Douro Vineyards: A Perspective for the Valorization and Conservation of Grapevine Genetic Resources
Abstract
:1. Introduction
2. Cultivated Grapevines, Varieties, and Economical Value
3. Main Diseases and Pests
4. V. vinifera Genetics
Genetic Enhancement
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Prata-Sena, M.; Castro-Carvalho, B.M.; Nunes, S.; Amaral, B.; Silva, P. The Terroir of Port Wine: Two Hundred and Sixty Years of History. Food Chem. 2018, 257, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Instituto dos Vinhos do Douro e Porto (IDPV). Characteristics of the Region. Available online: https://www.ivdp.pt/en/viticulture/region/characteristics-of-the-region/ (accessed on 17 May 2023).
- Lourenço-Gomes, L.; Pinto, L.M.C.; Rebelo, J. Wine and Cultural Heritage. The Experience of the Alto Douro Wine Region. Wine Econ. Policy 2015, 4, 78–87. [Google Scholar] [CrossRef]
- Santos, J.A.; Malheiro, A.C.; Karremann, M.K.; Pinto, J.G. Statistical Modelling of Grapevine Yield in the Port Wine Region under Present and Future Climate Conditions. Int. J. Biometeorol. 2011, 55, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Cunha, M.; Richter, C. The Impact of Climate Change on the Winegrape Vineyards of the Portuguese Douro Region. Clim. Chang. 2016, 138, 239–251. [Google Scholar] [CrossRef]
- Jones, G.V.; Reid, R.; Vilks, A. Climate, Grapes, and Wine: Structure and Suitability in a Variable and Changing Climate. In The Geography of Wine; Dougherty, P., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 109–133. [Google Scholar] [CrossRef]
- Jones, G.V.; Alves, F. Impact of Climate Change on Wine Production: A Global Overview and Regional Assessment in the Douro Valley of Portugal. Int. J. Glob. Warm. 2012, 4, 383. [Google Scholar] [CrossRef]
- Moutinho-Pereira, J.M.; Correia, C.M.; Çonçalves, B.M.; Bacelar, E.A.; Torres-Pereira, J.M. Leaf Gas Exchange and Water Relations of Grapevines Grown in Three Different Conditions. Photosynthetica 2004, 42, 81–86. [Google Scholar] [CrossRef]
- Mateus, N.; Machado, J.M.; De Freitas, V. Development Changes of Anthocyanins in Vitis Vinifera Grapes Grown in the Douro Valley and Concentration in Respective Wines. J. Sci. Food Agric. 2002, 82, 1689–1695. [Google Scholar] [CrossRef]
- Oliveira, M.T.; Sousa, T.A. Organic Acids and Sugars in Musts of Irrigated Grapevines in Northeast Portugal. J. Wine Res. 2009, 20, 1–13. [Google Scholar] [CrossRef]
- Grainger, K.; Tattersall, H. Wine Production and Quality; John Wiley and Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Neirynck, B. The Grapes of Wine: The Fine Art of Growing Grapes and Making Wine; Quare One: New York, NY, USA, 2009. [Google Scholar]
- Jackson, R.S. Wiine Science: Principles and Applications, 3rd ed.; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Mateus, N.; Proença, S.; Ribeiro, P.; Machado, J.M.; De Freitas, V. Grape and wine polyphenolic composition of red Vitis Vinifera varieties concerning vineyard altitude composición polifenólica de uvas Y vino de variedades tintas de Vitis Vinifera en función de la altitude del viñedo composición polifenólica de uvas e viño de variedades tintas de Vitis Vinifera en función da altitude do viñedo. Cienc. Tecnol. Aliment. 2001, 3, 102–110. [Google Scholar] [CrossRef]
- Arroyo-García, R.; Ruiz-García, L.; Bolling, L.; Ocete, R.; López, M.A.; Arnold, C.; Ergul, A.; Söylemezoğlu, G.; Uzun, H.I.; Cabello, F.; et al. Multiple Origins of Cultivated Grapevine (Vitis Vinifera L. Ssp. Sativa) Based on Chloroplast DNA Polymorphisms. Mol. Ecol. 2006, 15, 3707–3714. [Google Scholar] [CrossRef]
- Reisch, B.I.; Owens, C.L.; Cousins, P.S. Grape. In Fruit Breeding; Badenes, M., Bryne, D., Eds.; Springer: Boston, MA, USA, 2012; Volume 8, pp. 225–262. [Google Scholar] [CrossRef]
- Keller, M. The Science of Grapevines: Anatomy and Physiology; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar] [CrossRef]
- Kaeppler, S.M.; Kaeppler, H.F.; Rhee, Y. Epigenetic Aspects of Somaclonal Variation in Plants. Plant Mol. Biol. 2000, 43, 179–188. [Google Scholar] [CrossRef]
- Smith, S.A.; Donoghue, M.J. Rates of Molecular Evolution Are Linked to Life History in Flowering Plants. Science 2008, 322, 86–89. [Google Scholar] [CrossRef]
- Guichard, F.; Pereira, G.M.; Guimarães, D.; Peixoto, F.; Almeida, A.R.; Lopes, T.S.; Sandeman, G.; Carvalho, M. O Vinho Do Porto; Instituto do Vinho do Porto: Porto, Portugal, 2003. [Google Scholar]
- Robinson, J.; Harding, J.; Vouillamoz, J. Wine Grapes: A Complete Guide to 1368 Vine Varieties, Including Their Origins and Flavours; Penguin: London, UK, 2013. [Google Scholar]
- Böhm, J. O Grande Livro Das Castas; Chaves Ferreira Publicações: Lisboa, Portugal, 2007. [Google Scholar]
- Mayson, R. Port and the Douro; Infinite Ideas: Abingdon, UK, 2018. [Google Scholar]
- VINHA All about Wine. Tinto Cão. Available online: https://www.vinha.pt/wikivinha/section/casta-vinho/tinto-cao/ (accessed on 25 May 2023).
- Pl@nt Grape. Tinta Barroca. Available online: http://plantgrape.plantnet-project.org (accessed on 25 May 2023).
- Maçanita Vinhos. Tinta Amarela. Available online: https://www.antoniomacanita.com/pt/tudo-sobre-vinhos/guia-de-castas/tinta-amarela (accessed on 25 May 2023).
- Infovini. Viosinho. Available online: http://www.infovini.com/classic/pagina.php?codPagina=45&codCasta=15 (accessed on 25 May 2023).
- Vinhos & Castelos. Palomino Fino. Available online: https://vinhosecastelos.com/variedade-de-uva-palomino-fino/ (accessed on 25 May 2023).
- International Organization of Vine and Wine (OIV). Statics. Available online: https://www.oiv.int/ (accessed on 25 May 2023).
- Instituto dos Vinhos do Douro e Porto (IDPV). Colheita de Produtos Vitinícolas. Available online: https://areareservada.ivdp.pt/estatisticas_novo2.php?codIdioma=&codEstatistica=7&entnum=&codLogin=&verificationKey=&periodos=1211 (accessed on 25 May 2023).
- Instituto dos Vinhos do Douro e Porto (IDPV). Venda de Vinhos. Available online: https://areareservada.ivdp.pt/estatisticas_novo2.php?codIdioma=&codEstatistica=21&entnum=&codLogin=&verificationKey=&periodos=1239 (accessed on 25 May 2023).
- Li, G.; Ma, Z.; Wang, H. Image Recognition of Grape Downy Mildew and Grape Powdery Mildew Based on Support Vector Machine. In Computer and Computing Technologies in Agriculture; Li, D., Chen, Y., Eds.; Springer: Heidelberg, Germany, 2012; pp. 151–162. [Google Scholar] [CrossRef]
- Masih, E. Can the Grey Mould Disease of the Grape-Vine Be Controlled by Yeast? FEMS Microbiol. Lett. 2000, 189, 233–237. [Google Scholar] [CrossRef]
- Thind, S.K.; Monga, P.K.; Nirmaljit, K.; Arora, P.K.; Kumar, H. Evaluation of Promising Grape Varieties against Anthracnose and Its Fungicidal Control. Plant Dis. Res. 1997, 12, 99–100. [Google Scholar]
- Suhag, L.S.; Grover, R.K. Distribution of Grape Anthracnose in Haryana and Estimation of Losses in Term of Yield. J. Hortic. Sci. 1972, 1, 83–86. [Google Scholar]
- Michael, E.A.; Erincik, O. Anthracnose of Grape. Available online: https://ohioline.osu.edu/factsheet/plpath-fru-15 (accessed on 14 August 2023).
- Molitor, D.; Berkelmann-Loehnertz, B. Simulating the Susceptibility of Clusters to Grape Black Rot Infections Depending on Their Phenological Development. Crop Prot. 2011, 30, 1649–1654. [Google Scholar] [CrossRef]
- Szegedi, E.; Civerolo, E.L. Bacterial Diseases of Grapevine. Int. J. Hortic. Sci. 2011, 17, 45–49. [Google Scholar] [CrossRef]
- Harris, T.W. Remarks on Some of the Diseases and Insects Affecting Fruit Trees and Vines. In Proceedings of Third Session of the American Pomologial Cociety; Franklin Printing House: Boston, MA, USA, 1854. [Google Scholar]
- All, J.N.; Dutcher, J.D.; Saunders, M.C.; Brandy, U.E. Prevention Strategies for Grape Root Borer (Lepidoptera: Sesiidae) Infestations in Concord Grape Vineyards. J. Econ. Entomol. 1985, 78, 666–670. [Google Scholar] [CrossRef]
- Johnson, D.T.; Mayes, R.L.; Gray, P.A. Status of Grape Root Borer, Vitacea polistiformis (Lepidoptera: Sesiidae) Management and Feasibility of Control by Disruption of Mating Communication. Misc. Publ. Entemological Soc. Am. 1981, 12, 1–7. [Google Scholar]
- Forneck, A.; Walker, M.; Blaich, R. Ecological and Genetic Aspects of Grape Phylloxera Daktulosphaira vitifoliae (Hemiptera: Phylloxeridae) Performance on Rootstock Hosts. Bull. Entomol. Res. 2001, 91, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Tedesco, S.; Fevereiro, P.; Kragler, F.; Pina, A. Plant Grafting and Graft Incompatibility: A Review from the Grapevine Perspective. Sci. Hortic. 2022, 229, 111019. [Google Scholar] [CrossRef]
- Botta, W.J.; Serfontein, S.; Greyling, M.M.; Berger, D.K. Detection of Xylophilus ampelinus in grapevine cuttings using a nested polymerase chain reaction. Plant Pathol. 2001, 50, 515–526. [Google Scholar] [CrossRef]
- Li, Z.; Santos, R.F.; Gao, L.; Chang, P.; Wang, X. Current status and future prospects of grapevine anthracnose caused by Elsinoe ampelina: An important disease in humid grape-growing regions. Mol. Plant Pathol. 2021, 22, 899–910. [Google Scholar] [CrossRef] [PubMed]
- Sosnowski, M.R.; Emmett, R.W.; Wilcox, W.F.; Wicks, T.J. Eradication of black rot (Guignardia bidwellii) from grapevines by drastic pruning. Plant Pathol. 2012, 61, 1093–1102. [Google Scholar] [CrossRef]
- AFINET. Grapevine Moth Causes Increasing Damage in Mediterranean Regions. Available online: https://euraf.isa.utl.pt/files/pub/20190213_-_factsheet_01_-_web.pdf (accessed on 20 December 2023).
- Research to Practice—Viti Notes [Pests and Diseases]. Nematodes in Australian Vineyard Soils. Available online: https://www.awri.com.au/wp-content/uploads/nematodes_in_aust_soil.pdf (accessed on 20 December 2023).
- Schurig, J.; Ipach, U.; Helmstatter, B.; Kling, L.; Hahn, M.; Trapp, O.; Winterhagen, P. Selected Genotypes with the Genetic Background of Vitis aestivalis and Vitis labrusca are resistant to Xiphinema index. Plant Dis. 2021, 105, 4132–4137. [Google Scholar] [CrossRef] [PubMed]
- Daane, K.M.; Almeida, R.P.P.; Bell, V.A.; Walker, J.T.S.; Botton, M.; Fallahzadeh, M.; Mani, M.; Miano, J.L.; Sforza, R.; Walton, V.M.; et al. Biology and Management of Mealybugs in Vineyards. In Arthropod Management in Vineyards: Pests, Approaches, 271 and Future Directions; Bostanian, N.J., Vincent, C., Isaacs, R., Eds.; Springer: Berlin, Germany, 2012; Available online: https://nature.berkeley.edu/almeidalab/wp-content/uploads/2015/11/Daane12.pdf (accessed on 20 July 2023).
- International Organization of Vine and Wine. OIV Guidelines for the Harmonization of Requirements for Exchange of Viticultural Plant Material: Phytosanitary and Generic Aspects. Available online: https://www.oiv.int/node/2838 (accessed on 20 December 2023).
- Schouteden, N.; De Waele, D.; Panis, B.; Vos, C.M. Arbuscular Mycorrhizal Fungi for the Biocontrol of Plant-Parasitic Nematodes: A Review of the Mechanisms Involved. Front. Microbiol. 2015, 6, 1280. [Google Scholar] [CrossRef] [PubMed]
- Pozo, M.J.; Azcón-Aguilar, C. Unraveling Mycorrhiza-Induced Resistance. Curr. Opin. Plant Biol. 2007, 10, 393–398. [Google Scholar] [CrossRef]
- Fermaud, M.; Gilboulot, A. Influence of Lobesia Botrana Larvae on Field Severity of Botrytis Rot of Grape Berries. Plant Dis. 1992, 76, 404–409. [Google Scholar] [CrossRef]
- Mudavanhu, P.; Addison, P.; Pringle Ken, L. Monitoring and Action Threshold Determination for the Obscure Mealybug Pseudococcus Viburni (Signoret) (Hemiptera: Pseudococcidae) Using Pheromone-Baited Traps. Crop Prot. 2011, 30, 919–924. [Google Scholar] [CrossRef]
- UC IPM. Agriculture: Grape Pest Management Guidelines—Mealybugs (Pseudococcus). Available online: https://ipm.ucanr.edu/agriculture/grape/mealybugs-pseudococcus/ (accessed on 22 May 2023).
- Vitis International Variety Catalogue (VIVC). Passport Data—Tinto Cão. Available online: https://www.vivc.de/index.php?r=passport%2Fdegreeresist&id=12500 (accessed on 22 May 2023).
- Vitis International Variety Catalogue (VIVC). Passport Data—Touriga Nacional. Available online: https://www.vivc.de/index.php?r=passport%2Fdegreeresist&id=12594 (accessed on 22 May 2023).
- Vasconcelos, M.C.; Greven, M.; Winefield, C.S.; Trought, M.C.; Raw, V. The flowering process of Vitis vinifera: A review. Am. J. Enol. Vitic. 2009, 60, 411–434. [Google Scholar] [CrossRef]
- Boss, P.K.; Buckeridge, E.J.; Poole, A.; Thomas, M.R. New insights into grapevine flowering. Funct. Plant Biol. 2003, 30, 593–606. [Google Scholar] [CrossRef]
- The French-Italian Public Consortium for Grapevine Genome Characterization. The Grapevine Genome Sequence Suggests Ancestral Hexaploidization in Major Angiosperm Phyla. Nature 2007, 449, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.I.; Malheiro, A.C.; Bacelar, E.A. Morphology, Physiology and Analysis Techniques of Grapevine Bud Fruitfulness: A Review. Agriculture 2021, 11, 127. [Google Scholar] [CrossRef]
- May, P. Reducing inflorescence formation by shading individual Sultana buds. Aust. J. Biol. Sci. 1965, 18, 463–473. [Google Scholar] [CrossRef]
- Lebon, G.; Wojnarowiez, G.; Holzapfel, B.; Fontaine, F.; Vaillant-Gaveau, N.; Clément, C. Sugars and flowering in the grapevine (Vitis vinifera L.). J. Exp. Bot. 2008, 59, 2565–2578. [Google Scholar] [CrossRef] [PubMed]
- Sreekantan, L.; Thomas, M.R. VvFT and VvMADS8, the grapevine homologues of the floral integrators FT and SOC1, have unique expression patterns in grapevine and hasten flowering in Arabidopsis. Funct. Plant Biol. 2006, 33, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- Boss, P.K.; Sreekantan, L.; Thomas, M.R. A grapevine TFL1 homologue can delay f lowering and alter f loral development when overexpressed in heterologous species. Funct. Plant Biol. 2006, 33, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Carmona, M.J.; Cubas, P.; Martinez-Zapater, J.M. VFL, the grapevine FLORICAULA/LEAFY ortholog, is expressed in meristematic regions independently of their fate. Plant Physiol. 2002, 130, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Joly, D.; Perrin, M.; Gertz, C.; Kronenberger, J.; Demangeat, G.; Masson, J.E. Expression analysis of flowering genes from seedling-stage to vineyard life of grapevine cv. Riesling. Plant Sci. 2004, 166, 1427–1436. [Google Scholar] [CrossRef]
- Calonje, M.; Cubas, P.; Martinez-Zapater, J.M.; Carmona, M.J. Floral meristem identity genes are expressed during tendril development in grapevine. Plant Physiol. 2004, 135, 1491–1501. [Google Scholar] [CrossRef]
- Krizek, B. Molecular biology of floral organogenesis. In The Molecular Biology of Flowering; Jordan, B., Ed.; CAB International: King’s Lynn, UK, 2006; pp. 100–123. [Google Scholar]
- Díaz-Riquelme, J.; Lijavetzky, D.; Martínez-Zapater, J.M.; Carmona, M.J. Genome-Wide Analysis of MIKCC-Type MADS Box Genes in Grapevine. Plant Physiol. 2009, 149, 354–369. [Google Scholar] [CrossRef] [PubMed]
- Poupin, M.J.; Federici, F.; Medina, C.; Matus, J.T.; Timmermann, T.; Arce-Johnson, P. Isolation of the three grape sub-lineages of B-class MADS-box TM6, PISTILLATA and APETALA3 genes which are differentially expressed during flower and fruit development. Gene 2007, 404, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Boss, P.K.; Vivier, M.; Matsumoto, S.; Dry, I.B.; Thomas, M.R. A cDNA from grapevine (Vitis vinifera L.), which shows homology to AGAMOUS and SHATTERPROOF, is not only expressed in flowers but also throughout berry development. Plant Mol. Biol. 2001, 45, 541–553. [Google Scholar] [CrossRef]
- Boss, P.K.; Sensi, E.; Hua, C.; Davies, C.; Thomas, M.R. Cloning and characterization of grapevine (Vitis vinifera L.) MADS-box genes expressed during inflorescence and berry development. Plant Sci. 2002, 162, 887–895. [Google Scholar] [CrossRef]
- Alvarez-Buylla, E.R.; Liljegren, S.J.; Pelaz, S.; Gold, S.E.; Burgeff, C.; Ditta, G.S.; Vergara-Silva, F.; Yanofsky, M.F. MADS-box gene evolution beyond flowers: Expression in pollen, endosperm, guard cells, roots and trichomes. Plant J. 2000, 24, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, F.; Vannozzi, A.; Magon, G.; Lucchin, M.; Barcaccia, G. Genomics of Flower Identity in Grapevine (Vitis vinifera L.). Front. Plant Sci. 2019, 10, 316. [Google Scholar] [CrossRef] [PubMed]
- Zinelabidine, L.H.; Torres-Pérez, R.; Grimplet, J.; Baroja, E.; Ibáñez, S.; Carbonell-Bejerano, P.; Martínez-Zapater, J.M.; Ibáñez, J.; Tello, J. Genetic Variation and Association Analyses Identify Genes Linked to Fruit Set-Related Traits in Grapevine. Plant Sci. 2021, 306, 110875. [Google Scholar] [CrossRef]
- Kobayashi, S.; Goto-Yamamoto, N.; Hirochika, H. Retrotransposon-Induced Mutations in Grape Skin Color. Science 2004, 304, 982. [Google Scholar] [CrossRef]
- Azuma, A.; Kobayashi, S.; Goto-Yamamoto, N.; Shiraishi, M.; Mitani, N.; Yakushiji, H.; Koshita, Y. Color Recovery in Berries of Grape (Vitis vinifera L.) ‘Benitaka’, a Bud Sport of ‘Italia’, Is Caused by a Novel Allele at the VvmybA1 Locus. Plant Sci. 2009, 176, 470–478. [Google Scholar] [CrossRef]
- Walker, A.R.; Lee, E.; Bogs, J.; McDavid, D.A.J.; Thomas, M.R.; Robinson, S.P. White Grapes Arose through the Mutation of Two Similar and Adjacent Regulatory Genes. Plant J. 2007, 49, 772–785. [Google Scholar] [CrossRef]
- Ocarez, N.; Mejía, N. Suppression of the D-Class MADS-Box AGL11 Gene Triggers Seedlessness in Fleshy Fruits. Plant Cell Rep. 2016, 35, 239–254. [Google Scholar] [CrossRef] [PubMed]
- Malabarba, J.; Buffon, V.; Mariath, J.E.A.; Gaeta, M.L.; Dornelas, M.C.; Margis-Pinheiro, M.; Pasquali, G.; Revers, L.F. The MADS-Box Gene Agamous-like 11 Is Essential for Seed Morphogenesis in Grapevine. J. Exp. Bot. 2017, 68, 1493–1506. [Google Scholar] [CrossRef] [PubMed]
- Royo, C.; Torres-Pérez, R.; Mauri, N.; Diestro, N.; Cabezas, J.A.; Marchal, C.; Lacombe, T.; Ibáñez, J.; Tornel, M.; Carreño, J.; et al. The Major Origin of Seedless Grapes Is Associated with a Missense Mutation in the MADS-Box Gene VviAGL11. Plant Physiol. 2018, 177, 1234–1253. [Google Scholar] [CrossRef] [PubMed]
- Gascuel, Q.; Diretto, G.; Monforte, A.J.; Fortes, A.M.; Granell, A. Use of Natural Diversity and Biotechnology to Increase the Quality and Nutritional Content of Tomato and Grape. Front. Plant Sci. 2017, 8, 652. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Sezen, U.; Paterson, A.H. Domestication and Plant Genomes. Curr. Opin. Plant Biol. 2010, 13, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Abbo, S.; Pinhasi van-Oss, R.; Gopher, A.; Saranga, Y.; Ofner, I.; Peleg, Z. Plant Domestication versus Crop Evolution: A Conceptual Framework for Cereals and Grain Legumes. Trends Plant. Sci. 2014, 19, 351–360. [Google Scholar] [CrossRef]
- Amini, S.; Sharafi, S.; Komeili, H.R.; Tabaee, N.A. Effect of Biotechnology on Biodiversity. Int. J. Farming Allied Sci. 2014, 3, 910–915. [Google Scholar]
- Andersen, M.M.; Landes, X.; Xiang, W.; Anyshchenko, A.; Falhof, J.; Østerberg, J.T.; Olsen, L.I.; Edenbrandt, A.K.; Vedel, S.E.; Thorsen, B.J.; et al. Feasibility of New Breeding Techniques for Organic Farming. Trends Plant. Sci. 2015, 20, 426–434. [Google Scholar] [CrossRef]
- Roby, J.P.; Leeuwen, C.V.; Gonçalves, E.; Graça, A.; Martins, A. The Preservation of Genetic Resources of the Vine Requires Cohabitation between Institutional Clonal Selection, Mass Selection and Private Clonal Selection. BIO Web Conf. 2014, 3, 01018. [Google Scholar] [CrossRef]
- Prada, D. Molecular Population Genetics and Agronomic Alleles in Seed Banks: Searching for a Needle in a Haystack? J. Exp. Bot. 2009, 60, 2541–2552. [Google Scholar] [CrossRef]
- Chen, X.; Chen, F.; Chen, Y.; Gao, Q.; Yang, X.; Yuan, L.; Zhang, F.; Mi, G. Modern Maize Hybrids in Northeast China Exhibit Increased Yield Potential and Resource Use Efficiency despite Adverse Climate Change. Glob. Chang. Biol. 2013, 19, 923–936. [Google Scholar] [CrossRef]
- Bai, H.; Tao, F.; Xiao, D.; Liu, F.; Zhang, H. Attribution of Yield Change for Rice-Wheat Rotation System in China to Climate Change, Cultivars and Agronomic Management in the Past Three Decades. Clim. Chang. 2016, 135, 539–553. [Google Scholar] [CrossRef]
- Laucou, V.; Lacombe, T.; Dechesne, F.; Siret, R.; Bruno, J.P.; Dessup, M.; Dessup, T.; Ortigosa, P.; Parra, P.; Roux, C.; et al. High Throughput Analysis of Grape Genetic Diversity as a Tool for Germplasm Collection Management. Theor. Appl. Genet. 2011, 122, 1233–1245. [Google Scholar] [CrossRef] [PubMed]
- Cunha, J.; Ibáñez, J.; Teixeira-Santos, M.; Brazão, J.; Fevereiro, P.; Martínez-Zapater, J.M.; Eiras-Dias, J. Genetic Relationships Among Portuguese Cultivated and Wild Vitis vinifera L. Germplasm. Front. Plant. Sci. 2020, 11, 127. [Google Scholar] [CrossRef]
- Maia, J.D.G.; Carmargo, U.A.; Tonietto, J.; Zanus, M.C.; Quecini, V.; Ferreira, M.E.; Ritschel, P. Grapevine breeding programs in Brazil. In Grapevine Breeding Programs for the Wine Industry—Traditional and Molecular Techniques; Reynolds, A., Ed.; Woodhead Publishing: Sawston, UK, 2015; pp. 247–271. [Google Scholar]
- Postman, J.D.; Hummer, K.E.; Stover, E.; Krueger, R.R.; Forsline, P.L.; Grauke, L.J.; Zee, F.; Ayala-Silva, T.; Irish, B.M. Fruit and Nut Genebanks in the U.S. National Plant Germplasm System. Hortscience 2006, 41, 1188–1194. [Google Scholar] [CrossRef]
- Ministério da Agricultura e do Mar. Plano Nacional para os Recursos Géneticos Vegetais. Available online: https://www.iniav.pt/images/INIAV/organica/BPGV/pnrgv_web.pdf (accessed on 14 August 2023).
- Elgelmann, F. In vitro conservation methods. In Biotechnology and Plant Genetic Resources; Callow, J.A., Ford-Lloye, B.V., Newbury, H.J., Eds.; CAB International: Wallingford, UK, 1997; pp. 119–161. [Google Scholar]
- Pathirana, R.; McLachlan, A.; Hedderley, D.; Panis, B.; Carimi, F. Pre-Treatment with Salicylic Acid Improves Plant Regeneration after Cryopreservation of Grapevine (Vitis Spp.) by Droplet Vitrification. Acta Physiol. Plant. 2015, 38, 12. [Google Scholar] [CrossRef]
- Gisbert, C.; Peiró, R.; San Pedro, T.; Olmos, A.; Jiménez, C.; García, J. Recovering ancient grapevine varieties: From genetic variability to in vitro conservation, a case study. In Grapes and Wines—Advances in Production, Processing, Analysis and Valorization; Jordão, A.M., Cosme, F., Eds.; Intech: London, UK, 2018; pp. 3–21. [Google Scholar]
- Panis, B.; Nagel, M.; Van Den Houwe, I. Challenges and Prospects for the Conservation of Crop Genetic Resources in Field Genebanks, in In Vitro Collections and/or in Liquid Nitrogen. Plants 2020, 9, 1634. [Google Scholar] [CrossRef] [PubMed]
- Bettoni, J.C.; Marković, Z.; Bi, W.L.; Volk, G.M.; Matsumoto, T.; Wang, Q.C. Grapevine Shoot Tip Cryopreservation and Cryotherapy: Secure Storage of Disease-Free Plants. Plants 2021, 10, 2190. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Bai, G. Whole-Genome Resequencing: Changing the Paradigms of SNP Detection, Molecular Mapping and Gene Discovery. Mol. Breed. 2015, 35, 33. [Google Scholar] [CrossRef]
- Bernardo, R. Molecular Markers and Selection for Complex Traits in Plants: Learning from the Last 20 Years. Crop Sci. 2008, 48, 1649–1664. [Google Scholar] [CrossRef]
- Cunha, J.; Santos, M.T.; Carneiro, L.C.; Fevereiro, P.; Eiras-Dias, J.E. Portuguese Traditional Grapevine Cultivars and Wild Vines (Vitis vinifera L.) Share Morphological and Genetic Traits. Genet. Resour. Crop Evol. 2009, 56, 975–989. [Google Scholar] [CrossRef]
- Cunha, J.; Zinelabidine, L.H.; Teixeira-Santos, M.; Brazão, J.; Fevereiro, P.; Martínez-Zapater, J.M.; Ibáñez, J.; Eiras-Dias, J.E. Grapevine Cultivar “Alfrocheiro” or “Bruñal” Plays a Primary Role in the Relationship among Iberian Grapevines; 2015; Volume 54. Available online: http://hdl.handle.net/10261/145637 (accessed on 20 July 2023).
- Castro, I.; Pinto-Carnide, O.; Ortiz, J.M.; Martín, J.P. Chloroplast Genome Diversity in Portuguese Grapevine (Vitis vinifera L.) Cultivars. Mol. Biotechnol. 2013, 54, 528–540. [Google Scholar] [CrossRef]
- Maul, E.; Töpfer, R. Vitis International Variety Catalogue. Available online: http://www.vivc.de (accessed on 20 September 2023).
- Alifragkis, A.; Cunha, J.; Pereira, J.; Fevereiro, P.; Eiras Dias, J.E.J. Identity, Synonymies and Homonynies of Minor Grapevine Cultivars Maintained in the Portuguese Ampelographic Collection. Cienc. Tec. Vitivinic. 2015, 30, 43–52. [Google Scholar] [CrossRef]
- Barrias, S.; Pereira, L.; Rocha, S.; Sousa, T.A.; Ibáñez, J.; Martins-Lopes, P. Identification of Portuguese traditional grapevines using molecular marker-based strategies. Sci. Hortic. 2023, 311, 111826. [Google Scholar] [CrossRef]
- Garritano, S.; Gemignani, F.; Voegele, C.; Nguyen-Dumont, T.; Le Calvez-Kelm, F.; De Silva, D.; Lesueur, F.; Landi, S.; Tavtigian, S.V. Determining the Effectiveness of High Resolution Melting Analysis for SNP Genotyping and Mutation Scanning at the TP53 Locus. BMC Genet. 2009, 10, 5. [Google Scholar] [CrossRef]
- Velasco, R.; Zharkikh, A.; Troggio, M.; Cartwright, D.A.; Cestaro, A.; Pruss, D.; Pindo, M.; FitzGerald, L.M.; Vezzulli, S.; Reid, J.; et al. A High Quality Draft Consensus Sequence of the Genome of a Heterozygous Grapevine Variety. PLoS ONE 2007, 2, e1326. [Google Scholar] [CrossRef]
- Tantasawat, P.; Poolsawat, O.; Chaowiset, W. The Role of Food, Agriculture, Forestry and Fisheries in Human Nutrition—Grapevine Breeding and Genetics. In Encyclopedia of Life Support Systems; Developed under the Auspices of the UNESCO Eolss Publishers: Paris, France, 2010. [Google Scholar]
- Feechan, A.; Anderson, C.; Torregrosa, L.; Jermakow, A.; Mestre, P.; Wiedemann-Merdinoglu, S.; Merdinoglu, D.; Walker, A.R.; Cadle-Davidson, L.; Reisch, B.; et al. Genetic Dissection of a TIR-NB-LRR Locus from the Wild North American Grapevine Species Muscadinia rotundifolia Identifies Paralogous Genes Conferring Resistance to Major Fungal and Oomycete Pathogens in Cultivated Grapevine. Plant J. 2013, 76, 661–674. [Google Scholar] [CrossRef]
- Welter, L.J.; Göktürk-Baydar, N.; Akkurt, M.; Maul, E.; Eibach, R.; Töpfer, R.; Zyprian, E.M. Genetic Mapping and Localization of Quantitative Trait Loci Affecting Fungal Disease Resistance and Leaf Morphology in Grapevine (Vitis vinifera L.). Mol. Breed. 2007, 20, 359–374. [Google Scholar] [CrossRef]
- Fischer, B.M.; Salakhutdinov, I.; Akkurt, M.; Eibach, R.; Edwards, K.J.; Töpfer, R.; Zyprian, E.M. Quantitative Trait Locus Analysis of Fungal Disease Resistance Factors on a Molecular Map of Grapevine. Theor. Appl. Genet. 2004, 108, 501–515. [Google Scholar] [CrossRef]
- Bellin, D.; Peressotti, E.; Merdinoglu, D.; Wiedemann-Merdinoglu, S.; Adam-Blondon, A.; Cipriani, G.; Morgante, M.; Testolin, R.; Di Gaspero, G. Resistance to Plasmopara Viticola in Grapevine ‘Bianca’ Is Controlled by a Major Dominant Gene Causing Localised Necrosis at the Infection Site. Theor. Appl. Genet. 2009, 120, 163–176. [Google Scholar] [CrossRef]
- Merdinoglu, D.; Wiedeman-Merdinoglu, S.; Coste, P.; Dumas, V.; Haetty, S.; Butterlin, G.; Greif, C. Genetic analysis of Downy Mildew resistance derived from Muscadinia rotundifolia. Acta Hortic. 2003, 603, 451–456. [Google Scholar] [CrossRef]
- Sapkota, S.; Chen, L.L.; Yang, S.; Hyma, K.E.; Cadle-Davidson, L.; Hwang, C.F. Construction of a High-Density Linkage Map and QTL Detection of Downy Mildew Resistance in Vitis aestivalis-Derived ‘Norton’. Theor. Appl. Genet. 2019, 132, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Leng, H.; Guo, Y.; Kondo, S.; Zhao, Y.; Shi, G.; Guo, X. QTLs and Candidate Genes for Downy Mildew Resistance Conferred by Interspecific Grape (V. vinifera L. × V. amurensis Rupr.) Crossing. Sci. Hortic. 2019, 244, 200–207. [Google Scholar] [CrossRef]
- Divilov, K.; Barba, P.; Cadle-Davidson, L.; Reisch, B.I. Single and Multiple Phenotype QTL Analyses of Downy Mildew Resistance in Interspecific Grapevines. Theor. Appl. Genet. 2018, 131, 1133–1143. [Google Scholar] [CrossRef] [PubMed]
- Schwander, F.; Eibach, R.; Fechter, I.; Hausmann, L.; Zyprian, E.; Töpfer, R. Rpv10: A New Locus from the Asian Vitis Gene Pool for Pyramiding Downy Mildew Resistance Loci in Grapevine. Theor. Appl. Genet. 2012, 124, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Venuti, S.; Copetti, D.; Foria, S.; Falginella, L.; Hoffmann, S.; Bellin, D.; Cindrić, P.; Kozma, P.; Scalabrin, S.; Morgante, M.; et al. Historical Introgression of the Downy Mildew Resistance Gene Rpv12 from the Asian Species Vitis amurensis into Grapevine Varieties. PLoS ONE 2013, 8, e61228. [Google Scholar] [CrossRef]
- Ochssner, I.; Hausmann, L.; Töpfer, R. Rpvl4, a New Genetic Source for Plasmopara viticola Resistance Conferred by Vitis cinerea. Vitis J. Grapevine Res. 2016, 55, 79–81. [Google Scholar] [CrossRef]
- Blasi, P.; Blanc, S.; Wiedemann-Merdinoglu, S.; Prado, E.; Rühl, E.H.; Mestre, P.; Merdinoglu, D. Construction of a Reference Linkage Map of Vitis amurensis and Genetic Mapping of Rpv8, a Locus Conferring Resistance to Grapevine Downy Mildew. Theor. Appl. Genet. 2011, 123, 43–53. [Google Scholar] [CrossRef]
- Moreira, F.M.; Madini, A.; Marino, R.; Zulini, L.; Stefanini, M.; Velasco, R.; Kozma, P.; Grando, M.S. Genetic Linkage Maps of Two Interspecific Grape Crosses (Vitis Spp.) Used to Localize Quantitative Trait Loci for Downy Mildew Resistance. Tree Genet. Genomes 2011, 7, 153–167. [Google Scholar] [CrossRef]
- Marguerit, E.; Boury, C.; Manicki, A.; Donnart, M.; Butterlin, G.; Némorin, A.; Wiedemann-Merdinoglu, S.; Merdinoglu, D.; Ollat, N.; Decroocq, S. Genetic Dissection of Sex Determinism, Inflorescence Morphology and Downy Mildew Resistance in Grapevine. Theor. Appl. Genet. 2009, 118, 1261–1278. [Google Scholar] [CrossRef]
- Barker, C.L.; Donald, T.; Pauquet, J.; Ratnaparkhe, M.B.; Bouquet, A.; Adam-Blondon, A.F.; Thomas, M.R.; Dry, I. Genetic and Physical Mapping of the Grapevine Powdery Mildew Resistance Gene, Run1, Using a Bacterial Artificial Chromosome Library. Theor. Appl. Genet. 2005, 111, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Riaz, S.; Tenscher, A.C.; Ramming, D.W.; Walker, M.A. Using a Limited Mapping Strategy to Identify Major QTLs for Resistance to Grapevine Powdery Mildew (Erysiphe necator) and Their Use in Marker-Assisted Breeding. Theor. Appl. Genet. 2011, 122, 1059–1073. [Google Scholar] [CrossRef] [PubMed]
- Rex, F.; Fechter, I.; Hausmann, L.; Töpfer, R. QTL Mapping of Black Rot (Guignardia bidwellii) Resistance in the Grapevine Rootstock ‘Börner’ (V. riparia Gm183 × V. cinerea Arnold). Theor. Appl. Genet. 2014, 127, 1667–1677. [Google Scholar] [CrossRef] [PubMed]
- El-Nady, M.F. Untersuchungen Zum Mechanismus Der Reblausresistenz Der Unterlagsrebsorte ‘Börner’. Ph.D. Thesis, Johannes Gutenberg-Universität Mainz, Mainz, Germany, 2001. [Google Scholar]
- Van Heeswijck, R.; Bondar, A.; Franks, T.; Croser, L.; Kellow, A.; Powell, K. Molecular and Cellular events during the interaction of phylloxera with grapevine roots. Acta Hortic. 2003, 617, 13–16. [Google Scholar] [CrossRef]
- Lodhi, M.A.; Ye, G.N.; Weeden, N.F.; Reisch, B.I.; Daly, M.J. A Molecular Marker Based Linkage Map of Vitis. Genome 1995, 38, 786–794. [Google Scholar] [CrossRef]
- Dalbó, M.A.; Ye, G.N.; Weeden, N.F.; Steinkellner, H.; Sefc, K.M.; Reisch, B.I. A Gene Controlling Sex in Grapevines Placed on a Molecular Marker-Based Genetic Map. Genome 2000, 43, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Doligez, A.; Bouquet, A.; Danglot, Y.; Lahogue, F.; Riaz, S.; Meredith, C.; Edwards, K.; This, P. Genetic Mapping of Grapevine (Vitis vinifera L.) Applied to the Detection of QTLs for Seedlessness and Berry Weight. Theor. Appl. Genet. 2002, 105, 780–795. [Google Scholar] [CrossRef]
- Grando, M.S.; Bellin, D.; Edwards, K.J.; Pozzi, C.; Stefanini, M.; Velasco, R. Molecular Linkage Maps of Vitis vinifera L. and Vitis riparia Mchx. Theor. Appl. Genet. 2003, 106, 1213–1224. [Google Scholar] [CrossRef]
- Doucleff, M.; Jin, Y.; Gao, F.; Riaz, S.; Krivanek, A.F.; Walker, M.A. A Genetic Linkage Map of Grape, Utilizing Vitis rupestris and Vitis arizonica. Theor. Appl. Genet. 2004, 109, 1178–1187. [Google Scholar] [CrossRef]
- Merdinoglu, D.; Butterlin, G.; Bevilacqua, L.; Chiquet, V.; Adam-Blondon, A.F.; Decroocq, S. Development and Characterization of a Large Set of Microsatellite Markers in Grapevine (Vitis vinifera L.) Suitable for Multiplex PCR. Mol. Breed. 2005, 15, 349–366. [Google Scholar] [CrossRef]
- Di Gaspero, G.; Cipriani, G.; Marrazzo, M.T.; Andreetta, D.; Castro, M.J.P.; Peterlunger, E.; Testolin, R. Isolation of (AC)n-Microsatellites in Vitis vinifera L. and Analysis of Genetic Background in Grapevines under Marker Assisted Selection. Mol. Breed 2005, 15, 11–20. [Google Scholar] [CrossRef]
- Riaz, S.; Dangl, G.S.; Edwards, K.J.; Meredith, C.P. A Microsatellite Marker Based Framework Linkage Map of Vitis vinifera L. Theor. Appl. Genet. 2004, 108, 864–872. [Google Scholar] [CrossRef] [PubMed]
- Doligez, A.; Adam-Blondon, A.F.; Cipriani, G.; Di Gaspero, G.; Laucou, V.; Merdinoglu, D.; Meredith, C.P.; Riaz, S.; Roux, C.; This, P. An Integrated SSR Map of Grapevine Based on Five Mapping Populations. Theor. Appl. Genet. 2006, 113, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Mandl, K.; Santiago, J.L.; Hack, R.; Fardossi, A.; Regner, F. A Genetic Map of Welschriesling × Sirius for the Identification of Magnesium-Deficiency by QTL Analysis. Euphytica 2006, 149, 133–144. [Google Scholar] [CrossRef]
- Lowe, K.M.; Walker, M.A. Genetic Linkage Map of the Interspecific Grape Rootstock Cross Ramsey (Vitis champinii) × Riparia Gloire (Vitis riparia). Theor. Appl. Genet. 2006, 112, 1582–1592. [Google Scholar] [CrossRef] [PubMed]
- Troggio, M.; Malacarne, G.; Coppola, G.; Segala, C.; Cartwright, D.A.; Pindo, M.; Stefanini, M.; Mank, R.; Moroldo, M.; Morgante, M.; et al. A Dense Single-Nucleotide Polymorphism-Based Genetic Linkage Map of Grapevine (Vitis vinifera L.) Anchoring Pinot Noir Bacterial Artificial Chromosome Contigs. Genetics 2007, 176, 2637–2650. [Google Scholar] [CrossRef]
- Lamoureux, D.; Bernole, A.; Le Clainche, I.; Tual, S.; Thareau, V.; Paillard, S.; Legeai, F.; Dossat, C.; Wincker, P.; Oswald, M.; et al. Anchoring of a Large Set of Markers onto a BAC Library for the Development of a Draft Physical Map of the Grapevine Genome. Theor. Appl. Genet. 2006, 113, 344–356. [Google Scholar] [CrossRef] [PubMed]
- Riaz, S.; Krivanek, A.F.; Xu, K.; Walker, M.A. Refined Mapping of the Pierce’s Disease Resistance Locus, PdR1, and Sex on an Extended Genetic Map of Vitis rupestris × V. arizonica. Theor. Appl. Genet. 2006, 113, 1317–1329. [Google Scholar] [CrossRef]
- Ablett, E.; Seaton, G.; Scott, K.; Shelton, D.; Graham, M.W.; Baverstock, P.; Lee, S.L.; Henry, R. Analysis of Grape ESTs: Global Gene Expression Patterns in Leaf and Berry. Plant Sci. 2000, 159, 87–95. [Google Scholar] [CrossRef]
- Moser, C.; Segala, C.; Fontana, P.; Salakhudtinov, I.; Gatto, P.; Pindo, M.; Zyprian, E.; Toepfer, R.; Grando, M.S.; Velasco, R. Comparative Analysis of Expressed Sequence Tags from Different Organs of Vitis vinifera L. Funct. Integr. Genom. 2005, 5, 208–217. [Google Scholar] [CrossRef]
- Salmaso, M.; Malacarne, G.; Troggio, M.; Faes, G.; Stefanini, M.; Grando, S.M.; Velasco, R. A Grapevine (Vitis vinifera L.) Genetic Map Integrating the Position of 139 Expressed Genes. Theor. Appl. Genet. 2008, 116, 1129–1143. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.Y.; Reid, K.E.; Liao, N.; Schlosser, J.; Lijavetzky, D.; Holt, R.; Martínez-Zapater, J.M.; Jones, S.; Marra, M.; Bohlmann, J.; et al. Generation of ESTs in Vitis vinifera Wine Grape (Cabernet Sauvignon) and Table Grape (Muscat Hamburg) and Discovery of New Candidate Genes with Potential Roles in Berry Development. Gene 2007, 402, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hausmann, L.; Eibach, R.; Welter, L.J.; Töpfer, R.; Zyprian, E.M. A Framework Map from Grapevine V3125 (Vitis vinifera ‘Schiava Grossa’ × ‘Riesling’) × Rootstock Cultivar ‘Börner’ (Vitis riparia × Vitis cinerea) to Localize Genetic Determinants of Phylloxera Root Resistance. Theor. Appl. Genet. 2009, 119, 1039–1051. [Google Scholar] [CrossRef]
- Clark, M.D.; Teh, S.L.; Burkness, E.; Moreira, L.; Watson, G.; Yin, L.; Hutchison, W.D.; Luby, J.J. Quantitative Trait Loci Identified for Foliar Phylloxera Resistance in a Hybrid Grape Population. Aust. J. Grape Wine Res. 2018, 24, 292–300. [Google Scholar] [CrossRef]
- Rubio, B.; Lalanne-Tisné, G.; Voisin, R.; Tandonnet, J.P.; Portier, U.; Van Ghelder, C.; Lafargue, M.; Petit, J.P.; Donnart, M.; Joubard, B.; et al. Characterization of Genetic Determinants of the Resistance to Phylloxera, Daktulosphaira vitifoliae, and the Dagger Nematode Xiphinema index from Muscadine Background. BMC Plant Biol. 2020, 20, 213. [Google Scholar] [CrossRef] [PubMed]
- Kunde, R.M.; Lider, L.A.; Schmitt, R.V. A Test of Vitis Resistance to Xiphinema index. Am. J. Enol. Vitic. 1968, 19, 30–36. [Google Scholar] [CrossRef]
- Xu, K.; Riaz, S.; Roncoroni, N.C.; Jin, Y.; Hu, R.; Zhou, R.; Walker, M.A. Genetic and QTL Analysis of Resistance to Xiphinema index in a Grapevine Cross. Theor. Appl. Genet. 2008, 116, 305–311. [Google Scholar] [CrossRef]
Grape Cultivar | Varieties | Area | Berry Color and Size | Aroma | Yield | Reference |
---|---|---|---|---|---|---|
Red | ‘Touriga Franca’ | 22% | Blue–black; medium | Flowers, raspberry, cherries, blackberry, herbaceous | 2.6 kg grape/vine | [20,21] |
‘Tinta Roriz’ | 13% | Black; small | Black pepper, wildflowers, wild cherries, vegetables | 2.6 kg grape/vine | [21,22,23] | |
‘Touriga Nacional’ | 8% | Blue–black; medium to small | Sweet fruit aromas, leafy freshness, violets or bergamot. (In Porto wine) Mulberry, blackberry, black pepper, floral | 0.9 kg grape/vine | [21,22,23] | |
‘Tinto Cão’ | - | Black–blue; small | Floral | - | [24] | |
‘Tinta Barroca’ | - | Medium | Floral | - | [25] | |
‘Tinta Amarela’ | - | - | Spice, herbaceous, fruity | - | [26] | |
White | ‘Códega’/‘Malvasia Grossa’ | 4.6% | Golden–white; large and oblong | Orange blossom, linden, acacia, peach, tropical fruit, melon and citrus | 2.0 kg grape/vine | [21,22,23] |
‘Malvasia Fina’ | 3.6% | Minute gold; small | Fruity, honey and floral notes | 1.4 kg grape/vine | [21,22,23] | |
‘Viosinho’ | - | Green–yellow; small | - | - | [27] | |
‘Malvasia Rei’ | - | Green–yellow; medium | Herbaceous and salty | - | [28] |
Biotic Stressor | Organism | Affected Areas | Combat Measure | Reference |
---|---|---|---|---|
Downey mildew | Plasmopara viticola | Leaves, grapefruit | Fungicide | [32] |
Powdery mildew | Uncinulanecator (Schw.) Burr. | Leaves, grapefruit | Fungicide | [32] |
Grey mold | Botrytis cinerea | Grapefruit | Fungicide | [36] |
Anthracnose/’Bird’s eye spot’ | Elsinoe ampelina | Berries, leaves, tendrils and petioles | Fungicide | [34,35,36] |
Black rot | Guignardia bidwellii | Berries and leaves | Fungicide | [37] |
Leaf bligh | Xylophilus ampelinus | Leaf, petiole, stem, root, shoot or flowers | Remotion of the diseased plants | [38] |
Stem borer | Lepidoptera: Sesiidae | Branches and root | Pheromone-baited traps, chlorpyrifos is the only insecticide | [39,40,41] |
Phylloxera | Daktulosphaira vitifoliae | Roots | No treatment, grafting with phylloxera-resistant American rootstock | [42,43] |
Roundworm | Xiphinema spp. | Roots | Soil fumigation, nematicides or mycorrhizal fungi | [52,53] |
Grapevine moth | Lobesia botrana | Flowers and berries | Insecticides (natural and synthetic) | [54] |
Leafhoppers | Erythroneura spp. | Leaves | Green lacewing remove the infected leaves | [54] |
Mealybugs | Pseudococcus maritimus Pseudococcus longispinus Pseudococcus viburni | Shoots and berries | Cryptolaemus montrouzieri, Hyperaspis sp. (natural predator) insecticides | [55,56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, B.; Araújo, S.d.S.; Sales, H.; Pontes, R.; Nunes, J. Douro Vineyards: A Perspective for the Valorization and Conservation of Grapevine Genetic Resources. Agronomy 2024, 14, 245. https://doi.org/10.3390/agronomy14020245
Sousa B, Araújo SdS, Sales H, Pontes R, Nunes J. Douro Vineyards: A Perspective for the Valorization and Conservation of Grapevine Genetic Resources. Agronomy. 2024; 14(2):245. https://doi.org/10.3390/agronomy14020245
Chicago/Turabian StyleSousa, Beatriz, Susana de Sousa Araújo, Hélia Sales, Rita Pontes, and João Nunes. 2024. "Douro Vineyards: A Perspective for the Valorization and Conservation of Grapevine Genetic Resources" Agronomy 14, no. 2: 245. https://doi.org/10.3390/agronomy14020245
APA StyleSousa, B., Araújo, S. d. S., Sales, H., Pontes, R., & Nunes, J. (2024). Douro Vineyards: A Perspective for the Valorization and Conservation of Grapevine Genetic Resources. Agronomy, 14(2), 245. https://doi.org/10.3390/agronomy14020245