Biotechnol. 2010, 9, 6091–6095. [Google Scholar]
- Wu, K.; Jones, R.; Dannaeberger, L.; Scolnik, P.A. Detection of microsatellite polymorphisms without cloning. Nucleic Acids Res. 1994, 22, 3257–3258. [Google Scholar] [CrossRef] [PubMed]
- Senapati, S.K.; Aparajita, S.; Rout, G.R. An assessment of genetic fidelity of in vitro grown plantlets of rose (Rosa hybrida) through molecular markers. Afr. J. Biotechnol. 2012, 11, 16532–16538. [Google Scholar]
- Asadi, A.; Shooshtari, L. Assessment of somaclonal variation in micropropagation of Damask Rose (Rosa damascena Mill.) using molecular markers. MGj 2021, 15, 327–335. [Google Scholar]
No | Primer Code | Sequence 5′ → 3′ |
---|---|---|
1 | ISSR-UBC 818 | CACACACACACACACAG |
2 | ISSR-UBC 840 | GAGAGAGAGAGAGAGAYT |
3 | ISSR-UBC 836 | AGAGAGAGAGAGAGAGYA |
4 | ISSR-UBC 814 | CTCTCTCTCTCTCTCTCTA |
5 | ISSR-UBC 842 | GAGAGAGAGAGAGAGAYG |
Auxin Type | Concentration (mg L−1) | Rooting (%) | Number of Roots/Explant | Length of the Main Root/Explant (cm) | Fresh Weight/Explant (g) |
---|---|---|---|---|---|
Control | 0.0 | 0 f | 0.0 e | 0.0 f | 0.119 bcd |
2,4-D | 0.05 | 0 f | 0.0 e | 0.0 f | 0.091 cd |
0.1 | 22 d | 2.0 a | 0.2 f | 0.151 abc | |
0.2 | 11 e | 1.0 d | 0.2 f | 0.045 d | |
0.4 | 0 f | 0.0 e | 0.0 f | 0.075 cd | |
IAA | 0.05 | 22 d | 1.5 bc | 1.6 bc | 0.121 bcd |
0.1 | 11 e | 1.0 d | 1.0 d | 0.105 cd | |
0.2 | 22 d | 1.0 d | 0.3 ef | 0.154 abc | |
0.4 | 0 f | 0.0 e | 0.0 f | 0.104 cd | |
IBA | 0.05 | 22 d | 2.0 a | 1.1 cd | 0.130 abcd |
0.1 | 33 c | 1.3 bcd | 0.4 ef | 0.121 bcd | |
0.2 | 44 b | 1.3 cd | 0.5 ef | 0.215 a | |
0.4 | 11 e | 1.0 d | 1.7 b | 0.150 abc | |
NAA | 0.05 | 11 e | 1.0 d | 0.4 ef | 0.200 ab |
0.1 | 11 e | 2.0 a | 2.5 a | 0.121 bcd | |
0.2 | 56 a | 1.4 bcd | 0.7 de | 0.092 cd | |
0.4 | 56 a | 1.8 ab | 0.4 ef | 0.156 abc | |
p-values | |||||
Auxin type | <0.0001 *** | <0.0001 *** | <0.0001 *** | 0.0272 * | |
Auxin concentration | <0.0001 *** | <0.0001 *** | <0.0001 *** | 0.1164 NS | |
Auxin type × auxin concentration | <0.0001 *** | <0.0001 *** | <0.0001 *** | 0.1353 NS |
Medium Salt Strength | Sucrose Concentration (g L−1) | Rooting (%) | Number of Roots/Explant | Length of the Main Root/Explant (cm) | Fresh Weight/Explant (g) |
---|---|---|---|---|---|
Full strength | 20 | 0 e | 0.0 d | 0.00 b | 0.117 d |
Control (30) | 56 cd | 1.8 c | 0.70 b | 0.132 cd | |
40 | 44 d | 3.3 a | 0.75 b | 0.129 cd | |
60 | 67 c | 3.2 a | 1.00 b | 0.165 bcd | |
80 | 67 c | 3.2 a | 0.95 b | 0.141 bcd | |
Half strength | 20 | 33 d | 1.7 c | 0.65 b | 0.195 b |
30 | 33 d | 1.3 c | 0.50 b | 0.144 bcd | |
40 | 44 d | 2.0 b | 1.43 a | 0.183 b | |
60 | 78 b | 3.5 a | 1.65 a | 0.279 a | |
80 | 89 a | 3.0 ab | 1.87 a | 0.174 b | |
p-values | |||||
Medium salt strength | 0.0051 ** | 0.3479 NS | 0.0001 *** | <0.0001 *** | |
Sucrose concentration | <0.0001 *** | <0.0001 *** | 0.0020 ** | 0.0313 * | |
Medium salt strength × sucrose concentration | 0.0142 * | 0.0008 *** | 0.0735 NS | 0.0070 ** |
Sucrose Concentration (g L−1) | Light Spectra | Rooting (%) | Number of Roots/Plantlet | Length of the Main Root/Plantlet | Shoot Length (cm) | Fresh Weight/Plantlet (g) |
---|---|---|---|---|---|---|
60 | Fluorescent | 73 d | 3.56 bc | 1.29 d | 4.41 d | 0.292 d |
Cool white + warm white (1:1) | 73 d | 4.56 abc | 2.92 ab | 4.81 cd | 0.324 bc | |
Blue + red (2:1) | 83 cd | 4.77 ab | 1.38 cd | 5.13 bc | 0.332 bc | |
Blue + red (1:2) | 88 bc | 4.56 abc | 1.03 d | 4.94 bcd | 0.297 cd | |
80 | Fluorescent | 94 ab | 5.44 ab | 1.60 bcd | 5.78 a | 0.420 a |
Cool white + warm white (1:1) | 100 a | 3.11 c | 2.82 ab | 5.46 ab | 0.290 d | |
Blue + red (2:1) | 83 cd | 3.78 bc | 2.62 abc | 4.54 cd | 0.305 bcd | |
Blue + red (1:2) | 90 abc | 5.78 a | 3.69 a | 5.78 a | 0.408 a | |
p-values | ||||||
Sucrose concentrations | <0.0001 *** | 0.4272 NS | 0.0467 * | <0.0007 *** | <0.0001 *** | |
Light spectra | 0.0206 * | 0.3859 NS | <0.0014 ** | 0.1520 NS | 0.0001 *** | |
Sucrose concentrations × LEDs | <0.0001 *** | 0.0068 ** | <0.0192 * | <0.0005 *** | <0.0001 *** |
Primer Code | Total Bands | Monomorphic Bands | Polymorphic Bands | Polymorphism (%) |
---|---|---|---|---|
ISSR-UBC 818 | 9 | 9 | 0 | 0 |
ISSR-UBC 840 | 8 | 8 | 0 | 0 |
ISSR-UBC 836 | 4 | 4 | 0 | 0 |
ISSR-UBC 814 | 3 | 3 | 0 | 0 |
ISSR-UBC 842 | 4 | 3 | 1 | 25 |
Total | 28 | 27 | 1 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Ali, A.M.; Dewir, Y.H.; Al-Obeed, R.S. Micropropagation of Al-Taif Rose: Effects of Medium Constituents and Light on In Vitro Rooting and Acclimatization. Agronomy 2024, 14, 1120. https://doi.org/10.3390/agronomy14061120
Al-Ali AM, Dewir YH, Al-Obeed RS. Micropropagation of Al-Taif Rose: Effects of Medium Constituents and Light on In Vitro Rooting and Acclimatization. Agronomy. 2024; 14(6):1120. https://doi.org/10.3390/agronomy14061120
Chicago/Turabian StyleAl-Ali, Ali Mohsen, Yaser Hassan Dewir, and Rashid Sultan Al-Obeed. 2024. "Micropropagation of Al-Taif Rose: Effects of Medium Constituents and Light on In Vitro Rooting and Acclimatization" Agronomy 14, no. 6: 1120. https://doi.org/10.3390/agronomy14061120
APA StyleAl-Ali, A. M., Dewir, Y. H., & Al-Obeed, R. S. (2024). Micropropagation of Al-Taif Rose: Effects of Medium Constituents and Light on In Vitro Rooting and Acclimatization. Agronomy, 14(6), 1120. https://doi.org/10.3390/agronomy14061120