An Assessment of Plant Growth and Soil Properties Using Coal Char and Biochar as a Soil Amendment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Amendment Materials
2.3. Heavy Metals Tests in CC and BC
2.4. Soil Amendment Materials Characterization
2.5. Field Experiment and Materials Application
2.6. Grass Mix and Biomass Measurement
2.7. Soil Sampling and Analysis
2.8. Data Analysis
3. Results and Discussion
3.1. Heavy Metals in Coal Char and Biochar
3.2. Characterization of CC, BC, and Manure
3.3. Soil Chemical Properties
3.4. Plant Growth and Weather Conditions
3.4.1. Rainfall and Air Temperature at the Experimental Site
3.4.2. Grass Biomass Productivity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Subehia, S.K.; Sepehya, S.; Rana, S.S.; Negi, S.C.; Sharma, S.K. Long-term effect of organic and inorganic fertilizers on rice (Oryza sativa L.)-wheat (Triticum aestivum L.) yield, and chemical properties of an acidic soil in the western himalayas. Exp. Agric. 2013, 49, 382–394. [Google Scholar] [CrossRef]
- Koehler, F.E.; Halvorson, A.R. Long-term acidification of farmland in northern idaho and eastern washington. Commun. Soil Sci. Plant Anal. 1985, 16, 83–95. [Google Scholar]
- Ajayi, A.E.; Horn, R. Biochar-Induced Changes in Soil Resilience: Effects of Soil Texture and Biochar Dosage. Pedosphere 2017, 27, 236–247. [Google Scholar] [CrossRef]
- Neves, E.G.; Petersen, J.B.; Bartone, R.N.; Heckenberger, M.J. The timing of Terra Preta formation in the Central Amazon: Archaeological data from three Sites. In Amazonian Dark Earths: Explorations in Space and Time; Springer: Berlin/Heidelberg, Germany, 2004; pp. 125–134. [Google Scholar]
- Hunt, J.; Duponte, M.; Sato, D.; Kawabata, A. The Basics of Biochar: A Natural Soil Amendment. Soil Crop Manag. 2010, 30, 1–6. [Google Scholar]
- Sombroek, W.; Ruivo, M.L.; Fearnside, P.; Glaser, B.; Lehmann, J. Amazonian Dark Earths as a carbon stores and sinks. In Amazonian Dark Earths; Springer: Dordrecht, The Netherlands, 2003; pp. 125–139. [Google Scholar]
- Sohi, S.P.; Bol, R. Global Change and Forest Soils: Global Change and Forest Soils; Busse, M., Giardina, C., Morris, D., Page-Dumroese, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 36, pp. 3–510. [Google Scholar]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. A Future for Biochar in Vermont. Biochar for Environmental Management: Science and Technology. Burlington, VT, USA, November 2009. Available online: https://www.academia.edu/2552771/Biochar_for_environmental_management_science_and_technology (accessed on 29 December 2023).
- Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’Neill, B.; Skjemstad, J.O.; Thies, J.; Luizão, F.J.; Petersen, J.; et al. Black Carbon Increases Cation Exchange Capacity in Soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730. [Google Scholar] [CrossRef]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A review of biochar and its use and function in soil. Adv. Agron. 2010, 105, 47–82. [Google Scholar]
- Burrell, L.D.; Zehetner, F.; Rampazzo, N.; Wimmer, B.; Soja, G. Long-term effects of biochar on soil physical properties. Geoderma 2016, 282, 96–102. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Soil Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Mattila, T.; Grönroos, J.; Judl, J.; Korhonen, M.R. Is biochar or straw-bale construction a better carbon storage from a life cycle perspective? Process Saf. Environ. Prot. 2012, 90, 452–458. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and Soil Physical Properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef]
- Jien, S.H.; Wang, C.S. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena 2013, 110, 225–233. [Google Scholar] [CrossRef]
- Meyer, S.; Glaser, B.; Quicker, P. Technical, economical, and climate-related aspects of biochar production technologies: A literature review. Environ. Sci. Technol. 2011, 45, 9473–9483. [Google Scholar] [CrossRef] [PubMed]
- Howaniec, N. The effects of pressure on coal chars porous structure development. Fuel 2016, 172, 118–123. [Google Scholar] [CrossRef]
- Solomon, P.R.; Serio, M.A.; Suuberg, E.M. Coal pyrolysis: Experiments, kinetic rates and mechanisms. Prog. Energy Combust. Sci. 1992, 18, 133–220. [Google Scholar] [CrossRef]
- Zajusz-Zubek, E.; Konieczyński, J. Dynamics of trace elements release in a coal pyrolysis process. Fuel 2003, 82, 1281–1290. [Google Scholar] [CrossRef]
- Matsuoka, K.; Akiho, H.; Xu, W.C.; Gupta, R.; Wall, T.F.; Tomita, A. The physical character of coal char formed during rapid pyrolysis at high pressure. Fuel 2005, 84, 63–69. [Google Scholar] [CrossRef]
- Serio, M.A.; Hamblen, D.G.; Markham, J.R.; Solomon, P.R. Kinetics of Volatile Product Evolution in Coal Pyrolysis: Experiment and Theory. Energy Fuels 1987, 1, 138–152. [Google Scholar] [CrossRef]
- Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Li, R.; Zhang, Z. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121. [Google Scholar] [CrossRef]
- Maharjan, B.; Panday, D.; Blanco-Canqui, H.; Mikha, M.M. Potential amendments for improving productivity of low carbon semiarid soil. Agros. Geosci. Environ. 2021, 4, e20171. [Google Scholar] [CrossRef]
- Chang, C.Y.; Yu, H.Y.; Chen, J.J.; Li, F.B.; Zhang, H.H.; Liu, C.P. Accumulation of heavy metals in leaf vegetables from agricultural soils and associated potential health risks in the Pearl River Delta, South China. Environ. Monit. Assess. 2014, 186, 1547–1560. [Google Scholar] [CrossRef]
- Gebeyehu, H.R.; Bayissa, L.D. Levels of heavy metals in soil and vegetables and associated health risks in Mojo area, Ethiopia. PLoS ONE 2020, 15, e0227883. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.; Malik, R.N. Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arab. J. Chem. 2014, 7, 91–99. [Google Scholar] [CrossRef]
- Sharma, S.; Nagpal, A.K.; Kaur, I. Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar wetland, Punjab, India and its environs. Food Chem. 2018, 255, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Samburova, V.; Zielinska, B.; Khlystov, A. Do 16 Polycyclic Aromatic Hydrocarbons Represent PAH Air Toxicity? Toxics 2017, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Odinga, E.S.; Zhang, W.; Zhou, X.; Yang, B.; Waigi, M.G.; Gao, Y. Polyaromatic hydrocarbons in biochars and human health risks of food crops grown in biochar-amended soils: A synthesis study. Environ. Int. 2019, 130, 104899. [Google Scholar] [CrossRef] [PubMed]
- Hong, B.D.; Slatick, E.R. Carbon Dioxide Emission Factors for Coal. U.S. Energy Information Administration, Quarterly Coal Report. 1994. Available online: https://www.eia.gov/coal/production/quarterly/co2_article/co2.html (accessed on 12 May 2021).
- Atwood, M.T.; Schulman, B.L. Toscoal Process—Pyrolysis of Western Coals and Lignites for Char and Oil Production. Am. Chem. Soc. Div. Fuel Chem. Prep. 1977, 22, 233–252. [Google Scholar]
- Rogovska, N.; Laird, D.; Cruse, R.; Fleming, P.; Parkin, T.; Meek, D. Impact of Biochar on Manure Carbon Stabilization and Greenhouse Gas Emissions. Soil Sci. Soc. Am. J. 2011, 75, 871–879. [Google Scholar] [CrossRef]
- Climate in Lingle Wyoming. Available online: https://www.bestplaces.net/climate/city/wyoming/lingle (accessed on 13 May 2021).
- Classification of Examined Soils in WRB and USDA soil Taxonomy. Available online: https://warnercnr.colostate.edu/wpcontent/uploads/sites/2/2017/09/2012MOR2_AM_MSRM_Classification_Soils_Sergelen_Eng.pdf (accessed on 15 January 2024).
- U.S. EPA. Method 6020B (SW-846): Inductively Coupled Plasma-Mass Spectrometry, Revision 2. Washington, DC, USA, 2014. Available online: https://www.epa.gov/esam/epa-method-6020b-sw-846-inductively-coupled-plasma-mass-spectrometry (accessed on 19 January 2024).
- U.S. EPA. Method 7471B (SW-846): Mercury in Solid or Semisolid Wastes (Manual Cold-Vapor Technique). Available online: https://www.epa.gov/esam/epa-method-7471b-sw-846-mercury-solid-or-semisolid-wastes-manual-cold-vapor-technique (accessed on 19 January 2024).
- Chen, W.; Yang, Y.; Fu, K.; Zhang, D.; Wang, Z. Progress in ICP-MS analysis of minerals and heavy metals in traditional medicine. Front. Pharmacol. 2022, 13, 891273. [Google Scholar] [CrossRef]
- U.S. EPA. Method 3050B: Acid Digestion of Sediments, Sludges, and Soils, Revision 2. Washington, DC, USA, 1996. Available online: https://www.epa.gov/esam/epa-method-3050b-acid-digestion-sediments-sludges-and-soils (accessed on 19 January 2024).
- U.S. EPA. Method 6010D (SW-846): Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). Available online: https://www.epa.gov/hw-sw846/sw-846-test-method-6010d-inductively-coupled-plasma-optical-emission-spectrometry-icp-oes (accessed on 20 January 2024).
- Aller, D.; Bakshi, S.; Laird, D.A. Modified method for proximate analysis of biochars. J. Analyt. Appl. Pyrolysis 2017, 124, 335–342. [Google Scholar] [CrossRef]
- ASTM Standard D4373: Standard Test Method for Rapid Determination of Carbonate Content of Soils. Available online: https://www.astm.org (accessed on 28 January 2024).
- CSU SWPT Lab Protocols, Soil Test Interpretation. Available online: https://agsci.colostate.edu/divi-soiltestinglab/wp-content/uploads/sites/140/2023/02/Soil-Test-Interpretation.pdf (accessed on 20 January 2024).
- ICH Guideline Q3D (R1) on Elemental Impurities. European Medicines Agency, 2019. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use_en-32.pdf (accessed on 12 November 2023).
- Cooper, J.; Greenberg, I.; Ludwig, B.; Hippich, L.; Fischer, D.; Glaser, B.; Kaiser, M. Effect of biochar and compost on soil properties and organic matter in aggregate size fractions under field conditions. Agric. Ecosyst. Environ. 2020, 295, 106882. [Google Scholar] [CrossRef]
- Dong, X.; Guan, T.; Li, Q.; Lin, Q.; Zhao, X. Long-term effects of biochar amount on the content and composition of organic matter in soil aggregates under field conditions. J. Soils Sediments 2016, 16, 1481–1497. [Google Scholar] [CrossRef]
- LaBarge, G.; Lindsey, L. Interpreting a Soil Test Report; AGF-514; The Ohio State University: Columbus, OH, USA, 2012. [Google Scholar]
- Apori, S.O.; Byalebeka, J.; Murongo, M.; Ssekandi, J.; Noel, G.L. Effect of co-applied corncob biochar with farmyard manure and NPK fertilizer on tropical soil. Resour. Environ. Sustain. 2021, 5, 100034. [Google Scholar] [CrossRef]
- Lehmann, J.; Kuzyakov, Y.; Pan, G.; OK, Y.S. Biochars and the plant-soil interface. Plant Soil 2015, 395, 1–5. [Google Scholar] [CrossRef]
- Chen, H.X.; Du, Z.L.; Guo, W.; Zhang, Q.Z. Effects of biochar amendment on cropland soil bulk density, cation exchange capacity, and particulate organic matter content in the North China plain. Appl. Ecol. 2011, 22, 2930–2934. [Google Scholar]
- Obia, A.; Cornelissen, G.; Mulder, J.; Dörsch, P. Effect of soil pH increase by biochar on NO, N2O and N2 production during denitrification in acid soils. PLoS ONE 2015, 10, e0138781. [Google Scholar] [CrossRef]
- Thapa, R.B. Use of Pyrolyzed Coal as a Soil Amendment: Effect on Plant Growth, Crop Yield, and Soil Properties. Ph.D. Thesis, University of Wyoming, Laramie, WY, USA, August 2023. [Google Scholar]
- Smith, J.L.; Doran, J.W. Measurement and use of pH and electrical conductivity for soil quality analysis. Methods Assess. Soil Qual. 1997, 49, 169–182. [Google Scholar]
- Yang, X.; Hu, Z.; Xie, Z.; Li, S.; Sun, X.; Ke, X.; Tao, M. Low soil C:N ratio results in accumulation and leaching of nitrite and nitrate in agricultural soils under heavy rainfall. Pedosphere 2023, 33, 865–879. [Google Scholar] [CrossRef]
- Nair, D.; Baral, K.R.; Abalos, D.; Storbel, B.W.; Petersen, S.O. Nitrate leaching and nitrous oxide emissions from maize after grass-clover on a coarse sandy soil: Mitigation potentials of 3,4-dimethylpyrazole phosphate (DMPP). J. Environ. Manag. 2020, 260, 110165. [Google Scholar] [CrossRef]
- Antoniadis, V.; Koutroubas, S.D.; Fotiadis, S. Nitrogen, Phosphorus, and Potassium Availability in Manure-and Sewage Sludge–Applied Soil. Commun. Soil Sci. Plant Anal. 2015, 46, 393–404. [Google Scholar] [CrossRef]
- Shi, W.; Ju, Y.; Bian, R.; Li, L.; Joseph, S.; Mitchell, D.R.; Munroe, P.; Taherymoosavi, S.; Pan, G. Biochar bound urea boosts plant growth and reduces nitrogen leaching. Sci. Total Environ. 2019, 701, 134421. [Google Scholar] [CrossRef]
- Hagemann, N.; Joseph, S.; Schmidt, H.P.; Kammann, C.I.; Harter, J.; Borch, T.; Young, R.B.; Varga, K.; Taherymoosavi, S.; Elliott, K.W.; et al. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nat. Commun. 2017, 8, 1089. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Wei, Q.; Gou, J. Biochar enhances the retention capacity of nitrogen fertilizer and affects the diversity of nitrifying functional microbial communities in karst soil of southwest China. Ecotoxicol. Environ. Saf. 2021, 226, 112819. [Google Scholar] [CrossRef]
- Gherardi, L.A.; Sala, O.E. Effect of interannual precipitation variability on dryland productivity: A global synthesis. Glob. Change Biol. 2019, 25, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Glob. Change 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Kelpie, W. How Biochar Works in Soil. Biochar J. 2014, 32, 25–33. [Google Scholar]
- Galinato, S.P.; Yoder, J.K.; Granatstein, D. The economic value of biochar in crop production and carbon sequestration. Energy Policy 2011, 39, 6344–6350. [Google Scholar] [CrossRef]
Soil Properties | pH (1:1) | EC (mmhos cm−1) | OM (%) | NO3−N mg kg−1 | P mg kg−1 | K mg kg−1 |
---|---|---|---|---|---|---|
7.9 | 0.8 | 1.4 | 26.6 | 8.3 | 186.5 |
Heavy Metals | Maximum Permissible Level in Soils (mg kg−1) | Levels in Coal Char (mg kg−1) | Levels in Biochar (mg kg−1) |
---|---|---|---|
Arsenic (As) | 20 | 1.2 | 20 |
Cadmium (Cd) | 3 | Nd | 2 |
Lead (Pb) | 100 | 2 | 7 |
Zinc (Zn) | 300 | 7 | 529 |
Copper (Cu) | 100 | 14 | 24.3 |
Manganese (Mn) | 2000 | 22 | 1.4 |
Chromium (Cr) | 100 | 5 | Na |
Nickel (Ni) | 50 | 6 | 4 |
Cobalt (Co) | 50 | 2 | 1 |
Selenium (Se) | 10 | Nd | Na |
Iron (Fe) | 50,000 | 3650 | 2.6 |
Mercury (Hg) | ≤0.03 | Nd | Na |
Properties | Coal Char | Biochar | Manure |
---|---|---|---|
Moisture% | 4.42 | 23.8 | 30.31 |
Ash% | 16.72 | 8.3 | Na |
Organic C% | 78.86 | 83.8 | 42.36 |
Organic N (mg kg−1) | 9300 | 6700 | 10,100 |
NH4+N (mg kg−1) | 10 | 10 | 60 |
NO3−N (mg kg−1) | <10 | <10 | 2500 |
P (mg kg−1) | 1700 | 800 | 21,200 |
K (mg kg−1) | 500 | 8900 | 27,700 |
S (mg kg−1) | 4700 | 3900 | 4500 |
Year | Treatments | OM | CEC | pH | EC | NO3−N | P | K |
---|---|---|---|---|---|---|---|---|
(%) | (meq/100 g) | (1:1) | mmhos cm−1 | ………… mg kg−1 ………………… | ||||
2019 | Control | 1.37 ± 0.3 d | 0.79 ± 0.2 d | 7.83 ± 0.1 ab | 0.8 ± 0.1 ab | 48.00 ± 8 ab | 7.8 ± 1.3 c | 177 ± 17 e |
M | 1.43 ± 0.2 cd | 0.83 ± 0.1 d | 7.97 ± 0.1 a | 0.57 ± 0.1 b | 40.46 ± 0.6 ab | 9.4 ± 0.4 bc | 226 ± 32.9 cde | |
CC650 | 1.67 ± 0.2 bcd | 1.2 ± 0.1 bcd | 8.00 ± 0.1 a | 0.57 ± 0.2 b | 31.73 ± 9.2 b | 7.57 ± 1.4 c | 184 ± 37.4 de | |
CC650M | 2.37 ± 0.6 ab | 1.64 ± 0.1 ab | 7.90 ± 0.0 ab | 0.70 ± 0.0 b | 37.17 ± 2.3 ab | 17.8 ± 4.8 ab | 342 ± 74.3 a | |
CC750 | 2.23 ± 0.3 abcd | 1.30 ± 0.2 abc | 7.97 ± 0.0 a | 0.57 ± 0.0 b | 35.6 ± 8.7 b | 7.57 ± 1.1 c | 239 ± 24 bcde | |
CC750M | 2.93 ± 0.4 a | 1.70 ± 0.3 a | 7.9 ± 0.1 ab | 0.63 ± 0.1 b | 33.67 ± 9.5 b | 20.43 ± 1.8 a | 280 ± 21.9 abcd | |
CC800 | 2.10 ± 0.3 abcd | 1.22 ± 0.2 bcd | 7.93 ± 0.1 a | 0.67 ± 0.1 b | 41.7 ± 6 ab | 6.73 ± 0.7 c | 193 ± 34.6 de | |
CC800M | 2.30 ± 0.1 abc | 1.33 ± 0.1 abc | 7.7 ± 0.1 b | 1.07 ± 0.3 a | 68.20 ± 18.3 a | 24.67 ± 5.9 a | 322 ± 8.9 abc | |
BC | 1.6 ± 0.1 bcd | 0.93 ± 0.1 cd | 7.87 ± 0.1 ab | 0.73 ± 0.1 ab | 48.77 ± 13.4 ab | 8.37 ± 0.8 c | 248 ± 22 abcde | |
BCM | 1.87 ± 0.1 bcd | 1.08 ± 0.1 cd | 8.03 ± 0.0 a | 0.67 ± 0.0 b | 40.13 ± 2.5 ab | 18.1 ± 4.1 a | 327 ± 18.4 ab | |
2020 | Control | 1.53 ± 0.2 e | 0.89 ± 0.1 e | 7.97 ± 0.1 b | 0.33 ± 0.0 ab | 3.40 ± 1.8 ab | 7.03 ± 0.8 bc | 180.7 ± 6.1 c |
M | 1.73 ± 0.2 cde | 1.01 ± 0.1 cde | 8.13 ± 0.0 a | 0.30 ± 0.0 ab | 2.33 ± 1.1 ab | 9.83 ± 1.1 bbc | 232.1 ± 36.4 bc | |
CC650 | 1.97 ± 0.0 cde | 1.14 ± 0.0 cde | 8.1 ± 0.1 ab | 0.30 ± 0.1 ab | 1.8 ± 1.2 ab | 6.83 ± 1.2 bc | 172.4 ± 17 c | |
CC650M | 2.63 ± 0.2 a | 1.53 ± 0.1 a | 8.03 ± 0.1 ab | 0.33 ± 0.0 ab | 3.87 ± 2.1 ab | 14.07 ± 1.9 a | 311.8 ± 32.9 a | |
CC750 | 2.50 ± 0.2 ab | 1.45 ± 0.1 ab | 8.03 ± 0.0 ab | 0.33 ± 0.0 ab | 2.23 ± 0.9 ab | 7.63 ± 1.3 bc | 234.3 ± 23.3 bc | |
CC750M | 2.07 ± 0.2 bcd | 1.2 ± 0.1 bcd | 8.10 ± 0.0 ab | 0.30 ± 0.0 ab | 1.37 ± 1.3 ab | 10.37 ± 0.5 abc | 241.1 ± 18.5 abc | |
CC800 | 2.17 ± 0.1 bc | 1.26 ± 0.1 bc | 8.07 ± 0.0 ab | 0.30 ± 0.0 ab | 1.97 ± 0.8 ab | 5.67 ± 0.1 c | 189.7 ± 31.4 c | |
CC800M | 2.17 ± 0.1 bc | 1.26 ± 0.0 bc | 8.07 ± 0.1 ab | 0.40 ± 0.0 a | 1.93 ± 0.5 ab | 14.2 ± 2.3 a | 291.6 ± 40.6 ab | |
BC | 1.70 ± 0.2 de | 0.99 ± 0.1 de | 8.10 ± 0.0 ab | 0.27 ± 0.1 b | 0.57 ± 0.5 b | 8.57 ± 2.9 abc | 287.7 ± 18.8 bc | |
BCM | 2.0 ± 0.0 cd | 1.16 ± 0.0 cd | 8.10 ab | 0.30 ± 0.0 ab | 5.57 ± 3.1 a | 10.37 ± 3.3 ab | 330.3 ± 28.3 ab |
Treatments | Aboveground Dry Grass Biomass (g m−2) | ||
---|---|---|---|
2018 | 2019 | 2020 | |
Control | 99.8 ± 27.6 c | 216.5 ± 17.2 c | 98.6 ± 39.0 b |
M | 161.1 ± 74 abc | 247 ± 27 abc | 105.7 ± 67 b |
CC650 | 100.6 ± 51.1 c | 240.3 ± 45.2 bc | 135.6 ± 91.1 ab |
CC650M | 194.2 ± 57.6 a | 307.1 ± 25.6 a | 198.3 ± 41.3 a |
CC750 | 134.1 ± 33.2 abc | 238.0 ± 34.7 abc | 138.9 ± 78.0 ab |
CC750M | 146.0 ± 51.1 abc | 249.8 ± 40.6 abc | 114.0 ± 35.4 b |
CC800 | 115.2 ± 55.6 bc | 219.1 ± 41.2 c | 144.2 ± 74.6 ab |
CC800M | 164.5 ± 50.6 abc | 268.4 ± 37.2 abc | 112.4 ± 47.7 b |
BC | 147.1 ± 50.1 abc | 251.0 ± 45.1 abc | 126.0 ± 51.8 ab |
BCM | 188.8 ± 63.5 ab | 292.6 ± 55.7 ab | 150.3 ± 30.6 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thapa, R.B.; Coupal, R.H.; Dangi, M.B.; Stahl, P.D. An Assessment of Plant Growth and Soil Properties Using Coal Char and Biochar as a Soil Amendment. Agronomy 2024, 14, 320. https://doi.org/10.3390/agronomy14020320
Thapa RB, Coupal RH, Dangi MB, Stahl PD. An Assessment of Plant Growth and Soil Properties Using Coal Char and Biochar as a Soil Amendment. Agronomy. 2024; 14(2):320. https://doi.org/10.3390/agronomy14020320
Chicago/Turabian StyleThapa, Resham B., Roger H. Coupal, Mohan B. Dangi, and Peter D. Stahl. 2024. "An Assessment of Plant Growth and Soil Properties Using Coal Char and Biochar as a Soil Amendment" Agronomy 14, no. 2: 320. https://doi.org/10.3390/agronomy14020320
APA StyleThapa, R. B., Coupal, R. H., Dangi, M. B., & Stahl, P. D. (2024). An Assessment of Plant Growth and Soil Properties Using Coal Char and Biochar as a Soil Amendment. Agronomy, 14(2), 320. https://doi.org/10.3390/agronomy14020320