Potato Cropping System and Variety Impacts on Soil Properties, Soilborne Diseases, and Tuber Yield in a Long-Term Field Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cropping Systems
2.2. Field Set-Up and Management
2.3. Soil Properties
2.4. Tuber Yield and Size
2.5. Disease Assessments
2.6. Statistical Analyses
3. Results
3.1. Soil Properties
3.2. Tuber Yield and Size
3.3. Disease Assessments
3.4. Correlation Analysis
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). International Day of Potato: Highlights. Available online: https://www.fao.org/newsroom/detail/international-day-of-potato--at-inaugural-celebration--fao-highlights-crop-s-significance-and-further-potential/en (accessed on 26 August 2024).
- National Agricultural Statistics Service (NASS). 2023 State Agricultural Overview for Maine; New England Field Office: Concord, NH, USA, 2023. Available online: https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=MAINE (accessed on 26 August 2024).
- Larkin, R.P. Soil health paradigms and implications for disease management. Annu. Rev. Phytopathol. 2015, 53, 199–221. [Google Scholar] [CrossRef] [PubMed]
- Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and intensification of agriculture for global food security. Environ. Int. 2019, 132, 105078. [Google Scholar] [CrossRef] [PubMed]
- Grandy, A.S.; Porter, G.A.; Erich, M.S. Organic amendment and rotation crop effects on the recovery of soil organic matter and aggregation in potato cropping systems. Soil Sci. Soc. Am. J. 2002, 66, 1311–1319. [Google Scholar] [CrossRef]
- Nyiraneza, J.; Thompson, B.; Geng, X.; He, J.; Jiang, Y.; Fillmore, S.; Stiles, K. Changes in soil organic matter over 18 years in Prince Edward Island, Canada. Can. J. Soil Sci. 2017, 97, 745–756. [Google Scholar] [CrossRef]
- Powell, S.M.; McPhee, J.E.; Dean, G.; Hinton, S.; Sparrow, L.A.; Wilson, C.R.; Tegg, R.S. Managing soil health and crop productivity in potato: A challenging test system. Soil Res. 2020, 58, 697–712. [Google Scholar] [CrossRef]
- Larkin, R.P.; Griffin, T.S.; Honeycutt, C.W. Rotation and cover crop effects on soilborne potato diseases, tuber yield, and soil microbial communities. Plant Dis. 2010, 94, 1491–1502. [Google Scholar] [CrossRef]
- Peters, R.D.; Sturz, A.V.; Carter, M.R.; Sanderson, J.B. Influence of crop rotation and conservation tillage practices on the severity of soil-borne potato diseases in temperate humid agriculture. Can. J. Soil Sci. 2004, 84, 397–402. [Google Scholar] [CrossRef]
- Carter, M.R.; Sanderson, J.B. Influence of conservation tillage and rotation length on potato productivity, tuber disease and soil quality parameters on a fine sandy loam in eastern Canada. Soil Tillage Res. 2001, 63, 1–13. [Google Scholar] [CrossRef]
- Mohr, R.M.; Volkmar, K.; Derksen, D.A.; Irvine, R.B.; Khakbazan, M.; McLaren, D.L.; Monreal, M.A.; Moulin, A.P.; Tomasiewicz, D.J. Effect of rotation on crop yield and quality in an irrigated potato system. Am. J. Potato Res. 2011, 88, 346–359. [Google Scholar] [CrossRef]
- Wright, P.J.; Falloon, R.E.; Hedderly, D. A long-term vegetable crop rotation study to determine effects on soil microbial communities and soilborne diseases of potato and onion. N. Z. J. Crop Hortic. Sci. 2017, 45, 29–54. [Google Scholar] [CrossRef]
- Essah, S.Y.C.; Delgado, J.A.; Dillon, M.; Sparks, R. Cover crops can improve potato tuber yield and quality. HortTechnology 2012, 22, 185–190. [Google Scholar] [CrossRef]
- N’Dayegamiye, A.; Nyiraneza, J.; Grenier, M.; Bippfubusa, M.; Drapeau, A. The benefits of crop rotation including cereals and green manure on potato yield and nitrogen nutrition and soil properties. Adv. Crop Sci. Technol. 2017, 5, 279. [Google Scholar] [CrossRef]
- Hemkemeyer, M.; Schwalb, S.A.; Berendonk, C.; Geisen, S.; Heinze, S.; Joergensen, R.G.; Li, R.; Lövenich, P.; Xiong, W.; Wichern, F. Potato yield and quality are linked to cover crop and soil microbiome, respectively. Biol. Fertil. Soils 2024, 60, 525–545. [Google Scholar] [CrossRef]
- Bernard, E.; Larkin, R.P.; Tavantzis, S.; Erich, M.S.; Alyokhin, A.; Gross, S. Rapeseed rotation, compost, and biocontrol amendments reduce soilborne diseases and increase tuber yield in organic and conventional potato production systems. Plant Soil 2014, 374, 611–627. [Google Scholar] [CrossRef]
- Blanchet, G.; Gavazov, K.; Bragazza, L.; Sinaj, S. Responses of soil properties and crop yields to different inorganic and organic amendments in a Swiss conventional farming system. Agric. Ecosyst. Environ. 2016, 230, 116–126. [Google Scholar] [CrossRef]
- Ninh, H.T.; Grandy, A.S.; Wickings, K.; Snapp, S.S.; Kirk, W.; Hao, J. Organic amendment effects on potato productivity and quality are related to soil microbial activity. Plant Soil 2015, 386, 223–236. [Google Scholar] [CrossRef]
- Hao, J.; Ashley, K. Irreplaceable role of amendment-based strategies to enhance soil health and disease suppression in potato production. Microorganisms 2021, 9, 1660. [Google Scholar] [CrossRef]
- Hou, J.; Xing, C.; Zhang, J.; Wang, Z.; Liu, M.; Duan, Y.; Zhao, H. Increase in potato yield by the combined application of biochar and organic fertilizer: Key role of rhizosphere microbial diversity. Front. Plant Sci. 2024, 15, 1389864. [Google Scholar] [CrossRef]
- Larkin, R.P.; Griffin, T.S. Control of soilborne diseases of potato using Brassica green manures. Crop Prot. 2007, 26, 1067–1077. [Google Scholar] [CrossRef]
- McGuire, A.M. Mustard Green Manure Use in Eastern Washington State. In Sustainable Potato Production: Global Case Studies; He, Z., Larkin, R.P., Honeycutt, C.W., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 117–130. [Google Scholar] [CrossRef]
- Wiggins, B.E.; Kinkel, L.L. Green manures and crop sequences influence potato diseases and pathogen inhibitory activity of indigenous streptomycetes. Phytopathology 2005, 95, 178–185. [Google Scholar] [CrossRef]
- Ahmadu, T.; Abdaullahi, A.; Ahmad, K. The Role of Crop Protection in Sustainable Potato (Solanum tuberosum L.) Production to Alleviate Global Starvation: An Overview. In Solanum tuberosum: A Promising Crop for Starvation Problem; Yildiz, Y., Ozgen, Y., Eds.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Devaux, A.; Goffart, J.-P.; Kromann, P.; Andrade-Piedra, J.; Polar, V.; Hareau, G. The potato of the future: Opportunities and challenges in sustainable agri-food systems. Potato Res. 2021, 64, 681–720. [Google Scholar] [CrossRef] [PubMed]
- Dingenen, J.V.; Hanzolova, K.; Salem, M.A.A.; Abel, C.; Seibert, T.; Giavalisco, P.; Wahl, V. Limited nitrogen availability has culitivar-dependent effects on potato tuber yield and tuber quality traits. Food Chem. 2019, 288, 170–177. [Google Scholar] [CrossRef]
- Stefaniak, T.R.; Fitzcollins, S.; Figueroa, R.; Thompson, A.L.; Varley, C.S.; Shannon, L.M. Genotype and variable nitrogen effects on tuber yield and quality for red fresh market potatoes in Minnesota. Agronomy 2021, 11, 255. [Google Scholar] [CrossRef]
- Tessema, L.; Mohammed, W.; Abebe, T. Evaluation of potato varieties (Solanum tuberosum) varieties for yield and some agronomic traits. Open Agric. 2020, 5, 63–74. [Google Scholar] [CrossRef]
- Wang, Y.; Brandt, T.L.; Olsen, N.L. A historical look at Russet Burbank potato (Solanum tuberosum) quality under different storage regimes. Am. J. Potato Res. 2016, 93, 474–484. [Google Scholar] [CrossRef]
- Potato Association of America (PAA). Russet Burbank. Available online: https://potatoassociation.org/varieties/russet-potato-varieties/russet-burbank-solanum-tuberosum/ (accessed on 23 September 2024).
- Porter, G.A.; Ocaya, P.; Mills, T. Caribou Russet: A new russet potato variety for fresh market and fry processing. Am. J. Potato Res. 2017, 94, 239. [Google Scholar] [CrossRef]
- University of Maine and Maine Potato Board. Variety Release: Caribou Russet. News Release. Available online: https://www.mainepotatoes.com/the-university-of-maine-and-the-maine-potato-board-release-the-new-potato-variety-caribou-russet/ (accessed on 26 August 2024).
- Larkin, R.P.; Honeycutt, C.W.; Griffin, T.S.; Olanya, O.M.; Halloran, J.M.; He, Z. Effects of different potato cropping system approaches and water management on soilborne diseases and soil microbial communities. Phytopathology 2011, 101, 58–67. [Google Scholar] [CrossRef]
- Larkin, R.P.; Honeycutt, C.W.; Griffin, T.S.; Olanya, O.M.; He, Z.; Halloran, J.M. Cumulative and residual effects of different potato cropping system management strategies on soilborne diseases and soil microbial communities over time. Plant Pathol. 2017, 66, 437–449. [Google Scholar] [CrossRef]
- Larkin, R.P.; Griffin, T.S.; Honeycutt, C.W.; Olanya, M.; He, Z. Potato cropping system management strategy impacts soil physical, chemical, and biological properties over time. Soil Tillage Res. 2021, 213, 105148. [Google Scholar] [CrossRef]
- Larkin, R.P.; Honeycutt, C.W.; Griffin, T.S.; Olanya, O.M.; He, Z. Potato growth and yield characteristics under different potato cropping system management strategies in northeastern U.S. Agronomy 2021, 11, 165. [Google Scholar] [CrossRef]
- Larkin, R.P. Long-Term Effects of Compost Amendments and Brassica Green Manures in Potato Cropping Systems on Soil and Crop Health and Productivity. Agronomy 2022, 12, 2804. [Google Scholar] [CrossRef]
- Bethke, P.C.; Nassar, A.M.K.; Kubow, S.; Le Clerc, Y.N.; Li, X.-Q.; Haroon, M.; Molen, T.; Bamberg, J.; Martin, M.; Donnelly, D.J. History and origin of Russet Burbank (Netted Gem) a sport of Burbank. Am. J. Potato Res. 2014, 91, 594–609. [Google Scholar] [CrossRef]
- Brown, C.R. Russet Burbank: No ordinary potato. HortScience 2015, 50, 157–160. [Google Scholar] [CrossRef]
- Klasek, S.A.; Crants, J.E.; Abbas, T.; Ashley, K.; Bolton, M.L.; Celovsky, M.; Gudmestead, N.C.; Hao, J.; Caballero, J.I.R.; Jahn, C.E.; et al. Potato soil core microbiomes are regionally variable across the continental US. Phytobiomes J. 2024, 8, 168–178. [Google Scholar] [CrossRef]
- Willers, C.; van Rensburg, P.J.J.; Claassens, S. Phospholipid fatty acid profiling of microbial communities—A review of interpretations and recent applications. J. Appl. Microbiol. 2015, 118, 1207–1218. [Google Scholar] [CrossRef]
- United States Department of Agriculture, Agricultural Marketing Service. United States Standards for Grades of Potatoes. 2011. Available online: https://www.ams.usda.gov/sites/default/files/media/Potato_Standard%5B1%5D.pdf (accessed on 26 August 2024).
- Shock, C.C.; Feibert, E.B.G.; Saunders, L.D. Potato yield and quality response to deficit irrigation. HortScience 1998, 33, 655–659. [Google Scholar] [CrossRef]
- Zebarth, B.J.; Fillmore, S.; Watts, S.; Barrett, R.; Comeau, L.-P. Soil factors related to within-field variation in commercial potato fields in Prince Edward Island Canada. Am. J. Potato Res. 2021, 98, 139–148. [Google Scholar] [CrossRef]
- Boiteau, G.; Goyer, C.; Rees, H.W.; Zebarth, Z. Differentiation of potato ecosystems on the basis of relationships among physical, chemical and biological soil parameters. Can. J. Soil Sci. 2014, 94, 463–476. [Google Scholar] [CrossRef]
- Sinton, S.M.; Dellow, S.J.; Jamieson, P.D.; Falloon, R.E.; Shah, F.A.; Meenken, E.D.; Richards, K.K.; Michel, A.J.; Tregurtha, C.S.; McCulloch, J.M. Cropping history affects potato yields in Canterbury, New Zealand. Am. J. Potato Res. 2020, 97, 202–213. [Google Scholar] [CrossRef]
- Sinton, S.M.; Falloon, R.E.; Jamieson, P.D.; Meenken, E.D.; Shah, F.A.; Brown, H.E.; Dellow, S.J.; Michel, A.J.; Fletcher, J.D. Yield depression in New Zealand potato crops associated with soil compaction and soil-borne diseases. Am. J. Potato Res. 2022, 99, 160–173. [Google Scholar] [CrossRef]
- Eremeev, V.; Talgre, L.; Kuhnt, J.; Maeorg, E.; Esmaeilzadeh-Salestani, K.; Alaru, M.; Loit, E.; Runno-Parsons, E.; Luik, A. The soil microbial hydrolytic activity, content of nitrogen and organic carbon were enhanced by organic farming management using cover crops and composts in potato cultivation. ACTA Agric. Scand. B Soil Plant Sci. 2020, 70, 87–94. [Google Scholar] [CrossRef]
- Griffin, T.S.; Porter, G.A. Altering soil carbon and nitrogen stocks in intensively tilled two-year rotations. Biol. Fertil. Soils 2004, 39, 366–374. [Google Scholar]
- Nyiraneza, J.; Chen, D.; Fraser, T.; Comeau, L.-P. Improving soil quality and potato productivity with manure and high-residue cover crops in Eastern Canada. Plants 2021, 10, 1436. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.; Zebarth, B.J.; Burton, D.L.; Goyer, C. Short-term effects of diverse compost products on soil quality in potato production. Soil Sci. Soc. Am. J. 2018, 82, 889–900. [Google Scholar] [CrossRef]
- Abiven, S.; Menasseri, S.; Chenu, C. The effects of organic inputs over time on soil aggregate stability. Soil Biol. Biochem. 2008, 41, 1–12. [Google Scholar] [CrossRef]
- Albaich, R.; Canet, R.; Pomares, F.; Ingelmo, F. Organic matter components and aggregate stability after application of different amendments to a horticultural soil. Bioresour. Technol. 2001, 76, 125–129. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef]
- McGuire, A.; Granatstein, G.; Amara, M. An evaluation of soil improvement practices being used on irrigated soils in the Columbia Basin. Washington State Univ. Ext. Pub. 2017, TB41, 1–8. [Google Scholar]
- Bayal-Gurel, F.; Liyanapathiranage, P.; Mullican, J. Biofumigation: Opportunities and challenges for control of soilborne diseases in nursery production. Plant Health Prog. 2018, 19, 332–337. [Google Scholar] [CrossRef]
- Dutta, T.K.; Khan, M.R.; Phani, V. Plant parasitic nematode management via biofumigation using brassica and non-brassica plants. Curr. Plant Biol. 2019, 17, 17–32. [Google Scholar] [CrossRef]
- Walker, B.A.R.; Powell, S.M.; Tegg, R.S.; Doyle, R.B.; Hunt, I.G.; Wilson, C.R. Ten years of green manuring and biofumigation alters soil characteristics and microbiota. Appl. Soil Ecol. 2023, 187, 104836. [Google Scholar] [CrossRef]
- Ma, D.; Yin, L.; Ju, W.; Li, X.; Liu, X.; Deng, X.; Wang, S. Meta-analysis of green manure effects on soil properties and crop yield in northern China. Field Crops Res. 2021, 266, 108146. [Google Scholar] [CrossRef]
- Morris, E.K.; Fletcher, R.; Veresoglou, S.D. Effective methods of biofumigation: A meta-analysis. Plant Soil 2020, 446, 379–392. [Google Scholar] [CrossRef]
- Chen, D.; Zebarth, B.J.; Goyer, C.; Comeau, L.-P.; Nahar, K.; Dixon, T. Effect of biofumigation on poulation densities of Pratylenchus spp and Verticillium spp. and potato yield in eastern Canada. Am. J. Potato Res. 2022, 99, 229–242. [Google Scholar] [CrossRef]
- Khakbazan, M.; Nyiraneza, J.; Jiang, Y.; Huang, J. Increasing potato profitability through rotation systems and winter cover, nitrogen fertilizer, and supplemental irrigation in Atlantic Canada. Agrosyst. Geosci. Environ. 2023, 6, e20382. [Google Scholar] [CrossRef]
- Larkin, R.P.; Lynch, R.P. Use and effects of different Brassica and other rotation crops on soilborne diseases and yield of potato. Horticulturae 2018, 4, 37. [Google Scholar] [CrossRef]
- Goyer, C.; Neupane, S.; Zebarth, B.J.; Buron, D.L.; Wilson, C.; Sennett, L. Diverse compost products influence soil bacterial and fungal community diversity in a potato crop production system. Appl. Soil Ecol. 2022, 169, 104247. [Google Scholar] [CrossRef]
- Margus, K.; Eremeev, V.; Loit, E.; Runno-Parsons, E.; Maerog, E.; Luik, A.; Talhre, L. Impact of farming system on potato yield and tuber quality in Northern Baltic Sea climate conditions. Agriculture 2022, 12, 568. [Google Scholar] [CrossRef]
- Bonanomi, G.; Lorito, M.; Vinale, F.; Woo, S.L. Organic amendments, benficial microbes, and soil microbiota: Toward a unified framework for disease suppression. Annu. Rev. Phytopathol. 2018, 56, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, S.; Naorem, A.K.; Lal, R.; Dalal, R.C.; Sinha, N.K.; Patra, A.K.; Chaudhari, S.K. Disease-suppressive soils—Beyond food production: A critical review. J. Soil Sci. Plant Nutr. 2021, 21, 1437–1465. [Google Scholar] [CrossRef]
- Wood, S.A.; Bowman, M. Large-scale farmer-led experiment demonstrates positive impact of cover crops on multiple soil health indicators. Nat. Food 2021, 2, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Carter, M.R.; Holmstrom, D.; Sanderson, J.B.; Ivany, J.A.; DeHaan, R. Comparison of conservation with conventional tillage for potato production in Atlantic Canada: Crop productivity, soil physical properties and weed control. Can. J. Soil Sci. 2005, 85, 453–461. [Google Scholar] [CrossRef]
- Griffin, T.S.; Larkin, R.P.; Honeycutt, C.W. Delayed tillage and cover crop effects in potato systems. Am. J. Potato Res. 2009, 86, 79–87. [Google Scholar] [CrossRef]
- Blecharczyk, A.; Kowalczewski, P.; Sawinska, Z.; Rybacki, P.; Radzikowska-Kujawska, D. Impact of crop sequence and fertilization on potato yield in a long-term study. Plants 2023, 12, 495. [Google Scholar] [CrossRef]
- Belete, T.; Yadete, E. Effect of mono cropping on soil health and fertility management for sustainable agriculture practices: Review. J. Plant Sci. 2023, 11, 192–197. [Google Scholar] [CrossRef]
- Qin, J.; Bian, C.; Duan, S.; Wang, W.; Li, G.; Jin, L. Effects of different rotation cropping systems on potato yield, rhizosphere microbial community and soil biochemical properties. Front. Plant Sci. 2022, 13, 999730. [Google Scholar] [CrossRef]
- Alva, A.; Fan, M.; Qing, C.; Rosen, R.; Ren, H. Improving nutrient-use efficiency in Chinese potato production: Experiences from the United States. J. Crop Improv. 2011, 1, 46–85. [Google Scholar] [CrossRef]
- Liu, K.; Du, J.; Zhong, Y.; Shen, Z.; Yu, X. The response of potato tuber yield, nitrogen uptake, soil nitrate nitrogen to different nitrogen rates in red soil. Sci. Rep. 2021, 11, 22506. [Google Scholar] [CrossRef]
Cropping System Parameters | ||||
---|---|---|---|---|
Name | Abbreviation | Length | Rotation Sequence | Features |
Status Quo | SQ | 2 years | Barley/Red clover—Potato | Standard practice rotation (Control) |
Soil Conserving | SC | 3 years | Barley/Ryegrass—Canola/winter rye cover (Limited tillage, straw mulch cover) | Increased length (3 years), cover crops |
Soil Improving | SI | 3 years | Barley/Ryegrass—Canola/winter rye cover | History of compost amendment (2004–2010) |
Disease Suppressive | DS | 3 years | Barley/Ryegrass—Mustard GM/rapeseed cover Sudangrass GM/Rye cover | Biofumigant Brassica green manure crop |
Continuous Potato | PP | 1 year | Potato—Potato | Nonrotation (negative) control |
Average Daily Temperature (°C) | Rainfall (cm) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Treatment | 2019 | 2020 | 2021 | 2022 | LTA | 2019 | 2020 | 2021 | 2022 | LTA |
May | 9.9 | 11.3 | 12.0 | 12.3 | 11.4 | 7.3 | 9.2 | 10.4 | 7.9 | 8.7 |
June | 16.2 | 18.1 | 18.6 | 15.0 | 16.4 | 12.6 | 4.0 | 7.5 | 14.6 | 8.6 |
July | 20.9 | 21.0 | 19.0 | 20.1 | 19.0 | 5.5 | 8.9 | 14.1 | 13.0 | 9.4 |
August | 18.4 | 18.6 | 20.7 | 19.8 | 18.2 | 4.6 | 2.5 | 7.5 | 10.9 | 10.0 |
September | 12.6 | 13.8 | 14.8 | 15.0 | 13.2 | 12.2 | 1.1 | 19.0 | 8.5 | 8.7 |
Season avg | 15.6 | 16.6 | 17.0 | 16.4 | 15.6 | 42.2 | 25.7 | 58.5 | 54.9 | 45.5 |
System y | pH | OM | Aggstab | NO3 | NH4 | P | K | Ca | Mg | CEC |
---|---|---|---|---|---|---|---|---|---|---|
(%) | (%) | mg/kg | ||||||||
SI | 5.74 ab | 5.32 a | 64.7 a | 12.9 b | 4.7 ab | 101.0 b | 213.7 b | 1058 a | 191.6 a | 10.2 a |
DS | 5.70 bc | 4.10 b | 62.9 ab | 9.8 c | 4.5 ab | 95.3 d | 187.5 c | 856 c | 166.9 c | 8.9 c |
SC | 5.78 a | 3.92 b | 64.0 a | 10.2 c | 4.3 b | 94.6 d | 185.1 c | 880 bc | 175.1 b | 8.9 c |
SQ | 5.63 c | 3.84 b | 61.1 bc | 15.9 a | 5.1 a | 108.8 b | 211.4 b | 899 b | 145.9 d | 9.4 b |
PP | 5.48 d | 3.52 c | 59.1 c | 9.2 c | 4.5 ab | 127.3 a | 253.9 a | 860 c | 127.2 e | 9.5 b |
LSD | 0.07 | 0.14 | 2.2 | 1.4 | 0.7 | 4.1 | 14.1 | 35 | 7.5 | 0.4 |
Cropping System y | TOC | Active C | ACE | CO2 Resp. |
---|---|---|---|---|
(%) | (mg/kg soil) | Protein | (mg/kg soil) | |
SI | 3.01 a | 685.0 a | 14.4 a | 161.2 a |
DS | 2.25 b | 505.7 b | 11.0 b | 132.5 c |
SC | 2.21 b | 517.2 b | 11.0 b | 132.1 c |
SQ | 2.22 b | 521.1 b | 10.8 b | 141.2 b |
PP | 2.07 c | 452.2 c | 10.2 c | 111.9 d |
LSD | 0.08 | 25.2 | 0.4 | 6.9 |
Sys y | Biomass | Diver. | Bact | Fungi | Actin | G- | G+ | AMF | Sap | Und | FBR | G+/G− |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ng/g | Index | % | Ratio | Ratio | ||||||||
SI | 1362 a | 1.43 a | 41.8 a | 8.1 a | 9.6 a | 13.2 a | 28.6 a | 2.68 a | 5.39 ab | 50.1 b | 0.193 ab | 2.20 b |
DS | 967 bc | 1.38 a | 37.4 a | 6.4 ab | 8.6 a | 9.8 ab | 27.6 a | 1.59 abc | 4.64 abc | 56.1 b | 0.166 abc | 3.22 ab |
SC | 1153 ab | 1.37 a | 37.3 a | 5.2 bc | 8.7 a | 9.1 bc | 27.0 a | 1.72 bc | 3.62 bc | 57.2 ab | 0.139 bc | 3.18 ab |
SQ | 1335 a | 1.47 a | 39.2 a | 8.4 a | 8.3 a | 12.2 ab | 28.3 a | 2.12 ab | 6.30 a | 52.0 b | 0.213 a | 2.28 b |
PP | 769 c | 1.24 b | 31.9 b | 3.6 c | 6.5 b | 7.0 c | 24.9 b | 0.83 c | 2.78 c | 64.5 a | 0.110 c | 3.77 a |
LSD | 297 | 0.11 | 5.2 | 2.7 | 1.4 | 3.8 | 1.9 | 0.98 | 1.90 | 7.6 | 0.058 | 1.15 |
Total Tuber Yield (Mg/ha) | Marketable Yield (Mg/ha) | |||||||
---|---|---|---|---|---|---|---|---|
Factor y | 2019 | 2020 | 2021 | 2022 | 2019 | 2020 | 2021 | 2022 |
System | ||||||||
SI | 25.1 a | 24.1 a | 41.8 a | 36.4 a | 17.7 a | 16.7 a | 34.1 a | 29.4 a |
DS | 21.4 bc | 22.7 ab | 37.9 b | 33.9 ab | 13.2 c | 15.3 ab | 30.6 a | 26.8 ab |
SC | 21.9 bc | 19.9 bc | 39.0 ab | 31.1 bc | 14.3 bc | 12.1 bc | 30.9 a | 23.4 bc |
SQ | 23.5 ab | 18.2 c | 35.9 b | 27.0 d | 16.8 ab | 9.4 c | 29.9 a | 20.4 c |
PP | 20.2 c | 17.5 c | 31.9 c | 30.6 cd | 12.8 c | 9.5 c | 23.0 b | 20.3 c |
LSD | 2.7 | 3.1 | 3.1 | 3.2 | 3.1 | 3.7 | 4.0 | 3.9 |
Variety | ||||||||
CR | 24.0 a | 20.2 a | 38.0 a | 33.0 a | 17.8 a | 13.9 a | 32.7 a | 26.8 a |
RB | 20.8 b | 20.7 a | 36.8 a | 30.6 b | 12.1 b | 11.3 b | 27.2 b | 21.4 b |
LSD | 1.7 | 1.9 | 1.9 | 2.3 | 1.9 | 2.3 | 2.5 | 2.5 |
Incidence (% Infected Tubers) | Severity (% Surface Coverage) | |||||||
---|---|---|---|---|---|---|---|---|
Factor y | 2019 | 2020 | 2021 | 2022 | 2019 | 2020 | 2021 | 2022 |
System | ||||||||
SI | 15.9 bc | 5.1 ab | 16.1 b | 6.7 b | 0.80 b | 0.81 bc | 0.99 b | 0.88 b |
DS | 19.4 ab | 4.2 b | 7.3 d | 7.6 b | 0.87 ab | 0.76 c | 0.86 c | 0.84 b |
SC | 13.9 bc | 4.4 b | 22.6 a | 5.6 b | 0.81 b | 0.76 c | 1.11 a | 0.84 b |
SQ | 11.1 c | 4.5 b | 10.1 cd | 6.1 b | 0.76 b | 0.88 b | 0.91 c | 0.98 a |
PP | 23.0 a | 15.1 a | 14.5 bc | 11.3 a | 0.99 a | 1.00 a | 1.05 a | 1.01 a |
LSD | 5.7 | 4.4 | 5.3 | 3.4 | 0.12 | 0.10 | 0.08 | 0.06 |
Variety | ||||||||
CR | 14.7 b | 4.4 b | 15.6 a | 8.9 a | 0.74 b | 0.85 a | 0.98 a | 0.98 a |
RB | 19.6 a | 10.1 a | 12.7 a | 6.0 b | 0.99 a | 0.84 a | 0.98 a | 0.84 b |
LSD | 3.7 | 2.9 | 3.4 | 2.2 | 0.09 | 0.06 | 0.05 | 0.04 |
Incidence (% Infected Tubers) | Severity (% Surface Coverage) | |||||||
---|---|---|---|---|---|---|---|---|
Factor y | 2019 | 2020 | 2021 | 2022 | 2019 | 2020 | 2021 | 2022 |
System | ||||||||
SI | 34.5 a | 61.0 bc | 72.4 b | 71.1 c | 1.53 a | 3.12 bc | 3.36 bc | 2.79 c |
DS | 25.3 b | 58.5 c | 71.3 b | 70.7 c | 1.36 b | 3.05 c | 3.39 bc | 2.78 c |
SC | 36.0 a | 56.7 c | 76.5 ab | 66.0 c | 1.58 a | 3.02 c | 3.49 b | 2.70 c |
SQ | 38.7 a | 76.9 a | 70.5 b | 88.2 a | 1.62 a | 3.64 a | 3.32 c | 3.16 a |
PP | 39.0 a | 67.1 b | 81.9 a | 77.8 b | 1.61 a | 3.36 b | 3.77 a | 2.91 b |
LSD | 6.8 | 7.9 | 6.4 | 4.3 | 0.14 | 0.24 | 0.15 | 0.09 |
Variety | ||||||||
CR | 28.2 b | 66.4 a | 74.9 a | 82.8 a | 1.14 b | 2.75 b | 2.89 b | 2.95 a |
RB | 44.5 a | 60.5 b | 73.5 a | 66.7 b | 2.13 a | 3.98 a | 4.25 a | 2.79 b |
LSD | 4.1 | 2.9 | 4.1 | 2.7 | 0.09 | 0.15 | 0.10 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larkin, R.P. Potato Cropping System and Variety Impacts on Soil Properties, Soilborne Diseases, and Tuber Yield in a Long-Term Field Trial. Agronomy 2024, 14, 2852. https://doi.org/10.3390/agronomy14122852
Larkin RP. Potato Cropping System and Variety Impacts on Soil Properties, Soilborne Diseases, and Tuber Yield in a Long-Term Field Trial. Agronomy. 2024; 14(12):2852. https://doi.org/10.3390/agronomy14122852
Chicago/Turabian StyleLarkin, Robert P. 2024. "Potato Cropping System and Variety Impacts on Soil Properties, Soilborne Diseases, and Tuber Yield in a Long-Term Field Trial" Agronomy 14, no. 12: 2852. https://doi.org/10.3390/agronomy14122852
APA StyleLarkin, R. P. (2024). Potato Cropping System and Variety Impacts on Soil Properties, Soilborne Diseases, and Tuber Yield in a Long-Term Field Trial. Agronomy, 14(12), 2852. https://doi.org/10.3390/agronomy14122852