UAV-Based Multispectral Inversion of Integrated Cotton Growth
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Test Area
2.1.1. Location and Climatic Conditions
2.1.2. Experimental Design and Layout
2.2. UAV Image Acquisition and Pre-Processing
2.2.1. Ground Sampling
2.2.2. Cotton Canopy Image Acquisition
2.2.3. Image Pre-Processing
2.3. Construction of Integrated Cotton Growth Indicators
2.4. Cotton Integrated Growth Prediction Model Construction
3. Results
3.1. Analysis of Ground-Truthing Data
3.2. Correlation Analysis
3.3. Quantitative Evaluation of Radiation Correction
3.4. Modelling and Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, C.; Everitt, J.H.; Bradford, J.M.; Murden, D. Airborne Hyperspectral Imagery and Yield Monitor Data for Mapping Cotton Yield Variability. Precis. Agric. 2004, 5, 445–461. [Google Scholar] [CrossRef]
- Lan, Y.; Deng, X.; Zeng, G. Advances in diagnosis of crop diseases, pests and weeds by UAV remote sensing. Smart Agric. 2019, 1, 1–19. [Google Scholar]
- Tatsumi, K.; Yamashiki, Y.; Torres, M.A.C.; Taipe, C.L.R. Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+ data. Comput. Electron. Agric. 2015, 115, 171–179. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Khoshtaghaza, M.H.; Minaei, S.; Bahareh, J. Vision-based pest detection based on SVM classification method. Comput. Electron. Agric. 2017, 137, 52–58. [Google Scholar] [CrossRef]
- Cheng, M.; Penuelas, J.; McCabe, M.F.; Atzberger, C.; Jiao, X.; Wu, W.; Jin, X. Combining multi-indicators with machine-learning algorithms for maize yield early prediction at the county-level in China. Agric. For. Meteorol. 2022, 323, 109057. [Google Scholar] [CrossRef]
- Chen, P.; Xu, W.; Zhan, Y.; Wang, G.; Yang, W.; Lan, Y. Determining application volume of unmanned aerial spraying systems for cotton defoliation using remote sensing images. Comput. Electron. Agric. 2022, 196, 106912. [Google Scholar] [CrossRef]
- Lan, Y.; Chen, S. Current status and trends of plant protection UAV and its spraying technology in China. Int. J. Precis. Agric. Aviat. 2018, 1, 1–9. [Google Scholar] [CrossRef]
- Tahir, M.N.; Lan, Y.; Zhang, Y.; Wang, Y.; Nawaz, F.; Shah, M.A.A.; Gulzar, A.; Qureshi, W.S.; Naqvi, S.M.; Naqvi, S.Z.A. Real time estimation of leaf area index and groundnut yield using multispectral UAV. Int. J. Precis. Agric. Aviat. 2020, 3, 1–6. [Google Scholar]
- Pan, F.; Li, W.; Lan, Y.; Liu, X.; Miao, J.; Xiao, X.; Xu, H.; Lu, L.; Zhao, J. SPAD inversion of summer maize combined with multi-source remote sensing data. Int. J. Precis. Agric. Aviat. 2021, 4, 45–52. [Google Scholar] [CrossRef]
- Wang, Q.; Che, Y.; Chai, H.; Shao, K.; Li, B.G.; Ma, Y.T. Quantitative Evaluation of Sugar Beet Plant Height Based on UAV-RGB and UAV-LiDAR. Trans. Chin. Soc. Agric. Mach. 2020, 52, 178–184. [Google Scholar]
- Wang, Y.; Li, F.; Wang, W.; Chen, X.; Chang, Q. Monitoring of winter wheat nitrogen nutrition based on UAV hyperspectral images. Trans. Chin. Soc. Agric. Eng. 2020, 36, 31–39. [Google Scholar]
- Zhang, L.; Sun, B.; Zhao, D.; Shan, C.; Wang, G.; Song, C.; Chen, P.; Lan, Y. Prediction of cotton FPAR and construction of defoliation spraying prescription map based on multi-source UAV images. Comput. Electron. Agric. 2024, 220, 108897. [Google Scholar] [CrossRef]
- Pu, Y.; Qi, H.; Yang, F.; Shao, F. Estimating lai for cotton using multisource uav data and a modified universal model. Remote Sens. 2022, 14, 4272. [Google Scholar] [CrossRef]
- Pei, H.; Feng, H.; Li, C.; Jin, X.; Li, Z.; Yang, G. Remote sensing monitoring of winter wheat growth with UAV based on comprehensive index. Trans. Chin. Soc. Agric. Eng. 2017, 33, 74–82. [Google Scholar]
- Zhang, C. Remote Sensing Monitoring of Winter Wheat Growth Based on Comprehensive Growth Parameters. Master’s Thesis, Xi’an University of Science and Technology, Xi’an, China, 2018. [Google Scholar]
- Zhao, J.; Ma, S.; Fang, C. Growth Monitoring of Spring Maize Using UAV Multispectral Imaging Based on Entropy Weight—Fuzzy Comprehensive Evaluation Method. Trans. Chin. Soc. Agric. Mach. 2024, 55, 214–224. [Google Scholar]
- Feng, W. Summer Corn Growth Monitoring and Yield Estimation by UAV-Based Multispectral Remote Sensing. Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2022. [Google Scholar]
- Xu, Y.F.; Cheng, Q.; Wei, X.P.; Yang, B.; Xia, S.S.; Rui, T.T.; Zhang, S.W. Monitoring of winter wheat growth under UAV using variation coefficient method and optimized neural network. Trans. Chin. Soc. Agric. Eng. 2021, 37, 71–80. [Google Scholar]
- Lan, Y.; Huang, Z.; Deng, X.; Zhu, Z.; Huang, H.; Zheng, Z.; Lian, B.; Zeng, G.; Tong, Z. Comparison of machine learning methods for citrus greening detection on UAV multispectral images. Comput. Electron. Agric. 2020, 171, 105234. [Google Scholar] [CrossRef]
- Liang, L.; Di, L.; Zhang, L.; Deng, M.; Qin, Z.; Zhao, S.; Lin, H. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sens. Environ. 2015, 165, 123–134. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Kang, Y.; Özdoğan, M.; Zipper, S.C.; Román, M.O.; Walker, J.; Hong, S.Y.; Marshall, M.; Magliulo, V.; Moreno, J.; Alonso, L.; et al. How Universal Is the Relationship between Remotely Sensed Vegetation Indices and Crop Leaf Area Index? A Global Assessment. Remote Sens. 2016, 8, 597. [Google Scholar] [CrossRef]
- Díaz, B.M.; Blackburn, G. Remote sensing of mangrove biophysical properties: Evidence from a laboratory simulation of the possible effects of background variation on spectral vegetation indices. Int. J. Remote Sens. 2003, 24, 53–73. [Google Scholar] [CrossRef]
- Feng, W.; Wu, Y.; He, L.; Ren, X.; Wang, Y.; Hou, G.; Wang, Y.; Liu, W.; Guo, T. An optimized non-linear vegetation index for estimating leaf area index in winter wheat. Precis. Agric. 2019, 20, 1157–1176. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Hong, S.-Y.; Kim, M.-S.; Kwak, H.-K. Using GNDVI to estimate leaf nitrogen contents in rice canopy. In Proceedings of the KSRS Conference, Daejeon, Republic of Korea, 29–30 March 2007; pp. 43–48. [Google Scholar]
- Olson, D.; Chatterjee, A.; Franzen, D.W.; Day, S.S. Relationship of drone-based vegetation indices with corn and sugarbeet yields. Agron. J. 2019, 111, 2545–2557. [Google Scholar] [CrossRef]
- Zha, H.; Miao, Y.; Wang, T.; Li, Y.; Zhang, J.; Sun, W.; Feng, Z.; Kusnierek, K. Improving Unmanned Aerial Vehicle Remote Sensing-Based Rice Nitrogen Nutrition Index Prediction with Machine Learning. Remote Sens. 2020, 12, 215. [Google Scholar] [CrossRef]
- Verrelst, J.; Schaepman, M.E.; Koetz, B.; Kneubühler, M. Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sens. Environ. 2008, 112, 2341–2353. [Google Scholar] [CrossRef]
- Qi, Y.; Hao, Y.; Kai, H.; Yuanyuan, Z.; Liangsheng, S. Estimation of leaf area index of sugarcane using crop surface model based on UAV image. Trans. Chin. Soc. Agric. Eng. 2017, 33, 104–111. [Google Scholar]
- Fern, R.R.; Foxley, E.A.; Bruno, A.; Morrison, M.L. Suitability of NDVI and OSAVI as estimators of green biomass and coverage in a semi-arid rangeland. Ecol. Indic. 2018, 94, 16–21. [Google Scholar] [CrossRef]
- Courel, M.-F.; Chamard, P.C.; Guenegou, M.; Lerhun, J.; Levasseur, J.; Togola, M. Utilisation des bandes spectrales du vert et du rouge pour une meilleure évaluation des formations végétales actives. In Proceedings of the Congrès AUPELF-UREF, Sherbrooke, QC, Canada, 21–23 October 1991. [Google Scholar]
- Lu, B.; He, Y.; Dao, P.D. Comparing the Performance of Multispectral and Hyperspectral Images for Estimating Vegetation Properties. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1784–1797. [Google Scholar] [CrossRef]
- Ren, H.; Zhou, G.; Zhang, F. Using negative soil adjustment factor in soil-adjusted vegetation index (SAVI) for aboveground living biomass estimation in arid grasslands. Remote Sens. Environ. 2018, 209, 439–445. [Google Scholar] [CrossRef]
- El-Shikha, D.M.; Barnes, E.; Clarke, T.; Hunsaker, D.; Haberland, J.; Pinter, P.; Waller, P.; Thompson, T. Remote sensing of cotton nitrogen status using the canopy chlorophyll content index (CCCI). Trans. ASAB 2008, 51, 73–82. [Google Scholar] [CrossRef]
- Pôças, I.; Rodrigues, A.; Gonçalves, S.; Costa, P.M.; Gonçalves, I.; Pereira, L.S.; Cunha, M. Predicting grapevine water status based on hyperspectral reflectance vegetation indices. Remote Sens. 2015, 7, 16460–16479. [Google Scholar] [CrossRef]
- Ballester, C.; Brinkhoff, J.; Quayle, W.C.; Hornbuckle, J. Monitoring the effects of water stress in cotton using the green red vegetation index and red edge ratio. Remote Sens. 2019, 11, 873. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Wang, S.; Wu, Y. Extraction of vegetation information from visible unmanned aerial vehicle images. Trans. Chin. Soc. Agric. Eng. 2015, 31, 152–159. [Google Scholar]
- Dash, J.; Curran, P. The MERIS terrestrial chlorophyll index. Taylor Fr. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Li, W.; Mu, M.; Chen, G.; Liu, W.; Liu, Y.; Liu, C. Research on Remote Sensing Inversion of Suaeda Salsa’s Biomass Based on TSAVI for OLI Band Simulation. Guang Pu Xue Yu Guang Pu Fen Xi = Guang Pu 2016, 36, 1418–1422. [Google Scholar]
- Hakim, L.; Manijo, M.; Muliasari, A.A. Application of the NDVI and ARVI methods in measuring estimated productivity of oil palm plants using Landsat 8 Imagery at PT. Hindoli Cargill Indonesia. In Proceedings of the 1st International Seminar on Tropical Bioresources Advancement and Technology (BIO Web of Conferences), Online, 28–29 May 2024; p. 01001. [Google Scholar]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Davidson, C.; Jaganathan, V.; Sivakumar, A.N.; Czarnecki, J.M.P.; Chowdhary, G. NDVI/NDRE prediction from standard RGB aerial imagery using deep learning. Comput. Electron. Agric. 2022, 203, 107396. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, J.; Zhang, D.; Zhou, X.; Liu, X.; Xie, J. Comparative Study on the Effect of Visible and Multispectral Sensors in Rice Sheath Blight Disease Assessment under Low Altitude Remote Sensing Platform. Spectrosc. Spectr. Anal. 2019, 39, 1192–1198. [Google Scholar]
- Shao, G.; Han, W.; Zhang, H.; Liu, S.; Wang, Y.; Zhang, L.; Cui, X. Mapping maize crop coefficient Kc using random forest algorithm based on leaf area index and UAV-based multispectral vegetation indices. Agric. Water Manag. 2021, 252, 106906. [Google Scholar] [CrossRef]
- Leo, B. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar]
- Liu, Z.; Guo, P.; Liu, H.; Fan, P.; Zeng, P.; Liu, X.; Feng, C.; Wang, W.; Yang, F. Gradient boosting estimation of the leaf area index of apple orchards in uav remote sensing. Remote Sens. 2021, 13, 3263. [Google Scholar] [CrossRef]
- Cubero-Castan, M.; Schneider-Zapp, K.; Bellomo, M.; Shi, D.; Rehak, M.; Strecha, C. Assessment of the Radiometric Accuracy in A Target Less Work Flow Using Pix4D Software. In Proceedings of the 2018 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 23–26 September 2018; pp. 1–4. [Google Scholar]
- Cheng, D.; He, W.; Fu, C.; Zhao, W.; Wang, J.; Zhao, A. Comprehensive Growth Monitoring of Winter Wheat by Integrating Drone Spectral Information and Texture Features. Trans. Chin. Soc. Agric. Mach. 2024, 55, 250–261. [Google Scholar]
Multi-Spectral Camera Parameter Settings | Numerical Value |
---|---|
effective pixel | 2 million |
camera interval (between photos) | 2 s |
ground resolution | 1 cm/pixel |
flight level | 25 m |
Note | Vegetation Index | Formula |
---|---|---|
1 | NDVI [21] | |
2 | SR [22] | |
3 | EVI [22] | |
4 | DVI [23] | |
5 | NLI [24] | |
6 | GNDVI [25] | |
7 | RENDVI [26] | |
8 | MDD [27] | |
9 | SIPI [28] | ) |
10 | NGI [29] | ) |
11 | OSAVI [30] | |
12 | MNLI [24] | |
13 | WDRVI [27] | ( |
14 | VI [31] | |
15 | RESR [32] | |
16 | SAVI [33] | |
17 | CCCI [34] | |
18 | VARI [35] | |
19 | GRVI [36] | |
20 | NGBDI [37] | |
21 | NGRDI [37] | |
22 | RGRI [35] | |
23 | MTCI [38] | |
24 | TSAVI [39] | |
25 | ARVI [40] | |
26 | TVI [41] | |
27 | NDRE [42] | |
28 | NDI [43] |
DATA SET | Sample | Maximum | Minimum | Average | Standard Deviation | Coefficient of Variation | |
---|---|---|---|---|---|---|---|
SPAD | boll stage | 32 | 64.7 | 34.2 | 50.1 | 5.3 | 10.7 |
fluffing stage | 32 | 64.1 | 39.6 | 54.5 | 4.9 | 9.1 | |
diapause stage | 32 | 64.3 | 34.8 | 50.1 | 5.7 | 11.3 | |
LAI | boll stage | 32 | 4.2 | 0.1 | 3.3 | 1.2 | 38 |
fluffing stage | 32 | 4.3 | 0.36 | 2.5 | 0.82 | 32 | |
diapause stage | 32 | 4.4 | 0.73 | 2.8 | 0.69 | 24 |
CGI | RF | SVM | GBDT | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | |
Before calibration | 0.79 | 0.050 | 0.66 | 0.067 | 0.74 | 0.065 |
After calibration | 0.86 | 0.037 | 0.76 | 0.061 | 0.85 | 0.044 |
Model Variable | RF | SVM | GBDT | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | |
SPAD | 0.71 | 0.110 | 0.86 | 0.070 | 0.85 | 0.088 |
LAI | 0.77 | 0.090 | 0.86 | 0.070 | 0.67 | 0.120 |
CGI | 0.86 | 0.037 | 0.76 | 0.061 | 0.85 | 0.044 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, H.; Xue, C.; Wang, G.; Lan, Y.; Wang, H.; Song, C. UAV-Based Multispectral Inversion of Integrated Cotton Growth. Agronomy 2024, 14, 2903. https://doi.org/10.3390/agronomy14122903
Gu H, Xue C, Wang G, Lan Y, Wang H, Song C. UAV-Based Multispectral Inversion of Integrated Cotton Growth. Agronomy. 2024; 14(12):2903. https://doi.org/10.3390/agronomy14122903
Chicago/Turabian StyleGu, Haozheng, Chen Xue, Guobin Wang, Yubin Lan, Huizheng Wang, and Cancan Song. 2024. "UAV-Based Multispectral Inversion of Integrated Cotton Growth" Agronomy 14, no. 12: 2903. https://doi.org/10.3390/agronomy14122903
APA StyleGu, H., Xue, C., Wang, G., Lan, Y., Wang, H., & Song, C. (2024). UAV-Based Multispectral Inversion of Integrated Cotton Growth. Agronomy, 14(12), 2903. https://doi.org/10.3390/agronomy14122903