Structural Characteristics and Adsorption of Phosphorus by Pineapple Leaf Biochar at Different Pyrolysis Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Biochar Materials
2.2. Structural Characterization of Biochar Materials in Pineapple Leaves
2.2.1. Element Composition
2.2.2. Functional Group Structure Analysis
2.2.3. Specific Surface Area Analysis
2.2.4. Scanning Electron Microscopy
2.2.5. Thermogravimetric Analysis
2.3. Adsorption Test
2.3.1. Adsorption Capacity
2.3.2. Adsorption Kinetic Research
2.3.3. Adsorption Isotherm Research
2.4. Comprehensive Evaluation of Biochar Properties
2.5. Data Processing
3. Results
3.1. Basic Properties of Pineapple Leaf Biochar
3.2. Surface Functional Groups of Pineapple Leaf Biochar
3.3. Pore Structure of Pineapple Leaf Biochar
3.4. Analysis of Phosphorus Adsorption Capacity of Pineapple Leaf Biochar Material
3.5. Kinetic Model Analysis of Adsorption of Phosphorus by Biochar of Pineapple Leaves
3.6. Isothermal Model Analysis of Adsorption Phosphorus by Pineapple Leaf Biochar
3.7. Principal Component Analysis and Correlation Analysis
4. Discussion
4.1. Effect of Preparation Temperature on Biochar Content in Pineapple Leaves
4.2. Effect of Preparation Temperature on the Surface Structure of Biochar of Pineapple Leaves
4.3. Adsorption Mechanism of Phosphorus by Pineapple Leaf Biochar
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cong, P.; Song, S.; Song, W.; Dong, J.; Zheng, X. Biochars prepared from biogas residues: Temperature is a crucial factor that determines their physicochemical properties. Biomass Convers. Biorefinery 2024, 14, 12843–12856. [Google Scholar] [CrossRef]
- Lu, L.; Yu, W.; Wang, Y.; Zhang, K.; Zhu, X.; Zhang, Y.; Wu, Y.; Ullah, H.; Xiao, X.; Chen, B. Application of biochar-based materials in environmental remediation: From multi-level structures to specific devices. Biochar 2020, 2, 1–31. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Feng, Y. The effects of biochar addition on soil physicochemical properties: A review. Catena 2021, 202, 105284. [Google Scholar] [CrossRef]
- Zheng, X.; Dong, J.; Zhang, W.; Xiang, J.; Yin, X.; Yin, X.; Han, L. Biogas residue biochar shifted bacterial community, mineralization, and molecular structure of organic carbon in a sandy loam Alfisol. GCB Bioenergy 2021, 13, 838–848. [Google Scholar] [CrossRef]
- Song, S.H.; Cong, P.; Wang, C.; Li, P.W.; Liu, S.R.; He, Z.Y.; Zhou, C.; Liu, Y.H.; Yang, Z.M. Properties of biochar obtained from tropical crop wastes under different pyrolysis temperatures and its application on acidic soil. Agronomy 2023, 13, 921. [Google Scholar] [CrossRef]
- Wang, S.; Ai, S.; Nzediegwu, C.; Kwak, J.H.; Islam, M.S.; Li, Y.; Chang, S.X. Carboxyl and hydroxyl groups enhance ammonium adsorption capacity of iron (III) chloride and hydrochloric acid modified biochars. Bioresour. Technol. 2020, 309, 123390. [Google Scholar] [CrossRef]
- Stefaniuk, M.; Oleszczuk, P. Characterization of biochars produced from residues from biogas production. J. Anal. Appl. Pyrolysis 2015, 115, 157–165. [Google Scholar] [CrossRef]
- Jung, K.W.; Hwang, M.J.; Ahn, K.H.; Ok, Y.S. Kinetic study on phosphate removal from aqueous solution by biochar derived from peanut shell as renewable adsorptive media. Int. J. Environ. Sci. Technol. 2015, 12, 3363–3372. [Google Scholar] [CrossRef]
- Cui, X.; Dai, X.; Khan, K.Y.; Li, T.; Yang, X.; He, Z. Removal of phosphate fromaqueous solution using magnesium-alginate/chitosan modified biochar microspheres derived from Thalia dealbata. Bioresour. Technol. 2016, 218, 1123–1132. [Google Scholar] [CrossRef]
- Takaya, C.A.; Fletcher, L.A.; Singh, S.; Anyikude, K.U.; Ross, A.B. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes. Chemosphere 2016, 145, 518–527. [Google Scholar] [CrossRef]
- Scaria, J.; Nidheesh, P.V.; Kumar, M.S. Synthesis and applications of various bimetallic nanomaterials in water and wastewater treatment. J. Environ. Manag. 2020, 259, 110011. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ji, Q.; Lai, L.; Yao, G.; Lai, B. Degradation of p-nitrophenol (PNP) in aqueous solution by mFe/Cu-air-PS system. Chin. Chem. Lett. 2019, 30, 1129–1132. [Google Scholar] [CrossRef]
- Sharma, G.; Gupta, V.K.; Agarwal, S.; Bhogal, S.; Naushad, M.; Kumar, A.; Stadler, F.J. Fabrication and characterization of trimetallic nano-photocatalyst for remediation of ampicillin antibiotic. J. Mol. Liq. 2018, 260, 342–350. [Google Scholar] [CrossRef]
- Hosny, M.; Fawzy, M.; Eltaweil, A.S. Phytofabrication of bimetallic silver-copper/biochar nanocomposite for environmental and medical applications. J. Environ. Manag. 2022, 316, 115238. [Google Scholar] [CrossRef] [PubMed]
- Novais, S.V.; Zenero, M.D.O.; Barreto, M.S.C.; Montes, C.R.; Cerri, C.E.P. Phosphorus removal from eutrophic water using modified biochar. Sci. Total Environ. 2018, 633, 825–835. [Google Scholar] [CrossRef]
- Shin, H.; Tiwari, D.; Kim, D.J. Phosphate adsorption/desorption kinetics and P bioavailability of Mg-biochar from ground coffee waste. J. Water Process Eng. 2020, 37, 101484. [Google Scholar] [CrossRef]
- Shamsudin, R.; Daud, W.R.W.; Takrif, M.S.; Hassan, O. Physico-mechanical properties of the Josapine pineapple fruits. Pertanika J. Sci. Technol. 2009, 17, 117–123. [Google Scholar]
- Gopomath, A.; Divyapriya, G.; Srivaatava, V.; Laiju, A.R.; Nidheesh, P.V.; Kumar, M.S. Conversion of sewage sludge into biochar: A potential resource in water and wastewater treatment. Environ. Res. 2021, 194, 110656. [Google Scholar] [CrossRef]
- Hemung, B.O.; Sompholkrang, M.; Wongchai, A.; Chanshotikul, N.; Ueasin, N. A study of the potential of by-products from pineapple processing in Thailand. Int. J. Health Sci. 2022, 6, 12605–12615. [Google Scholar] [CrossRef]
- Srikhaow, A.; Win, E.E.; Amornsakchai, T.; Kiatsiriroat, T.; Kajitvichyanukul, P.; Smith, S.M. Biochar derived from pineapple leaf non-fibrous materials and its adsorption capability for pesticides. ACS Omega 2023, 8, 26147–26157. [Google Scholar] [CrossRef]
- Iamsaard, K.; Weng, C.H.; Yen, L.T.; Tzeng, J.H.; Poonpakdee, C.; Lin, Y.T. Adsorption of metal on pineapple leaf biochar: Key affecting factors, mechanism identification, and regeneration evaluation. Bioresour. Technol. 2022, 344, 126131. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wang, Y.X.; Tang, J.C.; Zhu, W.Y. Properties of maize stalk biochar produced under different pyrolysis temperatures and its sorption capability to naphthalene. Environ. Sci. 2014, 35, 1884–1890. (In Chinese) [Google Scholar]
- Tan, H.D.; Zhang, X.Y.; Wu, C.Y.; Zhao, S.Q. Distribution and ecotoxicological risk of polycyclic aromatic hy-drocarbons in biochar prepared from tropical agricultural wastes. Chin. J. Trop. Crops 2022, 43, 1516–1526. (In Chinese) [Google Scholar]
- Claoston, N.; Samsuri, A.W.; Ahmad Husni, M.H.; Mohd Amran, M.S. Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Manag. Res. 2014, 32, 331–339. [Google Scholar] [CrossRef]
- Biswas, B.; Pandey, N.; Bisht, Y.; Singh, R.; Kumar, J.; Bhaskar, T. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour. Technol. 2017, 237, 57–63. [Google Scholar] [CrossRef]
- Ma, Q.; Song, W.; Wang, R.; Zou, J.; Yang, R.; Zhang, S. Physicochemical properties of biochar derived from anaerobically digested dairy manure. Waste Manag. 2018, 79, 729–734. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Bio/Technol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Chen, J.; Yang, L. Engineered biochar reclaiming phosphate from aqueous solutions: Mechanisms and potential application as a slow-release fertilizer. Environ. Sci. Technol. 2013, 47, 8700–8708. [Google Scholar] [CrossRef]
- Penn, C.J.; Warren, J.G. Investigating phosphorus sorption onto kaolinite using isothermal titration calorimetry. Soil Sci. Soc. Am. J. 2009, 73, 560–568. [Google Scholar] [CrossRef]
- Liu, B.; Gai, S.; Lan, Y.; Cheng, K.; Yang, F. Metal-based adsorbents for water eutrophication remediation: A review of performances and mechanisms. Environ. Res. 2022, 212, 113353. [Google Scholar] [CrossRef]
- Sun, C.; Wang, S.; Wang, H.; Hu, X.; Yang, F.; Tang, M.; Zhang, M.; Zhong, J. Internal nitrogen and phosphorus loading in a seasonally stratified reservoir: Implications for eutrophication management of deep-water ecosystems. J. Environ. Manag. 2022, 319, 115681. [Google Scholar] [CrossRef] [PubMed]
- Vasseghian, Y.; Nadagouda, M.M.; Aminabhavi, T.M. Biochar-enhanced bioremediation of eutrophic waters impacted by algal blooms. J. Environ. Manag. 2024, 367, 122044. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Zheng, W.; Duan, X.; Goswami, N.; Liu, Y. Recent advances in electrochemical removal and recovery of phosphorus from water: A review. Environ. Funct. Mater. 2022, 1, 10–20. [Google Scholar] [CrossRef]
- Zhang, C.; Guisasola, A.; Baeza, J.A. A review on the integration of mainstream P-recovery strategies with enhanced biological phosphorus removal. Water Res. 2022, 212, 118102. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Shen, F.; Qi, X. Adsorption recovery of phosphate from aqueous solution by CaO-biochar composites prepared from eggshell and rice straw. Sci. Total Environ. 2019, 666, 694–702. [Google Scholar] [CrossRef]
- Che, N.; Qu, J.; Wang, J.; Liu, N.; Li, C.; Liu, Y. Adsorption of phosphate onto agricultural waste biochars with ferrite/manganese modified-ball-milled treatment and its reuse in saline soil. Sci. Total Environ. 2024, 915, 169841. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Preparation, modification and environmental application of biochar: A review. J. Clean. Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- Mohan, D.; Sarswat, A.; Ok, Y.S.; Pittman, C.U., Jr. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review. Bioresour. Technol. 2014, 160, 191–202. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Sheng, L. Preparation of straw biochar and application of constructed wetland in China: A review. J. Clean. Prod. 2020, 273, 123131. [Google Scholar] [CrossRef]
- Jiao, Y.; Li, D.; Wang, M.; Gong, T.; Sun, M.; Yang, T. A scientometric review of biochar preparation research from 2006 to 2019. Biochar 2021, 3, 283–298. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Inyang, M.; Zimmerman, A.R.; Cao, X.; Pullammanappallil, P.; Yang, L. Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. J. Hazard. Mater. 2011, 190, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, B.; Huang, H.; Zhao, N.; Zhang, M.; Cao, L. Investigation into lanthanum-coated biochar obtained from urban dewatered sewage sludge for enhanced phosphate adsorption. Sci. Total Environ. 2020, 714, 136839. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Chen, Z.; Wu, Z.; Xu, F.; Yang, D.; He, Q.; Li, G.; Chen, Y. Novel lanthanum doped biochars derived from lignocellulosic wastes for efficient phosphate removal and regeneration. Bioresour. Technol. 2019, 289, 121600. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Saletnik, B.; Bajcar, M.; Zaguła, G.; Czernicka, M.; Puchalski, C. Impact of the biomass pyrolysis parameters on the quality of biocarbon obtained from rape straw, rye straw and willow chips. Econtechmod Int. Q. J. Econ. Technol. Model. Process. 2016, 5, 129–134. [Google Scholar]
- Domingues, R.R.; Trugilho, P.F.; Silva, C.A.; de Melo, I.C.N.A.; Melo, L.C.A.; Magriotis, Z.M.; Sa’nchez-Monedero, M.A. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLoS ONE 2017, 12, 0176884. [Google Scholar] [CrossRef]
- Zama, E.F.; Zhu, Y.G.; Reid, B.J.; Sun, G.X. The role of biochar properties in i-nfluencing the sorption and desorption of Pb(II), Cd(II), and As(III) in aqueous solution. J. Clean. Prod. 2017, 148, 127–136. [Google Scholar] [CrossRef]
- Bohari, N.; Mohidin, H.; Idris, J.; Andou, Y.; Man, S.; Saidan, H.; Mahdian, S. Nutritional characteristics of biochar from pineapple leaf residue and sago waste. Pertanika J. Soc. Sci. Humanit. 2020, 28, 273–286. [Google Scholar]
- Luo, D.; Wang, L.; Nan, H.; Cao, Y.; Wang, H.; Kumar, T.V.; Wang, C. Phosphorus adsorption by functionalized biochar: A review. Environ. Chem. Lett. 2023, 21, 497–524. [Google Scholar] [CrossRef]
- Dai, L.; Tan, F.; Li, H.; Zhu, N.; He, M.; Zhu, Q.; Hu, G.; Wang, L.; Zhao, J. Calcium-rich biochar from the pyrolysis of crab shell for phosphorus removal. J. Environ. Manag. 2017, 198, 70–74. [Google Scholar] [CrossRef]
- Pariyar, P.; Kumari, K.; Jain, M.K.; Jadhao, P.S. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Sci. Total Environ. 2020, 713, 136433. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Wu, Y.; Zheng, M. A comparison of biochars from lignin, cellulose and wood as the sorbent to an aromatic pollutant. J. Hazard. Mater. 2014, 280, 450–457. [Google Scholar] [CrossRef]
- Ghodszad, L.; Reyhanitabar, A.; Maghsoodi, M.R.; Lajayer, B.A.; Chang, S.X. Biochar affects the fate of phosphorus in soil and water: A critical review. Chemosphere 2021, 283, 131176. [Google Scholar] [CrossRef]
- Xia, D.; Tan, F.; Zhang, C.; Jiang, X.; Chen, Z.; Li, H.; Zheng, Y.; Li, Q.; Wang, Y. ZnCl2 -activated biochar from biogas residue facilitates aqueous As (III) removal. Appl. Surf. Sci. 2016, 377, 361–369. [Google Scholar] [CrossRef]
- Ilango, A.; Lefebvre, O. Characterizing properties of biochar produced from simulated human feces and its potential applications. J. Environ. Qual. 2016, 45, 734–742. [Google Scholar] [CrossRef]
- Padilla, J.T.; Watts, D.W.; Novak, J.M.; Cerven, V.; Ippolito, J.A.; Szogi, A.A.; Johnson, M.G. Magnesium activation affects the properties and phosphate sorption capacity of poultry litter biochar. Biochar 2023, 5, 64. [Google Scholar] [CrossRef]
- Hu, R.; Xiao, J.; Wang, T.; Chen, G.; Chen, L.; Tian, X. Engineering of phosphate-functionalized biochars with highly developed surface area and porosity for efficient and selective extraction of uranium. Chem. Eng. J. 2020, 379, 122388. [Google Scholar] [CrossRef]
- Chen, B.; Chen, Z.; Lv, S. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour. Technol. 2011, 102, 716–723. [Google Scholar] [CrossRef]
- Fang, L.; Li, J.S.; Donatello, S.; Cheeseman, C.R.; Poon, C.S.; Tsang, D.C. Use of Mg/Ca modified biochars to take up phosphorus from acid-extract of incinerated sewage sludge ash (ISSA) for fertilizer application. J. Clean. Prod. 2020, 244, 118853. [Google Scholar] [CrossRef]
- Antunes, E.; Jacob, M.V.; Brodie, G.; Schneider, P.A. Isotherms, kinetics and mechanism analysis of phosphorus recovery from aqueous solution by calcium-rich biochar produced from biosolids via microwave pyrolysis. J. Environ. Chem. Eng. 2018, 6, 395–403. [Google Scholar] [CrossRef]
- Ahmad, M.; Lee, S.S.; Dou, X.; Mohan, D.; Sung, J.K.; Yang, J.E.; Ok, Y.S. Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 2012, 118, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Wu, B.; Tan, F.; He, M.; Wang, W.; Qin, H.; Tang, X.; Zhu, Q.; Pan, K.; Hu, Q. Engineered hydrochar composites for phosphorus removal/recovery: Lanthanum doped hydrochar prepared by hydrothermal carbonization of lanthanum pretreated rice straw. Bioresour. Technol. 2014, 161, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, J.J.; Zhou, B.; Awasthi, M.K.; Ali, A.; Zhang, Z.; Lahori, A.H.; Mahar, A. Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute. Bioresour. Technol. 2016, 215, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Oginni, O.; Yakaboylu, G.A.; Singh, K.; Sabolsky, E.M.; Unal-Tosun, G.; Jaisi, D.; Khanal, S.; Shah, A. Phosphorus adsorption behaviors of MgO modified biochars derived from waste woody biomass resources. J. Environ. Chem. Eng. 2020, 8, 103723. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Huo, J.; Zhang, X.; Wen, H.; Zhang, D.; Zhao, Y.; Kang, D.; Guo, W.; Ngo, H.H. Adsorption recovery of phosphorus in contaminated water by calcium modified biochar derived from spent coffee grounds. Sci. Total Environ. 2024, 909, 168426. [Google Scholar] [CrossRef]
- Lalley, J.; Han, C.; Li, X.; Dionysiou, D.D.; Nadagouda, M.N. Phosphate adsorption using modified iron oxide-based sorbents in lake water: Kinetics, equilibrium, and column tests. Chem. Eng. J. 2016, 284, 1386–1396. [Google Scholar] [CrossRef]
- Karunanithi, R.; Ok, Y.S.; Dharmarajan, R.; Ahmad, M.; Seshadri, B.; Bolan, N.; Naidu, R. Sorption, kinetics and thermodynamics of phosphate sorption onto soybean stover derived biochar. Environ. Technol. Innov. 2017, 8, 113–125. [Google Scholar] [CrossRef]
PB300 | PB500 | PB700 | |
---|---|---|---|
H (%) | 4.16 ± 0.02 a | 2.78 ± 0.01 b | 2.00 ± 0.01 c |
O (%) | 19.80 ± 0.08 a | 15.33 ± 0.11 b | 15.00 ± 0.46 b |
C (%) | 58.49 ± 0.36 b | 61.38 ± 0.61 a | 60.10 ± 0.11 a |
N (%) | 1.10 ± 0.01 a | 0.92 ± 0.01 b | 0.60 ± 0.01 c |
C/H | 14.06 | 22.08 | 30.05 |
C/O | 2.95 | 4.06 | 3.87 |
(O+N)/C | 0.36 | 0.26 | 0.26 |
P (%) | 0.22 ± 0.01 b | 0.25 ± 0.01 a | 0.26 ± 0.01 a |
S (%) | 0.32 ± 0.07 a | 0.27 ± 0.01 b | 0.24 ± 0.01 c |
Mg (%) | 0.39 ± 0.01 c | 0.45 ± 0.02 b | 0.57 ± 0.02 a |
Ca (%) | 0.65 ± 0.01 b | 0.71 ± 0.03 b | 0.88 ± 0.04 a |
Fe (%) | 0.35 ± 0.01 b | 0.36 ± 0.01 b | 0.43 ± 0.01 a |
Al (%) | 0.31 ± 0.01 c | 0.37 ± 0.01 fb | 0.54 ± 0.01 a |
Total (%) | 85.79 ± 0.15 a | 82.82 ± 0.23 b | 80.62 ± 0.21 c |
Biochar | C-O-C (1057 cm−1) | C-H/-CH3 (1301 cm−1) | C=O (1613 cm−1) | C-H/-CHO (2856 cm−1) | H-O (3400 cm−1) |
---|---|---|---|---|---|
Relative Abundances of Functional Groups (%) | |||||
PB700 | 42.34(0.70) | 8.97(0.15) | / | 48.69(0.84) | / |
PB500 | 11.96(0.07) | 25.90(0.15) | 9.92(0.08) | 52.21(0.22) | / |
PB300 | 24.1(0.07) | 27.32(0.25) | 31.31(0.18) | 11.51(0.30) | 5.76(0.20) |
SBET | SMicro | SMeso | VTot | VMicro | VMeso | DTot | |
---|---|---|---|---|---|---|---|
m2g−1 | ccg−1 | nm | |||||
PB300 | 7.53 | 1.14 | 0.66 | 0.0040 | 0.0005 | 0.0035 | 7.01 |
PB500 | 10.38 | 3.25 | 0.05 | 0.0050 | 0.0014 | 0.0036 | 5.21 |
PB700 | 279.37 | 181.61 | 33.06 | 0.0988 | 0.0703 | 0.0285 | 1.80 |
Kinetic Models | Parameters | PALB300 | PALB500 | PALB700 |
---|---|---|---|---|
Pseudo-first-order | k1 (min−1) | 0.02096 | 0.03031 | 0.04338 |
Qe (mg g−1) | 0.28502 | 0.55703 | 0.94381 | |
R2 | 0.97744 | 0.96735 | 0.97051 | |
Pseudo-second-order | k2 (min−1) | 0.03049 | 0.04891 | 0.07622 |
Qe (mg g−1) | 0.43905 | 0.67943 | 1.01491 | |
R2 | 0.97007 | 0.98866 | 0.93894 | |
Intra-particle diffusion | kp1 (mg g−1 min−1/2) | 0.04231 | 0.06115 | 0.11968 |
C1 (mg g−1) | −0.1032 | −0.00479 | −0.00537 | |
R2 | 0.95309 | 0.97462 | 0.7633 | |
kp2 (mg g−1 min−1/2) | 0.01826 | 0.03653 | 0.04504 | |
C2 (mg g−1) | 0.06712 | 0.1644 | 0.48096 | |
R2 | 0.90826 | 0.99801 | 0.70592 | |
kp3 (mg g−1 min−1/2) | 0.01464 | 0.0234 | 0.02813 | |
C3 (mg g−1) | 0.10244 | 0.28506 | 0.63384 | |
R2 | 0.82341 | 0.86745 | 0.94045 |
Isotherm Models | Parameters | PB300 | PB500 | PB700 |
---|---|---|---|---|
Freundlich | KF (mg g−1) | 0.08096 | 0.1301 | 0.14698 |
1/n | 0.83298 | 0.75967 | 0.78006 | |
R2 | 0.9719 | 0.99629 | 0.99526 | |
Langmuir | Qm (mg g−1) | 11.86624 | 17.84988 | 23.41387 |
KL (L mg−1) | 0.00428 | 0.00326 | 0.00302 | |
R2 | 0.96536 | 0.98863 | 0.98996 | |
Temkin | b (J mol−1) | 75.9999 | 70.38249 | 53.9583 |
KT (L mg−1) | 0.30714 | 0.32394 | 0.36328 | |
R2 | 0.76422 | 0.80649 | 0.79397 |
Biochar | PC1 | PC2 | Overall Score | Rank |
---|---|---|---|---|
PB300 | −3.61 | 1.38 | −2.12 | 3 |
PB300 | −4.11 | 1.77 | −2.11 | |
PB300 | −3.23 | 1.05 | −2.35 | |
PB500 | −1.14 | −2.02 | −3.13 | 2 |
PB500 | −1.39 | −1.87 | −3.22 | |
PB500 | −0.83 | −2.20 | −3.06 | |
PB700 | 4.98 | 0.60 | 6.72 | 1 |
PB700 | 5.04 | 0.61 | 7.16 | |
PB700 | 4.31 | 0.66 | 7.62 |
Biochar | Adsorption Capacity (mg/g) | Factors Controlling Phosphorus Adsorption | References |
---|---|---|---|
Poultry manure biochar with MgCl2 | 163.6~250.8 | CEC (cations) | [15] |
Sugar beet tailings | 0.133 | Relatively high surface area (336 m2 g−1) | [41,58] |
Magnetic orange peel biochar | 0.219~1.24 | Iron oxides | |
Mg-modified biochar | 129.79 | Highest BET surface areas (1440 m2 g−1) and pore volumes | [59] |
Calcium-rich biochar | 147.06 | Increase in the precipitation process | [60] |
Rice straw | 61.57 | Surface of metal (hydr)oxides, ion exchange, and surface precipitation through Lewis acid–base interactions | [62] |
Sugarcane harvest residue | 121.25 | Surface electrostatic attraction and precipitation with impregnated MgO and surface inner-sphere complexation with Fe oxide | [63] |
PB300/PB500 | 11.86~17.84 | High cation (Ca2+, Mg2+, Fe3+, and Al3+) content | This work |
PB700 | 23.41 | Large specific surface area (279.37 m2 g−1) and high cation (Ca2+, Mg2+, Fe3+, and Al3+) content | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.; Liu, S.; Liu, Y.; Shi, W.; Ma, H. Structural Characteristics and Adsorption of Phosphorus by Pineapple Leaf Biochar at Different Pyrolysis Temperatures. Agronomy 2024, 14, 2923. https://doi.org/10.3390/agronomy14122923
Song S, Liu S, Liu Y, Shi W, Ma H. Structural Characteristics and Adsorption of Phosphorus by Pineapple Leaf Biochar at Different Pyrolysis Temperatures. Agronomy. 2024; 14(12):2923. https://doi.org/10.3390/agronomy14122923
Chicago/Turabian StyleSong, Shuhui, Siru Liu, Yanan Liu, Weiqi Shi, and Haiyang Ma. 2024. "Structural Characteristics and Adsorption of Phosphorus by Pineapple Leaf Biochar at Different Pyrolysis Temperatures" Agronomy 14, no. 12: 2923. https://doi.org/10.3390/agronomy14122923
APA StyleSong, S., Liu, S., Liu, Y., Shi, W., & Ma, H. (2024). Structural Characteristics and Adsorption of Phosphorus by Pineapple Leaf Biochar at Different Pyrolysis Temperatures. Agronomy, 14(12), 2923. https://doi.org/10.3390/agronomy14122923