Herbicide Applications Reduce Gaseous N Losses: A Field Study of Three Consecutive Wheat–Maize Rotation Cycles in the North China Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Experimental Herbicides
2.2. Experimental Design
2.3. Sample Test Method
2.3.1. Ammonia Measurement
2.3.2. Denitrification Measurement
2.3.3. Inorganic N and Meteorological Parameter Measurements
2.4. Statistical Analysis
3. Results
3.1. Environmental Conditions and Temporal Variations in the Inorganic N Concentrations during the Experimental Process
3.2. Temporal Variations and Cumulative NH3 Volatilizations in the Soil
3.3. Temporal Variations and Cumulative N Loss via Denitrification in the Soil
4. Discussion
4.1. Herbicides Reduced NH3 Volatilization from Soil
4.2. Herbicides Reduced N Loss via Soil Denitrification
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kawakami, E.M.; Oosterhuis, D.M.; Snider, J.L. Nitrogen Assimilation and Growth of Cotton Seedlings under N a C l Salinity and in Response to Urea Application with NBPT and DCD. J. Agron. Crop Sci. 2013, 199, 106–117. [Google Scholar] [CrossRef]
- Diao, B.; Ding, L.; Su, P.; Cheng, J. The Spatial-Temporal Characteristics and Influential Factors of NOx Emissions in China: A Spatial Econometric Analysis. Int. J. Environ. Res. Public Health 2018, 15, 1405. [Google Scholar] [CrossRef]
- Pan, Y.; Tian, S.; Zhao, Y.; Zhang, L.; Zhu, X.; Gao, J.; Huang, W.; Zhou, Y.; Song, Y.; Zhang, Q. Identifying Ammonia Hotspots in China Using a National Observation Network. Environ. Sci. Technol. 2018, 52, 3926–3934. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Li, B.; Xiong, Z. Nitrification Inhibitors Mitigated Reactive Gaseous Nitrogen Intensity in Intensive Vegetable Soils from China. Sci. Total Environ. 2018, 612, 480–489. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Averyt, K.; Marquis, M. Climate Change 2007-the Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4, ISBN 0521705967. [Google Scholar]
- Tian, Z.; Wang, J.J.; Liu, S.; Zhang, Z.; Dodla, S.K.; Myers, G. Application Effects of Coated Urea and Urease and Nitrification Inhibitors on Ammonia and Greenhouse Gas Emissions from a Subtropical Cotton Field of the Mississippi Delta Region. Sci. Total Environ. 2015, 533, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Behera, S.N.; Sharma, M.; Aneja, V.P.; Balasubramanian, R. Ammonia in the Atmosphere: A Review on Emission Sources, Atmospheric Chemistry and Deposition on Terrestrial Bodies. Environ. Sci. Pollut. Res. 2013, 20, 8092–8131. [Google Scholar] [CrossRef]
- Salazar, F.; Martínez-Lagos, J.; Alfaro, M.; Misselbrook, T. Ammonia Emission from a Permanent Grassland on Volcanic Soil after the Treatment with Dairy Slurry and Urea. Atmos. Environ. 2014, 95, 591–597. [Google Scholar] [CrossRef]
- He, T.; Liu, D.; Yuan, J.; Ni, K.; Zaman, M.; Luo, J.; Lindsey, S.; Ding, W. A Two Years Study on the Combined Effects of Biochar and Inhibitors on Ammonia Volatilization in an Intensively Managed Rice Field. Agric. Ecosyst. Environ. 2018, 264, 44–53. [Google Scholar] [CrossRef]
- Cycoń, M.; Wójcik, M.; Borymski, S.; Piotrowska-Seget, Z. Short-Term Effects of the Herbicide Napropamide on the Activity and Structure of the Soil Microbial Community Assessed by the Multi-Approach Analysis. Appl. Soil Ecol. 2013, 66, 8–18. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, Z.; Teng, Y.; Christie, P.; Wang, J.; Ren, W.; Luo, Y.; Li, Z. Non-Target Effects of Repeated Chlorothalonil Application on Soil Nitrogen Cycling: The Key Functional Gene Study. Sci. Total Environ. 2016, 543, 636–643. [Google Scholar] [CrossRef]
- Fernández-Naveira, A.; Rioboo, C.; Cid, A.; Herrero, C. Atrazine Induced Changes in Elemental and Biochemical Composition and Nitrate Reductase Activity in Chlamydomonas Reinhardtii. Eur. J. Phycol. 2016, 51, 338–345. [Google Scholar] [CrossRef]
- Pampulha, M.E.; Oliveira, A. Impact of an Herbicide Combination of Bromoxynil and Prosulfuron on Soil Microorganisms. Curr. Microbiol. 2006, 53, 238–243. [Google Scholar] [CrossRef]
- Singh, P.; Nepalia, V.; Tomar, S.S. Effect of Herbicides and Fertilizer Levels on Soil Dehydrogenase and Urease Activity under Soybean (Glycine Max) Cultivation. Indian J. Agric. Sci. 2008, 78, 51. [Google Scholar]
- Zabalza, A.; Royuela, M. Inducing Hypoxic Stress Responses by Herbicides That Inhibit Amino Acid Biosynthesis. In Low-Oxygen Stress in Plants: Oxygen Sensing and Adaptive Responses to Hypoxia; Springer: Berlin/Heidelberg, Germany, 2013; pp. 381–394. [Google Scholar]
- Rahman, M.M.; Khanom, A.; Biswas, S.K. Effect of Pesticides and Chemical Fertilizers on the Nitrogen Cycle and Functional Microbial Communities in Paddy Soils: Bangladesh Perspective. Bull. Environ. Contam. Toxicol. 2021, 106, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Xu, M.; Li, X.; Zhang, H.; Zhang, C. Effects of Chlorimuron-Ethyl Application with or without Urea Fertilization on Soil Ammonia-Oxidizing Bacteria and Archaea. J. Hazard. Mater. 2013, 260, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Baishya, K. Impact of Agrochemicals Application on Soil Quality Degradation-A Review. Int. J. Sci. Technol. Manag. 2015, 4, 220–228. [Google Scholar]
- Su, X.; Wang, Y.; Peng, G.; He, Q. Long-Term Effects of Chlorothalonil on Microbial Denitrification and N2O Emission in a Tea Field Soil. Environ. Sci. Pollut. Res. 2020, 27, 17370–17381. [Google Scholar] [CrossRef]
- Kucharski, J.; Bacmaga, M.; Wyszkowska, J. Effect of Herbicides on the Course of Ammonification in Soil. J. Elem. 2009, 14, 477–487. [Google Scholar] [CrossRef]
- Narain Rai, J.P. Effects of Long-Term 2,4-D Application on Microbial Populations and Biochemical Processes in Cultivated Soil. Biol. Fertil. Soils 1992, 13, 187–191. [Google Scholar] [CrossRef]
- Chen, J.; Yang, W.; Li, J.; Anwar, S.; Wang, K.; Yang, Z.; Gao, Z. Effects of Herbicides on the Microbial Community and Urease Activity in the Rhizosphere Soil of Maize at Maturity Stage. J. Sensors 2021, 2021, 6649498. [Google Scholar] [CrossRef]
- Li, X.; Sørensen, P.; Olesen, J.E.; Petersen, S.O. Evidence for Denitrification as Main Source of N2O Emission from Residue-Amended Soil. Soil Biol. Biochem. 2016, 92, 153–160. [Google Scholar] [CrossRef]
- Peralta, A.L.; Johnston, E.R.; Matthews, J.W.; Kent, A.D. Abiotic Correlates of Microbial Community Structure and Nitrogen Cycling Functions Vary within Wetlands. Freshw. Sci. 2016, 35, 573–588. [Google Scholar] [CrossRef]
- Deeb, M.; Groffman, P.M.; Joyner, J.L.; Lozefski, G.; Paltseva, A.; Lin, B.; Mania, K.; Cao, D.L.; McLaughlin, J.; Muth, T. Soil and Microbial Properties of Green Infrastructure Stormwater Management Systems. Ecol. Eng. 2018, 125, 68–75. [Google Scholar] [CrossRef]
- Hu, X.; Wang, Y.; Su, X.; Chen, Y. Acute Response of Soil Denitrification and N2O Emissions to Chlorothalonil: A Comprehensive Molecular Mechanism. Sci. Total Environ. 2018, 636, 1408–1415. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Nahar, K.; Ali, M.M.; Sultana, N.; Karim, M.M.; Adhikari, U.K.; Rauf, M.; Azad, M.A.K. Effect of Long-Term Pesticides and Chemical Fertilizers Application on the Microbial Community Specifically Anammox and Denitrifying Bacteria in Rice Field Soil of Jhenaidah and Kushtia District, Bangladesh. Bull. Environ. Contam. Toxicol. 2020, 104, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Zhang, J.; Fang, Y.; Zheng, X.; Zhang, Y.; Chen, D. Impact of Herbicide 2, 4-Dichlorophenoxyacetic Acid Butyl Ester on Soil Nitrogen-Transforming Bacterial Populations in Two Soils. Int. J. Agric. Biol. 2017, 19, 812. [Google Scholar] [CrossRef]
- Teng, Y.; Zhang, M.; Yang, G.; Wang, J.; Christie, P.; Luo, Y. Successive Chlorothalonil Applications Inhibit Soil Nitrification and Discrepantly Affect Abundances of Functional Genes in Soil Nitrogen Cycling. Environ. Sci. Pollut. Res. 2017, 24, 3562–3571. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, J. Possible Trajectories of Agricultural Cropping Systems in China from 2011 to 2050. Am. J. Clim. Chang. 2013, 2, 37296. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Mu, Y.; Pei, S.; Lun, X.; Chai, F. Emissions of Nitrous Oxide, Nitrogen Oxides and Ammonia from a Maize Field in the North China Plain. Atmos. Environ. 2011, 45, 2956–2961. [Google Scholar] [CrossRef]
- Kan, Z.; Liu, Q.; He, C.; Jing, Z.; Virk, A.L.; Qi, J.; Zhao, X.; Zhang, H. Responses of Grain Yield and Water Use Efficiency of Winter Wheat to Tillage in the North China Plain. F. Crop. Res. 2020, 249, 107760. [Google Scholar] [CrossRef]
- Wang, Z.H.; Liu, X.J.; Ju, X.T.; Zhang, F.S. In Situ determination of ammonia volatilization in field soil—Ventilation method. J. Plant Nutr. Fertil. 2002, 8, 205–209. [Google Scholar]
- Ding, H.; Zheng, X.; Zhang, Y.; Zhang, J.; Chen, D. Gaseous Losses of Fertilizer Nitrogen from a Citrus Orchard in the Red Soil Hilly Region of Southeast China. Soil Sci. Plant Nutr. 2017, 63, 419–425. [Google Scholar] [CrossRef]
- Müller, C.; Sherlock, R.R.; Williams, P.H. Field Method to Determine N2O Emission from Nitrification and Denitrification. Biol. Fertil. Soils 1998, 28, 51–55. [Google Scholar]
- Zhang, F.; Qiao, Z.; Yao, C.; Sun, S.; Liu, W.; Wang, J. Effects of the Novel HPPD-Inhibitor Herbicide QYM201 on Enzyme Activity and Microorganisms, and Its Degradation in Soil. Ecotoxicology 2021, 30, 80–90. [Google Scholar] [CrossRef]
- Šantric, L.; Radivojevic, L.; Gajic-Umiljendic, J.; Saric-Krsmanovic, M.; Ðurovic-Pejcev, R. The Effects of Nicosulfuron and Glyphosate on Microbial Activity of Different Soils. Planta Daninha 2018, 36, e018159989. [Google Scholar] [CrossRef]
- Baćmaga, M.; Kucharski, J.; Wyszkowska, J.; Tomkiel, M.; Borowik, A. Response Of Actinomycetes, Phosphatases And Urease To Soil Contamination with Herbicides. Ecol. Chem. Eng. S 2015, 22, 255–267. [Google Scholar] [CrossRef]
- Singh, A.; Ghoshal, N. Impact of Herbicide and Various Soil Amendments on Soil Enzymes Activities in a Tropical Rainfed Agroecosystem. Eur. J. Soil Biol. 2013, 54, 56–62. [Google Scholar] [CrossRef]
- Shan, L.; He, Y.; Chen, J.; Huang, Q.; Wang, H. Ammonia Volatilization from a Chinese Cabbage Field under Different Nitrogen Treatments in the Taihu Lake Basin, China. J. Environ. Sci. 2015, 38, 14–23. [Google Scholar] [CrossRef] [PubMed]
- San Francisco, S.; Urrutia, O.; Martin, V.; Peristeropoulos, A.; Garcia-Mina, J.M. Efficiency of Urease and Nitrification Inhibitors in Reducing Ammonia Volatilization from Diverse Nitrogen Fertilizers Applied to Different Soil Types and Wheat Straw Mulching. J. Sci. Food Agric. 2011, 91, 1569–1575. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Fu, X. Immobilization of Urease on Dialdehyde Porous Starch. Starch-Stärke 2010, 62, 652–657. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, H.; Powlson, D.; Min, J.; Shi, W. Rice Production, Nitrous Oxide Emission and Ammonia Volatilization as Impacted by the Nitrification Inhibitor 2-Chloro-6-(Trichloromethyl)-Pyridine. Field Crops Res. 2015, 173, 1–7. [Google Scholar] [CrossRef]
- Hu, J.-Y.; Zhen, Z.-H.; Deng, Z.-B. Simultaneous Determination of Acetochlor and Propisochlor Residues in Corn and Soil by Solid Phase Extraction and Gas Chromatography with Electron Capture Detection. Bull. Environ. Contam. Toxicol. 2011, 86, 95–100. [Google Scholar] [CrossRef]
- Chen, X.; Yu, S.; Han, L.; Sun, S.; Zhi, Y.; Li, W. Residues and Dissipation of the Herbicide Fenoxaprop-p-Ethyl and Its Metabolite in Wheat and Soil. Bull. Environ. Contam. Toxicol. 2011, 87, 50–53. [Google Scholar] [CrossRef]
- Ghoshdastidar, A.J.; Tong, A.Z. Treatment of 2,4-D, Mecoprop, and Dicamba Using Membrane Bioreactor Technology. Environ. Sci. Pollut. Res. 2013, 20, 5188–5197. [Google Scholar] [CrossRef]
- Liao, R.; Miao, Y.; Li, J.; Li, Y.; Wang, Z.; Du, J.; Li, Y.; Li, A.; Shen, H. Temperature Dependence of Denitrification Microbial Communities and Functional Genes in an Expanded Granular Sludge Bed Reactor Treating Nitrate-Rich Wastewater. RSC Adv. 2018, 8, 42087–42094. [Google Scholar] [CrossRef]
- Li, L.; Wang, M.; Hatano, R.; Hashidoko, Y. Effects of Methyl Viologen Dichloride and Other Chemicals on Nitrous Oxide (N2O) Emission and Repression by Pseudomonad Denitrifiers Isolated from Corn Farmland Soil in Hokkaido, Japan. J. Pestic. Sci. 2014, 39, 115–120. [Google Scholar] [CrossRef]
- Das, S.; Ghosh, A.; Adhya, T.K. Nitrous Oxide and Methane Emission from a Flooded Rice Field as Influenced by Separate and Combined Application of Herbicides Bensulfuron Methyl and Pretilachlor. Chemosphere 2011, 84, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Leoz, B.; Garbisu, C.; Charcosset, J.-Y.; Sánchez-Pérez, J.M.; Antigüedad, I.; Ruiz-Romera, E. Non-Target Effects of Three Formulated Pesticides on Microbially-Mediated Processes in a Clay-Loam Soil. Sci. Total Environ. 2013, 449, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Banks, M.L.; Kennedy, A.C.; Kremer, R.J.; Eivazi, F. Soil Microbial Community Response to Surfactants and Herbicides in Two Soils. Appl. Soil Ecol. 2014, 74, 12–20. [Google Scholar] [CrossRef]
Herbicide Varieties | Active Ingredients (Dosage Form) | Factories | The Practical Dosage |
---|---|---|---|
Acetochlor | 50% (EC) | Hangzhou Qingfeng Agrochemical Co., Ltd. (Hangzhou, China) | 2400 g hm−2 |
2,4-Dichlorophenoxyacetic acid | 57% (EC) | Shandong Shengbang Lvye Chemical Co., Ltd. (Jinan, China) | 750 mL hm−2 |
Fenoxaprop-ethyl | 69 g L−1 (EC) | Bayer CropScience (China) Co., Ltd. (Hangzhou, China) | 750 mL hm−2 |
Dicamba | 180 g L−1 (EC) | Shanghai Hongbang Chemical Co., Ltd. (Shanghai, China) | 375 mL hm−2 |
Time/Year–Month–Day | Growth Period and Farmland Management | |||
---|---|---|---|---|
Year 2013–2014 | Year 2014–2015 | Year 2015–2016 | ||
Maize season | 16 June 2013 | 8 June 2014 | 7 June 2015 | Sowing and apply base fertilizer (60 kg N hm−2). |
17 June 2013 | 9 June 2014 | 8 June 2015 | Except for the CK and CN treatments, the other treatments were sprayed with herbicides according to the dosage in Table 1. | |
26 July 2013 | 21 July 2014 | 21 July 2015 | Top dressing (90 kg N hm−2). | |
17 September 2013 | 21 September 2014 | 18 September 2015 | Harvest | |
Wheat season | 14 October 2013 | 17 October 2014 | 17 October 2015 | Sowing and apply base fertilizer (120 kg N hm−2). |
17 November 2013 | 17 November 2014 | 11 November 2015 | Except for the CK and CN treatments, the other treatments were sprayed with herbicides according to the dosage in Table 1. | |
2 March 2014 | 14 March 2015 | 10 March 2016 | Top dressing (105 kg N hm−2). | |
31 May 2014 | 25 May 2015 | 25 May 2016 | Harvest. |
Treatment | CK | CN | AC-FE | 2,4D-DI |
---|---|---|---|---|
Soil Temperature | −0.067 | 0.140 | 0.159 | 0.060 |
Soil Moisture | −0.006 | 0.150 | 0.083 | 0.088 |
NH4+-N | 0.382 * | 0.478 ** | 0.355 * | 0.441 ** |
NO3−-N | −0.208 | −0.111 | 0.069 | −0.022 |
Crop | Treatment | Ammonia Volatilization | Denitrification | ||||
---|---|---|---|---|---|---|---|
Gross Loss (kg N hm−2) | Nitrogen Fertilizer Loss (kg N hm−2) | % of Applied Fertilizer N | Gross Loss (kg N hm−2) | Nitrogen Fertilizer Loss (kg N hm−2) | % of Applied Fertilizer N | ||
Summer maize | CK | 30.56 ± 0.70 dC | 6.72 ± 1.15 cC | ||||
CN | 54.30 ± 2.24 aA | 23.74 | 5.28 | 17.52 ± 2.94 aA | 10.80 | 2.40 | |
AC | 50.11 ± 0.43 bB | 19.55 | 4.34 | 11.54 ± 0.73 bB | 4.82 | 1.07 | |
2,4D | 47.89 ± 0.86 cB | 17.33 | 3.85 | 12.10 ± 2.03 bB | 5.38 | 1.20 | |
Winter wheat | CK | 36.08 ± 0.78 bB | 1.35 ± 0.19 bB | ||||
CN | 47.41 ± 1.80 aA | 11.32 | 1.68 | 2.90 ± 0.59 aA | 1.71 | 0.25 | |
FE | 46.10 ± 2.62 aA | 10.02 | 1.48 | 3.08 ± 0.22 aA | 1.98 | 0.29 | |
DI | 46.46 ± 2.25 aA | 10.38 | 1.54 | 2.48 ± 0.59 aA | 1.17 | 0.17 | |
Wheat–maize | CK | 66.64 ± 1.35 cC | 8.07 ± 1.29 cC | ||||
CN | 101.71 ± 3.08 aA | 35.07 | 3.12 | 20.42 ± 2.68 aA | 12.51 | 1.11 | |
AC-FE | 96.21 ± 2.98 bAB | 29.57 | 2.63 | 14.62 ± 0.66 bB | 6.81 | 0.60 | |
2,4D-DI | 94.35 ± 2.46 bB | 27.71 | 2.46 | 14.58 ± 1.53 bB | 6.55 | 0.58 |
Treatment | CK | CN | AC-FE | 2,4D-DI |
---|---|---|---|---|
Soil Temperature | 0.675 ** | 0.659 ** | 0.653 ** | 0.659 ** |
Soil Moisture | 0.441 ** | 0.478 ** | 0.489 ** | 0.491 ** |
NH4+-N | −0.019 | −0.035 | −0.088 | −0.049 |
NO3−-N | 0.189 * | −0.081 | −0.159 | −0.101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Zou, C.; Wang, Y.; Qin, S.; Ding, H.; Zhang, Y. Herbicide Applications Reduce Gaseous N Losses: A Field Study of Three Consecutive Wheat–Maize Rotation Cycles in the North China Plain. Agronomy 2024, 14, 283. https://doi.org/10.3390/agronomy14020283
Zheng X, Zou C, Wang Y, Qin S, Ding H, Zhang Y. Herbicide Applications Reduce Gaseous N Losses: A Field Study of Three Consecutive Wheat–Maize Rotation Cycles in the North China Plain. Agronomy. 2024; 14(2):283. https://doi.org/10.3390/agronomy14020283
Chicago/Turabian StyleZheng, Xiangzhou, Chenyi Zou, Yasa Wang, Shuping Qin, Hong Ding, and Yushu Zhang. 2024. "Herbicide Applications Reduce Gaseous N Losses: A Field Study of Three Consecutive Wheat–Maize Rotation Cycles in the North China Plain" Agronomy 14, no. 2: 283. https://doi.org/10.3390/agronomy14020283
APA StyleZheng, X., Zou, C., Wang, Y., Qin, S., Ding, H., & Zhang, Y. (2024). Herbicide Applications Reduce Gaseous N Losses: A Field Study of Three Consecutive Wheat–Maize Rotation Cycles in the North China Plain. Agronomy, 14(2), 283. https://doi.org/10.3390/agronomy14020283