Effect of Salicylic Acid and Calcium on Growth, Yield, and Fruit Quality of Pepper (Capsicum annuum L.) Grown Hydroponically
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of Research
2.2. Plant Material and Experimental Conditions
2.3. Experiential Factors
2.4. Evaluated Parameters
2.4.1. Biometric Measurements of Plants
2.4.2. Photosynthetic Activity of Pepper Plants
2.4.3. Pepper Fruit Yield
2.4.4. Dry Matter Content and Color Measurement of the Fruit
2.4.5. Sensory Evaluation of Pepper Fruit Quality
2.5. Statistical Analysis
3. Results
3.1. Biometric Measurements of Plants
3.2. Photosynthetic Activity of Peppers
3.3. Pepper Yields
3.4. Dry Matter Content and Color Evaluation of the Fruit
3.5. Sensory Analysis of the Fruit
4. Discussion
4.1. Biometric Measurements of Plants and Yielding Peppers
4.2. Photosynthetic Activity of Peppers
4.3. Dry Matter Content, Fruit Color Evaluation, and Sensory Analysis of Fruit
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- The Plant List 2019 Capsicum. 2019. Available online: http://www.theplantlist.org/browse/A/Solanaceae/Capsicum/ (accessed on 5 January 2024).
- Mahmood, N.; Abbasi, N.A.; Hafiz, I.; Ali, I.; Zakia, S. Effect of biostimulants on growth, yield and quality of bell pepper cv. Yolo Wonder. Pak. J. Agric. Sci. 2017, 54, 311–317. [Google Scholar] [CrossRef]
- Baenas, N.; Belović, M.; Ilic, N.; Moreno, D.A.; García-Viguera, C. Industrial use of pepper [Capsicum annum L.] derived products: Technological benefits and biological advantages. Food Chem. 2019, 274, 872–885. [Google Scholar] [CrossRef]
- Arimboor, R.; Nataraja, R.B.; Menon, K.R.; Chandrasekhar, L.P.; Moorkoth, V. Red pepper [Capsicum annuum L.] carotenoids as a source of natural food colors: Analysis and stability: A review. J. Food Sci. Technol. 2015, 52, 1258–1271. [Google Scholar] [CrossRef]
- Chávez-Mendoza, C.; Sanchez, E.; Muñoz-Marquez, E.; Sida-Arreola, J.P.; Flores-Cordova, M.A. Bioactive compounds and antioxidant activity in different grafted varieties of bell pepper. Antioxidants 2015, 4, 427–446. [Google Scholar] [CrossRef] [PubMed]
- Jamiołkowska, A.; Buczkowska, H.; Thanoon, A.H. Effect of biological preparations on content of saccharides in sweet pepper fruits. Acta Sci. Pol. Hortorum Cultus 2016, 15, 65–75. [Google Scholar]
- Davey, M.W.; Montagu, M.V.; Inze, D.; Sanmartin, M.; Kanellis, A.; Smirnoff, N.; Benzie, I.J.J.; Strain, J.J.; Favell, D.; Fletcher, J. Review: Plant L-ascorbic acid: Chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. Food Agric. 2000, 80, 825–860. [Google Scholar] [CrossRef]
- Bhutia, K.; Khanna, V.; Meetei, T.; Bhutia, N. Effects of climate change on growth and development of chilli. Agrotechnology 2018, 7, 2. [Google Scholar] [CrossRef]
- Sambo, P.; Nicoletto, C.; Giro, A.; Pii, Y.; Valentinuzzi, F.; Mimmo, T.; Lugli, P.; Orzes, G.; Mazzetto, F.; Astolfi, S. Hydroponic Solutions for Soilless Production Systems: Issues and Opportunities in a Smart Agriculture Perspective. Front. Plant Sci. 2019, 10, 923. [Google Scholar] [CrossRef] [PubMed]
- Kołton, A.; Wojciechowska, R.; Leja, M. The effect of various light conditions and different nitrogen forms on nitrogen metabolism in pepper fruits. Folia Hort. 2012, 24, 153–160. [Google Scholar] [CrossRef]
- Qaryouti, M.; Osman, M.; Alharbi, A.; Voogt, W.; Abdelaziz, M.E. Using Date Palm Waste as an Alternative for Rockwool: Sweet Pepper Performance under Both Soilless Culture Substrates. Plants 2024, 13, 44. [Google Scholar] [CrossRef]
- Savvas, D.; Gruda, N. Application of soilless culture technologies in the modern greenhouse industry—A review. Eur. J. Hortic. Sci. 2018, 83, 280–293. [Google Scholar] [CrossRef]
- Sobczak, A.; Kowalczyk, K.; Gajc-Wolska, J.; Kowalczyk, W.; Niedzińska, M. Growth, Yield and Quality of Sweet Pepper Fruits Fertilized with Polyphosphates in Hydroponic Cultivation with LED Lighting. Agronomy 2020, 10, 1560. [Google Scholar] [CrossRef]
- Gilliham, M.; Dayod, M.; Hocking, B.J.; Xu, B.; Conn, S.J.; Kaiser, B.N.; Leigh, R.A.; Tyerman, S.D. Calcium delivery and storage in plant leaves: Exploring the link with water flow. J. Exp. Bot. 2011, 62, 2233–2250. [Google Scholar] [CrossRef] [PubMed]
- Hagassou, D.; Francia, E.; Ronga, D.; Buti, M. Blossom End-Rot in Tomato [Solanum Lycopersicum L.]: A Multi-Disciplinary Overview of Inducing Factors and Control Strategies. Sci. Hortic. 2019, 249, 49–58. [Google Scholar] [CrossRef]
- Marschner, P. Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: London, UK, 2012. [Google Scholar]
- Freitas, S.T.; Amarante, C.V.T.; Mitcham, E.J. Mechanisms regulating apple cultivar susceptibility to bitter pit. Sci. Hortic. 2015, 186, 54–60. [Google Scholar] [CrossRef]
- Song, W.; Yim, J.; Kurniadinata, O.F.; Wang, H.; Huang, X. Linking fruit Ca uptake capacity to fruit growth and pedicel anatomy, a cross-species study. Front. Plant Sci. 2018, 9, 575. [Google Scholar] [CrossRef]
- Khalaj, K.; Ahmadi, N.; Souri, M.K. Improvement of postharvest quality of asian pear fruits by foliar application of boron and calcium. Horticulturae 2016, 3, 15. [Google Scholar] [CrossRef]
- Marcec, M.J.; Gilroy, S.; Poovaiah, B.W.; Tanaka, K. Mutual interplay of Ca2+ and ROS signaling in plant immune response. Plant Sci. 2019, 283, 343–354. [Google Scholar] [CrossRef]
- Shabbir, R.; Javed, T.; Hussain, S.; Ahmar, S.; Naz, M.; Zafar, H. Calcium homeostasis and potential roles to combat environmental stresses in plants. S. Afr. J. Bot. 2022, 148, 683–693. [Google Scholar] [CrossRef]
- Feng, D.; Gao, Q.; Liu, J.; Tang, J.; Hua, Z.; Sun, X. Categories of exogenous substances and their effect on alleviation of plant salt stress. Eur. J. Agron. 2023, 142, 126656. [Google Scholar] [CrossRef]
- Souri, M.K.; Sooraki, F.Y.; Moghadamyar, M. Growth and quality of cucumber, tomato, and green bean under foliar and soil applications of an aminochelate fertilizer. Hort. Environ. Biotechnol. 2017, 58, 530–536. [Google Scholar] [CrossRef]
- Gomes, M.H.F.; Migliavacca, R.A.; Otto, R.; Carvalho, H.W.P.D. Physicochemical characterization of fertilizers containing concentrated suspensions of CuO, MnCO3 and ZnO. Sci. Agric. 2020, 77, e20180384. [Google Scholar] [CrossRef]
- Torres, E.; Recasens, I.; Lordan, J.; Alegre, S. Combination of strategies to supply calcium and reduce bitter pit in ‘Golden Delicious’ apples. Sci. Hortic. 2017, 217, 179–188. [Google Scholar] [CrossRef]
- Rivas-San, V.M.; Plasencia, J. Salicylic acid beyond defence: Its role in plant growth and development. J. Exp. Bot. 2011, 62, 3321–3338. [Google Scholar] [CrossRef] [PubMed]
- Sahu, G.K. Salicylic acid: Role in plant physiology and stress tolerance. In Molecular Stress Physiology of Plants; Rout, G.R., Das, A.B., Eds.; Springer: Bhubaneswar, India, 2013; pp. 217–239. [Google Scholar] [CrossRef]
- Jayakannan, M.; Bose, J.; Babourina, O.; Rengel, Z.; Shabala, S. Salicylic acid in plant salinity stress signaling and tolerance. Plant Growth Regulat. 2015, 76, 25–40. [Google Scholar] [CrossRef]
- Khan, M.I.; Fatma, M.; Per, T.S.; Anjum, N.A.; Khan, N.A. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci. 2015, 6, 462. [Google Scholar] [CrossRef]
- White, R.F. Acetylsalicylic acid [aspirin] induces resistance to tobacco mosaic virus in tobacco. Virology 1979, 99, 410–412. [Google Scholar] [CrossRef]
- Ding, P.; Ding, Y. Stories of Salicylic Acid: A Plant Defense Hormone. Trends Plant Sci. 2020, 25, 549–565. [Google Scholar] [CrossRef]
- Koo, Y.M.; Heo, A.Y.; Choi, H.W. Salicylic acid as a safe plant protector and growth regulator. Plant Pathol. J. 2020, 36, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Serna-Escolano, V.; Martínez-Romero, D.; Giménez, M.J.; Serrano, M.; García-Martínez, S.; Valero, D.; Valverde, J.M.; Zapata, P.J. Enhancing antioxidant systems by preharvest treatments with methyl jasmonate and salicylic acid leads to maintain lemon quality during cold storage. Food Chem. 2020, 338, 128044. [Google Scholar] [CrossRef] [PubMed]
- Aghaeifard, F.M.; Babalar, M.E.; Fallahi, E.; Ahmadi, A. Influence of humic acid and salicylic acid on yield. fruit quality. and leaf mineral elements of strawberry [Fragaria x Ananassa Duch.] cv. Camarosa. J. Plant Nutr. 2016, 39, 1821–1829. [Google Scholar] [CrossRef]
- Buczkowska, H.; Michalojc, Z.; Wierdak, R.N. Yield and fruit quality of sweet pepper depending on foliar application of calcium. Turk. J. Agric. For. 2016, 40, 222–228. [Google Scholar] [CrossRef]
- Ibrahim, A.; Abdel-Razzak, H.; Wahb-Allah, M.; Alenazi, M.; Alsadon, A.; Dewir, Y.H. Improvement in Growth, Yield, and Fruit Quality of Three Red Sweet Pepper Cultivars by Foliar Application of Humic and Salicylic Acids. Hort. Technology 2019, 29, 170–178. [Google Scholar] [CrossRef]
- Sobczak, A.; Kućko, A.; Pióro-Jabrucka, E.; Gajc-Wolska, J.; Kowalczyk, K. Effect of Salicylic Acid on the Growth and Development of Sweet Pepper (Capsicum annum L.) under Standard and High EC Nutrient Solution in Aeroponic Cultivation. Agronomy 2023, 13, 779. [Google Scholar] [CrossRef]
- PN-ISO 8589; Wersja Polska. Analiza Sensoryczna—Ogólne Wytyczne Dotyczące Projektowania Pracowni Analizy Sensorycznej. PKN: Warsaw, Poland, 1998.
- PNISO 11035:1999; Analiza Sensoryczna. Identyfikacja i Wybór Deskryptorów Do Ustalenia Profilu Sensorycznego z Użyciem Metod Wielowymiarowych. PKN: Warsaw, Poland, 1999.
- PN-ISO 11036:1999; Wersja Polska. Analiza Sensoryczna. Metodologia. Profilowanie Tekstury. PKN: Warsaw, Poland, 1999.
- PN-ISO 6564:1999; Wersja Polska. Analiza Sensoryczna. Metodologia. Metody Profilowania Smakowitości. PKN: Warsaw, Poland, 1999.
- Malinovsky, F.G.; Batoux, M.; Schwessinger, B.; Hyun Youn, J.; Stransfeld, L.; Win, J.; Kim, S.K.; Zipfel, C. Antagonistic regulation of growth and immunity by the Arabidopsis basic helix-loop-helix transcription factor homolog of brassinosteroid enhanced expression2 interacting with increased leaf inclination binding bHLH1. Plant Physiol. 2014, 164, 1443–1455. [Google Scholar] [CrossRef] [PubMed]
- Souri, M.K.; Hatamian, M. Aminochelates in plant nutrition; a review. J. Plant Nutr. 2019, 42, 67–78. [Google Scholar] [CrossRef]
- Val, J.; Monge, E.; Risco, D.; Blanco, A. Effect of pre-harvest calcium sprays on calcium concentrations in the skin and flesh of apples. J. Plant Nutr. 2008, 31, 1889–1905. [Google Scholar] [CrossRef]
- El-Tohamy, W.A.; Ghoname, A.A.; Abou-Hussein, S.D. Improvement of pepper growth and productivity in sandy soil by different fertilization treatments under protected cultivation. J. Appl. Sci. Res. 2006, 2, 8–12. [Google Scholar]
- Karlidag, H.; Yildirim, E.; Turan, M. Salicylic acid ameliorates the adverse effect of salt stress on strawberry. Sci. Agric. 2009, 66, 180–187. [Google Scholar] [CrossRef]
- Santner, A.; Estelle, M. Recent advances and emerging trends in plant hormone signaling. Nature 2009, 459, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Santner, A.; Calderon-Villalobos, L.I.A.; Estelle, M. Plant hormones are versatile chemical regulators of plant growth. Nat. Chem. Biol. 2009, 5, 301–307. [Google Scholar] [CrossRef]
- Wolters, H.; Jurgens, G. Survival of the flexible: Hormonal growth control and adaptation in plant development. Nat. Rev. Genet. 2009, 10, 305–317. [Google Scholar] [CrossRef] [PubMed]
- El Tayeb, M.A.; Ahmed, N.L. Response of wheat cultivars to drought and salicylic acid. Am. Eurasian J. Agron. 2010, 3, 1–7. [Google Scholar]
- Askari, E.; Ehsanzadeh, P. Effectiveness of exogenous salicylic acid on root and shoot growth attributes, productivity, and water use efficiency of water deprived fennel genotypes. Hortic. Environ. Biotechnol. 2015, 56, 687. [Google Scholar] [CrossRef]
- Gutierrez-Coronado, M.A.; Trejo-Lopez, C.; Larque-Saavedra, A. Effects of salicylic acid on the growth of roots and shoots in soybean. Plant Physiol. Biochem. 1998, 36, 563–565. [Google Scholar] [CrossRef]
- Shakirova, F.M.; Sakhabutdinova, A.R.; Bezrukova, V.; Fatkhutdinova, R.A.; Fatkhutdinova, D.R. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci. 2003, 164, 317–322. [Google Scholar] [CrossRef]
- Gunes, A.; Inal, A.; Alpaslan, M.; Eraslan, F.; Bagci, E.G.; Cicek, N. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J. Plant Physiol. 2007, 164, 728–736. [Google Scholar] [CrossRef]
- Kováčik, J.; Gruz, J.; Backor, M.; Strnad, M.; Repcak, M. Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Rep. 2009, 28, 135–143. [Google Scholar] [CrossRef]
- Kováčik, J.; Klejdus, B.; Hedbavny, J.; Bačkor, M. Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants. Ecotoxicology 2009, 18, 544–554. [Google Scholar] [CrossRef]
- Manzoor, K.; Ilyas, N.; Batool, N.; Ahmad, B.; Arshad, M. Effect of salicylic acid on the growth and physiological characteristics of maize under stress conditions. J. Chem. Soc. Pak. 2015, 37, 588–593. [Google Scholar]
- Sakhabutdinova, A.R.; Fatkhutdinova, D.R.; Bezrukova, M.V.; Shakirova, F.M. Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulg. J. Plant Physiol. 2003, 29, 314–319. [Google Scholar]
- Yildirim, E.; Ekinci, M.; Turan, M.; Dursun, A.; Kul, R.; Parlakova, F. Roles of glycine betaine in mitigating deleterious effect of salt stress on lettuce (Lactuca sativa L.). Arch. Agron. Soil Sci. 2015, 61, 1673–1689. [Google Scholar] [CrossRef]
- Souri, M.K.; Tohidloo, G. Effectiveness of different methods of salicylic acid application on growth characteristics of tomato seedlings under salinity. Chem. Biol. Technol. Agric. 2019, 6, 26. [Google Scholar] [CrossRef]
- Arfan, M.; Athar, H.R.; Ashraf, M. Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J. Plant Physiol. 2007, 164, 685–694. [Google Scholar] [CrossRef]
- Stevens, J.; Senaratna, T.; Sivasithamparam, K. Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): Associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Reg. 2006, 49, 77–83. [Google Scholar] [CrossRef]
- Haytova, D. A review of foliar fertilization of some vegetables crops. Annu. Rev. Res. Biol. 2013, 3, 455–465. [Google Scholar]
- Elwan, M.W.M.; El-Hamahmy, M.A.M. Improved productivity and quality associated with salicylic acid application in greenhouse pepper. Sci. Hortic. 2009, 122, 521–526. [Google Scholar] [CrossRef]
- Sánchez-Chávez, E.; Barrera-Tovar, R.; Muñoz-Márquez, E.; Ojeda-Barrios, D.L.; Anchondo-Nájera, A. Efecto del ácido salicílico sobre biomasa, actividad fotosintética, contenido nutricional del chile jalapeño. Rev. Chapingo Ser. Hortic. 2011, 17, 63–66. [Google Scholar] [CrossRef]
- Larqué-Saavedra, A.; Martín-Mex, R.; Nexticapan-Garcéz, A.; Vergara-Yoisura, S.; Gutiérrez-Rendón, M. Efecto del ácido salicílico en el crecimiento de plántulas de tomate (Lycopersicon esculentum Mill.). Rev. Chapingo Ser. Hortic. 2010, 16, 183–187. [Google Scholar] [CrossRef]
- Villanueva-Couoh, E.; Alcántar-González, G.; Sánchez-García, P.; Soria-Fregoso, M.; Larqué-Saavedra, A. Efecto del ácido salicílico y dimetilsulfóxido en la floración de Chrysanthemun morifolium (Ramat) Kitamura en Yucatán. Rev. Chapingo Ser. Hortic. 2009, 15, 25–31. [Google Scholar] [CrossRef]
- Martín-Mex, R.; Nexticapan-Garcéz, A.; Herrera-Tuz, R.; Vergara-Yoisura, S.; Larqué-Saavedra, A. Efecto positivo de aplicaciones de ácido salicílico en la productividad de papaya (Carica papaya). Rev. Mex. Cienc. Agric. 2012, 3, 1637–1643. [Google Scholar] [CrossRef]
- Anwar, S.; Iqbal, M.; Raza, S.H.; Iqbal, N. Eficacy of seed preconditionning with salicylic and ascorbic acid in increasing vigor of rice (Oryza sativa L.) Seedling. Pak. J. Bot. 2013, 45, 157–162. [Google Scholar]
- Hayat, S.; Fariduddin, Q.; Ali, B.; Ahmad, A. Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agron. Hung. 2005, 53, 433–437. [Google Scholar] [CrossRef]
- Tucuch-Hass, C.J.; Alcántar-González, G.; Larqué, S.A. Efecto del ácido salicílico en el crecimiento de la raíz y biomasa total de plántulas de trigo. Terra Latinoam. 2015, 33, 63–68. [Google Scholar]
- Tucuch-Haas, C.J.; Alcántar-González, G.; Volke-Haller, V.H.; Salinas-Moreno, Y.; Trejo-Téllez, L.I.; Larqué-Saavedra, A. Efecto del ácido salicílico sobre el crecimiento de raíz de plántulas de maíz. Rev. Mex. Cienc. Agric. 2016, 7, 709–716. [Google Scholar]
- Abou El-Yazied, A. Effect of foliar application of salicylic acid and chelated zinc on growth and productivity of sweet pepper (Capsicum annuum L.) under autumn planting. Res. J. Agric. Biol. Sci. 2011, 7, 423–433. [Google Scholar]
- Hanieh, A.; Mojtaba, D.; Zabihollah, Z.; Vahid, A. Effect of pre-sowing salicylic acid seed treatment on seed germination and growth of greenhouse sweet pepper plants. Indian J. Sci. Technol. 2013, 6, 3868–3871. [Google Scholar] [CrossRef]
- Waraich, E.A.; Ahmad, R.; Halim, A.; Aziz, T. Alleviation of temperature stress by nutrient management in crop plants: A review. J. Soil Sci. Plant Nutr. 2012, 12, 221–244. [Google Scholar] [CrossRef]
- Gunes, A.; Inal, A.; Alpaslan, M.; Cicek, N.; Guneri, E.; Eraslan, F.; Guzelordu, T. Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (Zea mays L.). Arch. Agron. Soil Sci. 2015, 51, 687–695. [Google Scholar] [CrossRef]
- Barkosky, R.R.; Einhellig, F.A. Effects of salicylic acid on plant water relationship. J. Chem. Ecol. 1993, 19, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Singh, A.; Kamal, A. Ameliorative effect of salicylic acid in salinity stressed Pisum sativum by improving growth parameters, activating photosynthesis and enhancing antioxidant defense system. Biosci. Biotechnol. Res. Commun. 2017, 10, 481–489. [Google Scholar] [CrossRef]
- Nooren, S.; Fatima, K.; Athar, H.U.R.; Ahmad, S.; Hussain, K. Enhancement of physio-biochemical parameters of wheat through exogenous application of salicylic acid under drought stress. J. Anim. Plant Sci. 2017, 27, 153–163. [Google Scholar]
- Nie, W.; Gong, B.; Chen, Y.; Wang, J.; Wei, M.; Shi, Q. Photosynthetic capacity, ion homeostasis and reactive oxygen metabolism were involved in exogenous salicylic acid increasing cucumber seedlings tolerance to alkaline stress. Sci. Hortic. 2018, 235, 413–423. [Google Scholar] [CrossRef]
- Tasgín, E.; Atící, Ö.; Nalbantoglu, B. Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regul. 2003, 41, 231–236. [Google Scholar] [CrossRef]
- Fung, R.W.M.; Wang, C.Y.; Smith, D.L.; Gross, K.C.; Tian, M. MeSA and MeJA increase steady-state transcript levels of alternative oxidase and resistance against chilling injury in sweet peppers (Capsicum annuum L.). Plant Sci. 2004, 166, 711–719. [Google Scholar] [CrossRef]
- Luo, Z.; Wu, X.; Xie, Y.; Chen, C. Alleviation of chilling injury and browning of postharvest bamboo shoot by salicylic acid treatment. Food Chem. 2012, 131, 456–461. [Google Scholar] [CrossRef]
- Zhang, W.P.; Jiang, B.; Lou, L.N.; Lu, M.H.; Yang, M.; Chen, J.F. Impact of salicylic acid on the antioxidant enzyme system and hydrogen peroxide production in Cucumis sativus under chilling stress. Zeitschrift für Naturforschung C 2011, 66, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Najafian, S.; Khoshkhui, M.; Tavallali, V.; Saharkhiz, M.J. Effect of salicylic acid and salinity in thyme (Thymus vulgaris L.): Investigation onchanges in Gas exchange, water relations, and membrane stabilization andbiomass accumulation. Aust. J. Basic Appl. Sci. 2009, 3, 2620–2626. [Google Scholar]
- Nazir, N.; Ashraf, M.; Ejaz, R. Genomic relationships in oilseed Brassica with respect to salt tolerance photosynthetic capacity and ion relations. Pak. J. Bot. 2001, 33, 483–501. [Google Scholar]
- Khodary, S. Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. Int. J. Agric. 2003, 8530, 179–187. [Google Scholar]
- Graham, A.W.; McDonald, G.K. Effect of zinc on photosynthesis and yield of wheat under heat stress. In Proceedings of the 10th Australian Agronomy Conference, Hobart, Tasmania, 29 January–1 February 2001. [Google Scholar]
- Horton, P.; Ruban, A.V.; Walters, R.G. Regulation of light harvesting in green plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996, 47, 655–684. [Google Scholar] [CrossRef] [PubMed]
- Baker, N.R.; Rosenqvist, E. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. J. Exp. Bot. 2004, 55, 1607–1621. [Google Scholar] [CrossRef] [PubMed]
- Prost, L.; Jeuffroy, M.H. Replacing the nitrogen nutrition index by the chlorophyll meter to assess wheat N status. Agron. Sustain. Dev. 2007, 27, 321–330. [Google Scholar] [CrossRef]
- Fayez, K.A.; Bazaid, S.A. Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. J. Saud. Soc. Agric. Sci. 2014, 13, 45–55. [Google Scholar] [CrossRef]
- Lee, S.Y.; Damodaran, P.N.; Roh, K.S. Influence of salicylic acid on rubisco and rubisco activase in tobacco plant grown under sodium chloride in vitro. Saud. J. Biol. Sci. 2014, 21, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Hayat, Q.; Hayat, S.; Irfan, M.; Ahmad, A. Effect of exogenous salicylic acid under changing environment: A review. Environ. Exp. Bot. 2010, 68, 14–25. [Google Scholar] [CrossRef]
- Natr, L.; Lawlor, D.W. Handbook of Photosynthesis; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Yousefvand, P.; Sohrabi, Y.; Heidari, G.; Weisany, W.; Mastinu, A. Salicylic Acid Stimulates Defense Systems in Allium hirtifolium Grown under Water Deficit Stress. Molecules 2022, 27, 3083. [Google Scholar] [CrossRef]
- Gong, Y.; Mattheis, J.P. Effect of ethylene and 1-methylcyclopropene on chlorophyll catabolism of broccoli florets. Plant Growth Regul. 2003, 40, 33–38. [Google Scholar] [CrossRef]
- Dobón-Suárez, A.; Giménez, M.J.; Castillo, S.; García-Pastor, M.E.; Zapata, P.J. Influence of the Phenological Stage and Harvest Date on the Bioactive Compounds Content of Green Pepper Fruit. Molecules 2021, 26, 3099. [Google Scholar] [CrossRef]
- Javaheri, M.; Mashayekhi, K.; Dadkhah, A.; Tavallaee, F.Z. Effects of salicylic acid on yield and quality characters of tomato fruit (Lycopersicum esculentum Mill.). Int. J. Agric. Crop Sci. 2012, 4, 1184–1187. [Google Scholar]
Quality Descriptor | Definition | Anchoring Points | |
---|---|---|---|
Odor | Odor of fresh pepper fruit | Odor characteristic of fresh pepper fruit | None—very intensive |
Texture | Skin hardness | Degree of force needed to bite the skin | Soft—very hard |
Flesh fibrousness | Mouthfeel of flesh homogeneity | Smooth—very fibrous | |
Flesh firmness | Degree of force needed for chewing the flesh | Soft—companies | |
Flesh juiciness | Amount of liquid released when the sample is chewed | Not very juicy | |
Flavor and taste descriptors | Typical pepper flavor | Flavor characteristic of fresh sweet pepper fruit | None—very intensive |
Sour taste | Basic taste | Not very intensive | |
Sweet taste | Basic taste | Not very intensive | |
Bitter taste | Basic taste | Not very intensive | |
Pungent flavour | Flavor which gives an impression of burning on the tongue | None—very intensive | |
Off-flavor | Untypical flavor of pepper fruit | None—very intensive | |
Overall quality | Overall quality | General sensory quality impression | Low-quality—high-quality fruit |
Overall desirability and overall taste desirability | Overall consumer quality | Highly undesirable—highly desirable |
Parameter | Cultivar | Term of Growing | Treatment | |||
---|---|---|---|---|---|---|
SA | Ca | SA + Ca | Control | |||
Weekly growth of stem [cm] | ‘Aifos’ | term 1 | 19.7 ± 1.99 ns | 20.3 ± 1.77 ns | 19.2 ± 1.77 ns | 16.8 ± 1.69 ns * |
term 2 | 19.7 ± 1.99 ns | 20.5 ± 1.76 ns | 18.2 ± 1.77 ns | 16.8 ± 1.69 ns | ||
Average | 19.8 ± 1.42 NS | 20.4 ± 1.25 NS | 18.2 ± 1.25 NS | 16.8 ± 1.20 NS | ||
‘Palermo’ | term 1 | 22.5 ± 2.05 ns | 25.3 ± 2.17 ns | 23.1 ± 1.89 ns | 20.7 ± 1.55 ns | |
term 2 | 24.6 ± 2.37 ns | 25.3 ± 2.17 ns | 23.1 ± 1.89 ns | 20.7 ± 1.55 ns | ||
Average | 23.5 ± 1.57 NS | 25.3 ± 1.53 NS | 23.1 ± 1.34 NS | 20.8 ± 1.10 NS | ||
Average | 21.7 ± 2.12 AB | 22.8 ± 1.99 A | 20.6 ± 1.85 AB | 18.8 ± 1.64 B | ||
Height of plant [cm] | ‘Aifos’ | term 1 | 142.9 ± 6.21 ns | 139.9 ± 6.00 ns | 135.6 ± 5.24 ns | 133.5 ± 5.15 ns |
term 2 | 142.4 ± 6.39 ns | 139.1 ± 6.13 ns | 134.0 ± 5.27 ns | 131.7 ± 5.15 ns | ||
Average | 142.7 ± 4.46 NS | 139.5 ± 4.29 NS | 134.8 ± 3.72 NS | 132.6 ± 3.65 NS | ||
‘Palermo’ | term 1 | 172.8 ± 6.24 ns | 170.5 ± 6.37 ns | 170.8 ± 5.87 ns | 159.2 ± 6.12 ns | |
term 2 | 171.5 ± 6.28 ns | 167.5 ± 6.37 ns | 169.7 ± 5.95 ns | 158.1 ± 6.18 ns | ||
Average | 172.1 ± 4.43 NS | 169.0 ± 4.51 NS | 170.2 ± 4.19 NS | 158.6 ± 4.36 NS | ||
Average | 157.4 ± 0.25 A | 154.3 ± 3.19 AB | 152.5 ± 2.97 AB | 145.6 ± 2.93 B | ||
No. of leaves [No./plant] | ‘Aifos’ | term 1 | 30.8 ± 1.02 a | 30.7 ± 0.97 a | 27.3 ± 0.82 ab | 27.4 ± 0.79 ab |
term 2 | 28.3 ± 1.07 ab | 27.9 ± 0.97 ab | 24.4 ± 0.82 b | 24.5 ± 0.78 b | ||
Average | 29.5 ± 0.75 A | 29.25 ± 0.69 A | 25.8 ± 0.59 B | 25.9 ± 0.57 B | ||
‘Palermo’ | term 1 | 39.0 ± 1.25 a | 37.9 ± 1.02 a | 35.3 ± 1.25 ab | 32.7 ± 1.03 bc | |
term 2 | 36.0 ± 1.23 ab | 34.9 ± 1.03 ab | 32.4 ± 0.92 bc | 29.8 ± 1.02 c | ||
Average | 37.5 ± 0.89 A | 36.4 ± 0.74 AB | 33.9 ± 0.66 BC | 31.3 ± 0.74 C | ||
Average | 33.5 ± 0.62 A | 32.8 ± 0.54 A | 29.9 ± 0.49 B | 28.6 ± 0.49 B |
Parameter | Cultivar | Leaf Stage | Treatment | |||
---|---|---|---|---|---|---|
SA | Ca | SA + Ca | Control | |||
Fs | ‘Aifos’ | 5th | 512.8 ± 18.4 bc | 582.2 ± 24.8 abc | 627.9 ± 35.4 ab | 523.8 ± 25.7 bc * |
10th | 478.6 ± 24.6 c | 495.7 ± 33.3 bc | 664.9 ± 52.6 a | 549.9 ± 27.8 abc | ||
Average | 495.7 ± 13.9 B | 538.9 ± 21.5 B | 646.4 ± 31.8 A | 536.9 ± 19.0 B | ||
‘Palermo’ | 5th | 606.6 ± 24.1 ns | 568.8 ± 27.7 ns | 755.6 ± 32.2 ns | 534.9 ± 28.6 ns | |
10th | 582.5 ± 35.1 ns | 571.2 ± 36.9 ns | 574.6 ± 32.0 ns | 553.3 ± 34.3 ns | ||
Average | 594.5 ± 21.3 NS | 569.9 ± 23.1 NS | 665.1 ± 20.0 NS | 544.1 ± 20.9 NS | ||
Average | 545.2 ± 13.4 B | 554.5 ± 15.8 B | 655.7 ± 16.7 A | 540.5 ± 14.1 B | ||
Fm | ‘Aifos’ | 5th | 2026.0 ± 63.3 ns | 2902.0 ± 110.1 ns | 2147.0 ± 76.0 ns | 2031.4 ± 86.0 ns |
10th | 2044.5 ± 100.0 ns | 2166.4 ± 121.6 ns | 2303.6 ± 81.1 ns | 2131.4 ± 90.9 ns | ||
Average | 2035.3 ± 50.9 NS | 2534.2 ± 60.1 NS | 2225.3 ± 56.4 NS | 2081.4 ± 62.9 NS | ||
‘Palermo’ | 5th | 2318.8 ± 80.5 ns | 2188.0 ± 94.0 ns | 2438.1 ± 140.0 ns | 2090.9 ± 104.3 ns | |
10th | 2251.7 ± 86.6 ns | 2287.9 ± 112.1 ns | 2162.2 ± 99.5 ns | 2122.2 ± 103.0 ns | ||
Average | 2285.2 ± 59.3 NS | 2237.9 ± 73.4 NS | 2300.1 ± 55.9 NS | 2106.6 ± 66.3 NS | ||
Average | 2160.2 ± 40.6 NS | 2386.1 ± 44.2 NS | 2262.7 ± 43.0 NS | 2094.0 ± 45.7 NS | ||
ΦPSII | ‘Aifos’ | 5th | 0.74 ± 0.00 abc | 0.73 ± 0.02 abc | 0.69 ± 0.02 c | 0.74 ± 0.01 abc |
10th | 0.76 ± 0.02 ab | 0.76 ± 0.01 a | 0.70 ± 0.02 bc | 0.74 ± 0.01 abc | ||
Average | 0.75 ± 0.00 A | 0.75 ± 0.01 A | 0.70 ± 0.02 B | 0.74 ± 0.01 A | ||
‘Palermo’ | 5th | 0.73 ± 0.01 ns | 0.73 ± 0.01 ns | 0.71 ± 0.01 ns | 0.75 ± 0.00 ns | |
10th | 0.74 ± 0.01 ns | 0.74 ± 0.01 ns | 0.73 ± 0.02 ns | 0.75 ± 0.02 ns | ||
Average | 0.73 ± 0.01 NS | 0.74 ± 0.01 NS | 0.72 ± 0.01 NS | 0.75 ± 0.00 NS | ||
Average | 0.74 ± 0.001 A | 0.75 ± 0.003 A | 0.71 ± 0.01 B | 0.75 ± 0.001 A | ||
Fv/Fm | ‘Aifos’ | 5th | 0.81 ± 0.008 abc | 0.82 ± 0.007 ab | 0.80 ± 0.006 c | 0.81 ± 0.002 bc |
10th | 0.81 ± 0.003 abc | 0.82 ± 0.003 a | 0.81 ± 0.008 abc | 0.81 ± 0.008 bc | ||
Average | 0.81 ± 0.001 B | 0.82 ± 0.008 A | 0.81 ± 0.003 B | 0.81 ± 0.005 B | ||
‘Palermo’ | 5th | 0.80 ± 0.009 ns | 0.81 ± 0.002 ns | 0.80 ± 0.001 ns | 0.80 ± 0.006 ns | |
10th | 0.80 ± 0.001 ns | 0.81 ± 0.007 ns | 0.80 ± 0.005 ns | 0.80 ± 0.04 ns | ||
Average | 0.80 ± 0.002 AB | 0.81 ± 0.002 A | 0.80 ± 0.005 B | 0.80 ± 0.002 B | ||
Average | 0.81 ± 0.006 B | 0.82 ± 0.001 A | 0.80 ± 0.003 B | 0.80 ± 0.004 B | ||
PI | ‘Aifos’ | 5th | 7.7 ± 0.33 a | 7.6 ± 0.36 ab | 7.3 ± 0.40 ab | 7.0 ± 0.30 ab |
10th | 6.9 ± 0.41 ab | 7.3 ± 0.35 ab | 6.8 ± 0.26 ab | 6.2 ± 0.33 b | ||
Average | 7.3 ± 0.25 AB | 7.4 ± 0.25 A | 7.1 ± 0.24 AB | 6.6 ± 0.23 B | ||
‘Palermo’ | 5th | 6.7 ± 0.24 ns | 6.7 ± 0.28 ns | 6.2 ± 0.28 ns | 6.4 ± 0.29 ns | |
10th | 6.2 ± 0.25 ns | 6.5 ± 0.33 ns | 5.8 ± 0.21 ns | 6.2 ± 0.37 ns | ||
Average | 6.4 ± 0.17 A | 6.6 ± 0.22 A | 6.0 ± 0.18 A | 6.3 ± 0.22 A | ||
Average | 6.9 ± 0.15 AB | 7.0 ± 0.17 A | 6.5 ± 0.15 AB | 6.4 ± 0.16 B | ||
SPAD | ‘Aifos’ | 5th | 65.4 ± 1.10 c | 64.3 ± 0.91 c | 65.7 ± 1.01 c | 64.0 ± 1.39 c |
10th | 72.2 ± 2.29 a | 71.4 ± 0.75 a | 70.8 ± 2.30 ab | 66.7 ± 0.93 bc | ||
Average | 68.8 ± 0.78 NS | 67.8 ± 0.74 NS | 66.8 ± 0.90 NS | 68.2 ± 0.72 NS | ||
‘Palermo’ | 5th | 63.2 ± 0.98 cd | 64.0 ± 1.01 cd | 66.1 ± 1.21 bc | 60.2 ± 1.13 d | |
10th | 70.9 ± 0.93 a | 70.7 ± 0.98 a | 69.8 ± 0.80 ab | 66.0 ± 2.25 bc | ||
Average | 67.0 ± 0.84 NS | 67.3 ± 0.82 NS | 65.6 ± 0.73 NS | 67.9 ± 0.81 NS | ||
Average | 67.9 ± 0.57 A | 67.6 ± 0.55 A | 68.1 ± 0.75 A | 64.2 ± 0.58 B |
Parameter | Cultivar | Term of Growing | Treatment | |||
---|---|---|---|---|---|---|
SA | Ca | Ca + SA | Control | |||
Total yield [kg/plant] | ‘Aifos’ | Term 1 | 3.0 ± 1.15 ns | 2.5 ± 1.49 ns | 2.5 ± 1.56 ns | 2.5 ± 0.83 ns * |
Term 2 | 3.0 ± 0.34 ns | 2.9 ± 2.03 ns | 3.2 ± 0.36 ns | 3.1 ± 0.81 ns | ||
Average | 3.0 ± 1.13 NS | 2.7 ± 1.77 NS | 2.8 ± 1.90 NS | 2.8 ± 1.46 NS | ||
‘Palermo’ | Term 1 | 2.8 ± 1.28 ab | 2.7 ± 0.95 ab | 2.3 ± 0.30 b | 2.1 ± 1.01 b | |
Term 2 | 3.1 ± 2.14 ab | 2.6 ± 5.41 ab | 3.8 ± 2.21 ab | 4.2 ± 1.39 a | ||
Average | 2.9 ± 2.07 NS | 2.7 ± 3.36 NS | 3.0 ± 3.01 NS | 3.2 ± 3.92 NS | ||
Average | 3.0 ± 1.11 NS | 2.7 ± 1.79 NS | 2.9 ± 1.69 NS | 3.0 ± 2.02 NS | ||
Marketable yield [kg/plant] | ‘Aifos’ | Term 1 | 2.3 ± 1.10 ab | 2.0 ± 1.71 ab | 1.7 ± 1.49 ab | 1.4 ± 1.06 b |
Term 2 | 2.5 ± 0.72 a | 2.4 ± 1.75 ab | 2.4 ± 1.65 ab | 2.3 ± 0.59 ab | ||
Average | 2.4 ± 1.10 NS | 2.2 ± 1.96 NS | 2.0 ± 2.11 NS | 1.8 ± 1.72 NS | ||
‘Palermo’ | Term 1 | 1.0 ± 0.76 abc | 1.0 ± 0.36 abc | 0.7 ± 0.72 bc | 0.3 ± 0.43 c | |
Term 2 | 1.5 ± 1.72 ab | 1.3 ± 2.58 abc | 2.1 ± 1.23 a | 2.1 ± 1.00 a | ||
Average | 1.3 ± 1.64 NS | 1.1 ± 2.00 NS | 1.4 ± 2.69 NS | 1.2 ± 3.21 NS | ||
Average | 1.8 ± 1.63 NS | 1.7 ± 1.79 NS | 1.7 ± 1.79 NS | 1.5 ± 1.87 NS | ||
Fruit with BER [kg/plant] | ‘Aifos’ | Term 1 | 0.8 ± 0.52 ab | 0.5 ± 0.77 b | 0.8 ± 0.23 ab | 1.1 ± 0.56 a |
Term 2 | 0.5 ± 0.71 b | 0.6 ± 0.36 b | 0.8 ± 0.75 ab | 0.9 ± 0.38 ab | ||
Average | 0.6 ± 0.86 B | 0.6 ± 0.64 B | 0.8 ± 1.06 AB | 1.0 ± 0.61 A | ||
‘Palermo’ | Term 1 | 1.8 ± 0.57 ns | 1.7 ± 0.88 ns | 1.6 ± 0.54 ns | 1.8 ± 0.78 ns | |
Term 2 | 1.6 ± 0.71 ns | 1.4 ± 1.81 ns | 1.7 ± 0.82 ns | 2.2 ± 0.63 ns | ||
Average | 1.7 ± 0.78 NS | 1.5 ± 1.60 NS | 1.6 ± 0.76 NS | 2.0 ± 0.94 NS | ||
Average | 1.2 ± 1.39 NS | 1.1 ± 1.43 NS | 1.2 ± 1.08 NS | 1.5 ± 1.28 NS | ||
Weight of marketable fruit [g] | ‘Aifos’ | Term 1 | 233.0 ± 2.44 ns | 237.4 ± 6.06 ns | 223.1 ± 6.59 ns | 178.7 ± 11.47 ns |
Term 2 | 226.7 ± 10.49 ns | 234.8 ± 10.30 ns | 218.4 ± 5.67 ns | 178.1 ± 3.94 ns | ||
Average | 229.9 ± 10.00 NS | 236.1 ± 9.96 NS | 220.7 ± 14.72 NS | 178.5 ± 15.20 NS | ||
‘Palermo’ | Term 1 | 144.6 ± 7.18 ns | 144.9 ± 7.08 ns | 131.5 ± 2.98 ns | 92.6 ± 12.04 ns | |
Term 2 | 148.8 ± 3.58 ns | 140.3 ± 10.44 ns | 132.4 ± 9.23 ns | 93.1 ± 2.62 ns | ||
Average | 146.7 ± 4.82 A | 142.6 ± 4.52 A | 131.9 ± 12.94 AB | 92.8 ± 7.56 B | ||
Average | 188.3 ± 13.75 NS | 189.4 ± 14.53 NS | 176.3 ± 12.66 NS | 135.7 ± 13.45 NS |
Parameter | Cultivar | Term of Growing | Treatment | |||
---|---|---|---|---|---|---|
SA | Ca | SA + Ca | Control | |||
Total yield [No./plant] | ‘Aifos’ | Term 1 | 19.5 ± 0.62 ab | 16.4 ± 0.86 ab | 17.0 ± 1.07 ab | 21.2 ± 0.28 a * |
Term 2 | 15.9 ± 0.34 ab | 12.5 ± 2.03 b | 19.6 ± 0.36 ab | 19.5 ± 0.81 ab | ||
Average | 17.7 ± 0.82 AB | 14.4 ± 1.79 B | 18.3 ± 0.97 AB | 20.4 ± 1.94 A | ||
‘Palermo’ | Term 1 | 41.9 ± 3.78 ab | 39.6 ± 1.76 ab | 42.0 ± 0.41 ab | 51.3 ± 2.00 ab | |
Term 2 | 40.1 ± 2.14 ab | 35.0 ± 5.41 b | 49.2 ± 2.21 ab | 61.2 ± 1.39 a | ||
Average | 41.0 ± 2.10 B | 37.3 ± 4.33 B | 45.6 ± 2.10 AB | 56.2 ± 3.27 A | ||
Average | 29.3 ± 3.17 NS | 25.9 ± 3.48 NS | 32.00 ± 3.39 NS | 38.3 ± 4.40 NS | ||
Marketable yield [No./plant] | ‘Aifos’ | Term 1 | 12.1 ± 0.50 ns | 11.2 ± 0.81 ns | 10.2 ± 0.91 ns | 9.8 ± 0.47 ns |
Term 2 | 12.5 ± 0.21 ns | 9.8 ± 1.52 ns | 13.1 ± 0.84 ns | 12.3 ± 0.46 ns | ||
Average | 12.3 ± 0.42 NS | 9.7 ± 1.33 NS | 11.6 ± 1.07 NS | 11.0 ± 0.66 NS | ||
‘Palermo’ | Term 1 | 12.3 ± 1.14 ab | 12.1 ± 0.47 ab | 11.0 ± 0.82 ab | 4.7 ± 0.27 b | |
Term 2 | 16.6 ± 1.61 ab | 14.7 ± 3.13 ab | 20.9 ± 1.85 a | 22.5 ± 2.59 a | ||
Average | 14.4 ± 1.79 NS | 13.4 ± 2.41 NS | 15.9 ± 2.32 NS | 13.6 ± 3.71 NS | ||
Average | 13.4 ± 0.90 NS | 11.6 ± 1.34 NS | 13.8 ± 1.29 NS | 12.3 ± 1.80 NS | ||
Fruit with BER [No./plant]. | ‘Aifos’ | Term 1 | 7.3 ± 0.73 ab | 5.2 ± 0.87 b | 6.8 ± 0.27 b | 11.5 ± 0.61 a |
Term 2 | 3.3 ± 0.53 b | 4.2 ± 0.27 b | 6.5 ± 0.57 b | 7.2 ± 0.39 ab | ||
Average | 5.3 ± 0.98 B | 4.7 ± 0.71 B | 6.7 ± 0.47 AB | 9.3 ± 0.93 A | ||
‘Palermo’ | Term 1 | 29.6 ± 2.49 bc | 27.5 ± 1.35 bc | 31.1 ± 1.09 bc | 46.6 ± 2.07 a | |
Term 2 | 23.5 ± 0.61 c | 20.4 ± 2.53 c | 28.3 ± 0.77 bc | 38.7 ± 2.03 ab | ||
Average | 26.6 ± 2.20 B | 23.9 ± 2.48 B | 29.7 ± 1.11 B | 42.6 ± 2.58 A | ||
Average | 16.0 ± 2.75 NS | 14.3 ± 2.57 NS | 18.2 ± 2.77 NS | 26.0 ± 4.13 NS |
Parameter | Cultivar | Term of Growing | Treatment | |||
---|---|---|---|---|---|---|
SA | Ca | SA + Ca | Control | |||
Dry weight [%] | ‘Aifos’ | Term 1 | 7.8 ± 0.17 b | 8.7 ± 0.24 ab | 9.6 ± 0.08 ab | 8.4 ± 0.09 ab * |
Term 2 | 8.1 ± 0.13 ab | 7.9 ± 0.25 b | 8.9 ± 0.09 a | 8.0 ± 0.03 b | ||
Average | 8.0 ± 0.13 B | 8.3 ± 0.23 AB | 8.8 ± 0.08 A | 8.2 ± 0.01 B | ||
‘Palermo’ | Term 1 | 13.2 ± 1.63 a | 10.1 ± 0.05 ab | 8.1 ± 1.36 b | 9.5 ± 0.03 ab | |
Term 2 | 9.8 ± 0.05 ab | 8.1 ± 0.14 b | 11.4 ± 0.28 ab | 11.2 ± 0.03 ab | ||
Average | 11.5 ± 1.06 NS | 9.1 ± 0.40 NS | 9.8 ± 0.97 NS | 10.3 ± 0.36 NS | ||
Average | 9.8 ± 0.74 NS | 8.7 ± 0.27 NS | 9.3 ± 0.51 NS | 9.3 ± 0.36 NS | ||
L* [lightness] | ‘Aifos’ | Term 1 | 34.4 ± 1.23 ab | 32.0 ± 0.97 ab | 32.0 ± 1.10 ab | 32.3 ± 0.63 ab |
Term 2 | 31.8 ± 0.93 a | 28.2 ± 1.94 b | 34.4 ± 1.13 a | 30.9 ± 1.12 ab | ||
Average | 32.95 ± 0.87 AB | 29.91 ± 1.32 B | 33.88 ± 0.82 A | 31.51 ± 0.72 AB | ||
‘Palermo’ | Term 1 | 32.5 ± 1.31 ns | 43.3 ± 4.92 ns | 43.3 ± 1.21 ns | 26.8 ± 1.39 ns | |
Term 2 | 29.3 ± 1.18 ns | 24.6 ± 2.88 ns | 28.3 ± 2.62 ns | 35.4 ± 2.67 ns | ||
Average | 30.71 ± 1.03 NS | 32.88 ± 4.11 NS | 28.48 ± 1.55 NS | 31.57 ± 2.15 NS | ||
Average | 31.8 ± 0.72 NS | 31.4 ± 2.18 NS | 31.2 ± 1.08 NS | 31.5 ± 1.13 NS | ||
a* [intensity of red] | ‘Aifos’ | Term 1 | 31.5 ± 0.87 cd | 30.4 ± 1.64 abc | 33.8 ± 0.85 ab | 30.4 ± 0.55 bcd |
Term 2 | 29.4 ± 1.04 abc | 28.4 ± 1.28 d | 34.2 ± 1.17 a | 29.7 ± 0.60 abcd | ||
Average | 30.3 ± 0.78 B | 29.1 ± 1.07 B | 33.9 ± 0.76 A | 30.0 ± 0.43 B | ||
‘Palermo’ | Term 1 | 31.7 ± 2.06 ns | 21.7 ± 6.81 ns | 29.4 ± 3.03 ns | 25.8 ± 1.69 ns | |
Term 2 | 26.4 ± 3.62 ns | 27.2 ± 1.16 ns | 27.2 ± 2.61 ns | 30.0 ± 2.75 ns | ||
Average | 28.7 ± 2.38 NS | 24.7 ± 3.22 NS | 28.2 ± 2.01 NS | 28.1 ± 1.83 NS | ||
Average | 29.5 ± 1.26 NS | 27.0 ± 1.78 NS | 31.1 ± 1.27 NS | 29.1 ± 0.96 NS | ||
b* [intensity of yellow] | ‘Aifos’ | Term 1 | 19.4 ± 1.05 ab | 18.6 ± 1.73 ab | 18.2 ± 1.02 ab | 15.9 ± 0.71 ab |
Term 2 | 15.8 ± 0.81 ab | 16.2 ± 0.84 b | 20.9 ± 1.03 a | 17.1 ± 1.46 ab | ||
Average | 17.4 ± 0.88 NS | 17.3 ± 0.97 NS | 19.7 ± 0.85 NS | 16.6 ± 0.9 NS | ||
‘Palermo’ | Term 1 | 20.5 ± 1.64 ab | 10.7 ± 3.90 b | 15.4 ± 0.90 ab | 13.6 ± 1.26 ab | |
Term 2 | 13.2 ± 1.97 b | 16.3 ± 1.04 ab | 16.1 ± 1.74 ab | 22.5 ± 1.91 a | ||
Average | 16.4 ± 1.78 NS | 13.9 ± 2.05 NS | 15.8 ± 1.05 NS | 18.5 ± 1.09 NS | ||
Average | 16.9 ± 0.99 NS | 15.6 ± 1.20 NS | 17.8 ± 0.82 NS | 17.6 ± 1.07 NS |
Attributes of Odor, Texture, and Taste | Cultivar | Term of Growing | Treatment | |||
---|---|---|---|---|---|---|
SA | Ca | SA + Ca | Control | |||
Odor of fresh pepper | ‘Aifos’ | Term 1 | 5.6 ± 0.47 ns | 4.4 ± 0.44 ns | 4.7 ± 0.47 ns | 4.6 ± 0.53 ns * |
Term 2 | 5.9 ± 0.38 ns | 4.7 ± 0.44 ns | 5.2 ± 0.49 ns | 4.3 ± 0.53 ns | ||
Average | 6.0 ± 0.31 A | 4.6 ± 0.31 B | 4.9 ± 0.34 AB | 4.5 ± 0.38 B | ||
‘Palermo’ | Term 1 | 4.6 ± 0.52 ns | 4.2 ± 0.68 ns | 4.7 ± 0.68 ns | 5.5 ± 0.48 ns | |
Term 2 | 3.9 ± 0.50 ns | 4.5 ± 0.68 ns | 5.7 ± 0.60 ns | 5.2 ± 0.54 ns | ||
Average | 4.0 ± 0.36 NS | 4.4 ± 0.48 NS | 5.1 ± 0.46 NS | 5.4 ± 0.36 NS | ||
Average | 4.9 ± 0.25 NS | 4.5 ± 0.29 NS | 5.0 ± 0.28 NS | 4.9 ± 0.26 NS | ||
Skin hardness | ‘Aifos’ | Term 1 | 5.8 ± 0.54 ns | 6.0 ± 0.45 ns | 5.8 ± 0.61 ns | 5.6 ± 0.33 ns |
Term 2 | 6.0 ± 0.55 ns | 6.3 ± 0.45 ns | 6.2 ± 0.68 ns | 5.3 ± 0.32 ns | ||
Average | 6.1 ± 0.38 NS | 6.2 ± 0.32 NS | 6.0 ± 0.45 NS | 5.5 ± 0.23 NS | ||
‘Palermo’ | Term 1 | 5.8 ± 0.57 ns | 4.5 ± 0.49 ns | 4.5 ± 0.76 ns | 4.9 ± 0.68 ns | |
Term 2 | 5.2 ± 0.56 ns | 4.8 ± 0.49 ns | 5.6 ± 0.72 ns | 5.0 ± 0.70 ns | ||
Average | 5.4 ± 0.40 NS | 4.7 ± 0.35 NS | 5.0 ± 0.53 NS | 5.0 ± 0.49 NS | ||
Average | 5.7 ± 0.27 NS | 5.4 ± 0.25 NS | 5.4 ± 0.36 NS | 5.2 ± 0.26 NS | ||
Flesh fibrousness | ‘Aifos’ | Term 1 | 5.9 ± 0.44 ns | 5.7 ± 0.45 ns | 6.8 ± 0.54 ns | 6.2 ± 0.39 ns |
Term 2 | 6.0 ± 0.48 ns | 6.0 ± 0.45 ns | 6.3 ± 0.49 ns | 5.9 ± 0.39 ns | ||
Average | 6.0 ± 0.32 NS | 5.9 ± 0.31 NS | 6.6 ± 0.37 NS | 6.1 ± 0.27 NS | ||
‘Palermo’ | Term 1 | 5.6 ± 0.25 ns | 5.5 ± 0.47 ns | 4.3 ± 0.45 ns | 5.3 ± 0.52 ns | |
Term 2 | 5.4 ± 0.27 ns | 5.8 ± 047 ns | 5.1 ± 0.43 ns | 4.6 ± 0.55 ns | ||
Average | 5.6 ± 0.18 NS | 5.7 ± 0.33 NS | 4.7 ± 0.32 NS | 5.0 ± 0.38 NS | ||
Average | 5.7 ± 0.19 NS | 5.7 ± 0.23 NS | 5.6 ± 0.28 NS | 5.5 ± 0.24 NS | ||
Flesh juiciness | ‘Aifos’ | Term 1 | 5.6 ± 0.46 ns | 6.0 ± 0.45 ns | 6.8 ± 0.56 ns | 6.0 ± 0.35 ns |
Term 2 | 6.0 ± 0.45 ns | 6.3 ± 0.45 ns | 6.6 ± 0.58 ns | 5.7 ± 0.35 ns | ||
Average | 5.9 ± 0.34 NS | 6.2 ± 0.34 NS | 6.7 ± 0.40 NS | 5.9 ± 0.25 NS | ||
‘Palermo’ | Term 1 | 5.9 ± 0.45 ns | 5.6 ± 0.54 ns | 3.6 ± 0.37 ns | 3.9 ± 0.44 ns | |
Term 2 | 5.5 ± 0.47 ns | 5.9 ± 0.54 ns | 4.3 ± 0.38 ns | 4.0 ± 0.47 ns | ||
Average | 5.7 ± 0.33 A | 5.8 ± 0.39 A | 3.9 ± 0.27 B | 4.0 ± 0.32 B | ||
Average | 5.7 ± 0.23 AB | 5.9 ± 0.25 A | 5.3 ± 0.30 AB | 5.0 ± 0.23 B | ||
Flesh firmness | ‘Aifos’ | Term 1 | 6.5 ± 0.52 ns | 6.6 ± 0.49 ns | 6.9 ± 0.56 ns | 7.2 ± 0.44 ns |
Term 2 | 7.2 ± 0.45 ns | 6.9 ± 0.49 ns | 6.4 ± 0.50 ns | 6.9 ± 0.44 ns | ||
Average | 6.8 ± 0.35 NS | 6.8 ± 0.34 NS | 6.7 ± 0.38 NS | 7.1 ± 0.31 NS | ||
‘Palermo’ | Term 1 | 3.6 ± 0.37 ab | 3.5 ± 0.30 ab | 2.2 ± 0.23 b | 2.5 ± 0.33 b | |
Term 2 | 3.3 ± 0.38 ab | 3.8 ± 0.30 a | 2.7 ± 0.24 ab | 2.4 ± 0.34 ab | ||
Average | 3.5 ± 0.27 A | 3.7 ± 0.21 A | 2.5 ± 0.17 B | 2.5 ± 0.22 B | ||
Average | 5.0 ± 0.30 NS | 5.2 ± 0.28 NS | 4.5 ± 0.33 NS | 4.9 ± 0.35 NS | ||
Typical pepper taste | ‘Aifos’ | Term 1 | 6.7 ± 0.36 ns | 6.3 ± 0.34 ns | 6.0 ± 0.18 ns | 6.2 ± 0.33 ns |
Term 2 | 7.0 ± 0.37 ns | 6.6 ± 0.34 ns | 6.3 ± 0.20 ns | 5.9 ± 0.30 ns | ||
Average | 7.0 ± 0.26 A | 6.5 ± 0.24 AB | 6.2 ± 0.14 AB | 6.1 ± 0.21 B | ||
‘Palermo’ | Term 1 | 6.7 ± 0.47 ns | 6.0 ± 0.36 ns | 6.7 ± 0.37 ns | 6.9 ± 0.30 ns | |
Term 2 | 6.2 ± 0.44 ns | 6.3 ± 0.36 ns | 7.5 ± 0.36 ns | 6.7 ± 0.36 ns | ||
Average | 6.4 ± 0.33 NS | 6.2 ± 0.26 NS | 7.2 ± 0.27 NS | 6.9 ± 0.24 NS | ||
Average | 6.6 ± 0.21 NS | 6.3 ± 0.18 NS | 6.6 ± 0.16 NS | 4.4 ± 0.17 NS | ||
Sour taste | ‘Aifos’ | Term 1 | 3.5 ± 0.45 ns | 3.5 ± 0.52 ns | 4.2 ± 0.56 ns | 3.4 ± 0.49 ns |
Term 2 | 4.1 ± 0.45 ns | 3.8 ± 0.52 ns | 4.6 ± 0.61 ns | 3.3 ± 0.48 ns | ||
Average | 3.8 ± 0.32 NS | 3.7 ± 0.37 NS | 4.4 ± 0.41 NS | 3.3 ± 0.35 NS | ||
‘Palermo’ | Term 1 | 1.7 ± 0.25 ns | 1.6 ± 0.33 ns | 2.2 ± 0.44 ns | 3.0 ± 0.57 ns | |
Term 2 | 1.6 ± 0.26 ns | 1.9 ± 0.33 ns | 2.8 ± 0.44 ns | 2.6 ± 0.45 ns | ||
Average | 1.7 ± 0.18 NS | 1.8 ± 0.24 NS | 2.5 ± 0.32 NS | 2.8 ± 0.37 NS | ||
Average | 2.6 ± 0.23 NS | 2.7 ± 0.25 NS | 3.4 ± 0.29 NS | 3.0 ± 0.26 NS | ||
Sweet taste | ‘Aifos’ | Term 1 | 3.9 ± 0.51 ns | 3.6 ± 0.53 ns | 3.6 ± 0.57 ns | 4.3 ± 0.50 ns |
Term 2 | 3.5 ± 0.46 ns | 3.9 ± 0.53 ns | 3.8 ± 0.56 ns | 4.0 ± 0.50 ns | ||
Average | 3.7 ± 0.35 NS | 3.8 ± 0.38 NS | 3.8 ± 0.40 NS | 4.2 ± 0.36 NS | ||
‘Palermo’ | Term 1 | 6.7 ± 0.50 ns | 6.5 ± 0.57 ns | 5.9 ± 0.44 ns | 5.8 ± 0.54 ns | |
Term 2 | 6.6 ± 0.47 ns | 6.8 ± 0.57 ns | 6.4 ± 0.49 ns | 5.8 ± 0.62 ns | ||
Average | 6.7 ± 0.35 NS | 6.7 ± 0.40 NS | 6.1 ± 0.33 NS | 5.9 ± 0.41 NS | ||
Average | 5.3 ± 0.31 NS | 5.2 ± 0.33 NS | 4.9 ± 0.30 NS | 4.9 ± 0.28 NS | ||
Bitter taste | ‘Aifos’ | Term 1 | 0.5 ± 0.28 ns | 0.7 ± 0.28 ns | 0.1 ± 0.07 ns | 0.8 ± 0.28 ns |
Term 2 | 0.3 ± 0.10 ns | 0.7 ± 0.28 ns | 0.2 ± 0.08 ns | 0.8 ± 0.28 ns | ||
Average | 0.3 ± 0.16 B | 0.7 ± 0.20 AB | 0.2 ± 0.06 B | 0.9 ± 0.20 A | ||
‘Palermo’ | Term 1 | 0.3 ± 0.31 ns | 0.5 ± 0.32 ns | 0.0 ± 0.05 ns | 0.1 ± 0.07 ns | |
Term 2 | 0.6 ± 0.41 ns | 0.5 ± 0.32 ns | 0.1 ± 0.05 ns | 0.1 ± 0.07 ns | ||
Average | 0.7 ± 0.26 NS | 0.5 ± 0.22 NS | 0.1 ± 0.04 NS | 0.2 ± 0.05 NS | ||
Average | 0.4 ± 0.16 AB | 0.6 ± 0.15 A | 0.1 ± 0.04 B | 0.5 ± 0.12 AB | ||
Pungent flavor | ‘Aifos’ | Term 1 | 1.1 ± 0.39 ns | 0.9 ± 0.25 ns | 0.9 ± 0.35 ns | 0.5 ± 0.17 ns |
Term 2 | 1.4 ± 0.44 ns | 0.9 ± 0.25 ns | 1.1 ± 0.39 ns | 0.5 ± 0.16 ns | ||
Average | 1.3 ± 0.30 NS | 0.9 ± 0.18 NS | 1.1 ± 0.26 NS | 0.6 ± 0.12 NS | ||
‘Palermo’ | Term 1 | 0.4 ± 0.17 ns | 0.5 ± 0.19 ns | 0.8 ± 0.27 ns | 0.8 ± 0.30 ns | |
Term 2 | 0.5 ± 0.16 ns | 1.0 ± 0.19 ns | 1.0 ± 0.29 ns | 1.0 ± 0.32 ns | ||
Average | 0.5 ± 0.12 NS | 0.6 ± 0.13 NS | 1.0 ± 0.19 NS | 1.0 ± 0.22 NS | ||
Average | 0.8 ± 0.16 NS | 0.7 ± 0.11 NS | 1.0 ± 0.16 NS | 0.7 ± 0.12 NS | ||
Overall quality | ‘Aifos’ | Term 1 | 6.9 ± 0.19 ns | 6.9 ± 0.28 ns | 7.3 ± 0.24 ns | 7.2 ± 0.23 ns |
Term 2 | 7.2 ± 0.18 ns | 7.2 ± 0.28 ns | 7.4 ± 0.26 ns | 6.9 ± 0.23 ns | ||
Average | 7.1 ± 0.13 NS | 7.1 ± 0.20 NS | 7.4 ± 0.18 NS | 7.1 ± 0.16 NS | ||
‘Palermo’ | Term 1 | 7.0 ± 0.27 ns | 6.6 ± 0.25 ns | 6.4 ± 0.43 ns | 6.8 ± 0.34 ns | |
Term 2 | 6.5 ± 0.26 ns | 6.9 ± 0.24 ns | 7.2 ± 0.24 ns | 6.4 ± 0.33 ns | ||
Average | 6.7 ± 0.19 NS | 6.8 ± 0.18 NS | 6.8 ± 0.26 NS | 6.7 ± 0.24 NS | ||
Average | 6.9 ± 0.16 NS | 6.9 ± 0.14 NS | 7.0 ± 0.12 NS | 6.9 ± 0.12 NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobczak, A.; Pióro-Jabrucka, E.; Gajc-Wolska, J.; Kowalczyk, K. Effect of Salicylic Acid and Calcium on Growth, Yield, and Fruit Quality of Pepper (Capsicum annuum L.) Grown Hydroponically. Agronomy 2024, 14, 329. https://doi.org/10.3390/agronomy14020329
Sobczak A, Pióro-Jabrucka E, Gajc-Wolska J, Kowalczyk K. Effect of Salicylic Acid and Calcium on Growth, Yield, and Fruit Quality of Pepper (Capsicum annuum L.) Grown Hydroponically. Agronomy. 2024; 14(2):329. https://doi.org/10.3390/agronomy14020329
Chicago/Turabian StyleSobczak, Anna, Ewelina Pióro-Jabrucka, Janina Gajc-Wolska, and Katarzyna Kowalczyk. 2024. "Effect of Salicylic Acid and Calcium on Growth, Yield, and Fruit Quality of Pepper (Capsicum annuum L.) Grown Hydroponically" Agronomy 14, no. 2: 329. https://doi.org/10.3390/agronomy14020329
APA StyleSobczak, A., Pióro-Jabrucka, E., Gajc-Wolska, J., & Kowalczyk, K. (2024). Effect of Salicylic Acid and Calcium on Growth, Yield, and Fruit Quality of Pepper (Capsicum annuum L.) Grown Hydroponically. Agronomy, 14(2), 329. https://doi.org/10.3390/agronomy14020329