Sustainable Disease Control of Phytophthora cactorum in a Strawberry Nursery by Adapting the Growing System
Abstract
:1. Introduction
- (1)
- An elevated trayfield lowers the incidence of crown rot through the inhibition of splash water.
- (2)
- Such an elevated trayfield system should outperform the traditional system with or without ground foil in regard to the control of P. cactorum and should at least perform equally well compared to a system applying pesticides.
- (3)
- P. cactorum is only spread by water and not by air.
2. Materials and Methods
2.1. Experimental Design
2.2. Plant Material and Substrate
2.3. Evaluation of Crown Rot
2.4. Spore Detection in Water and Air Samples
2.5. Disease Detection in Tips, Plant Debris, and Rhizomes
2.6. Statistics
3. Results
3.1. Crown Rot Incidence
3.2. Crown Rot Severity
3.3. Phytophthora cactorum Spread by Splash, but Not Aerially
3.4. Phytophthora cactorum Detected in Plant Debris and Plants Without Crown Symptoms
4. Discussion
- (1)
- The basis ought to be resistant varieties. Since these are not available yet, less susceptible varieties should be used. Great variation in susceptibility to P. cactorum between strawberry varieties has been demonstrated [28]. However, it has not been established yet by how much the occurrence of P. cactorum could be reduced using less susceptible varieties.
- (2)
- Tips could probably be treated with thermotherapy to start with plant material free of P. cactorum, Botrytis cinerea, P. aphanis, and mites (Tetranychus urticae and Phytonemus pallidus). This method has only been described for use in transplants after plant nursery, but should in principle also work with strawberry tips, although the protocol probably needs some optimization for this type of plant tissue [16].
- (3)
- To prevent infection from the trayfield, elevated trayfields should be used. This will diminish the number of spores reaching plants by splash water.
- (4)
- Infection from trayfield to elevated trays can even be further diminished by placing new plastic foils on top of the trayfield each year. This is especially important in reducing the transfer of disease from one season to the next.
- (5)
- If irrigation water and rain water are collected for re-use, a sand filter should be used [10]. This filtration step will prevent the spread of mobile zoospores by the irrigation system, because these will be filtered out by the sand.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nellist, C.F.; Armitage, A.D.; Bates, H.J.; Sobzy, M.K.; Luberti, M.; Lewis, L.A.; Harrison, R.J. Comparative analysis of host-associated variation in Phytophthora cactorum. Front. Plant Sci. 2021, 12, 679936. [Google Scholar] [CrossRef] [PubMed]
- Chamoro, M.; Aguado, A.; de los Santos, B. First report of root and crown rot caused by Pestalotiopsis clavispora (Neopestalotiopsis clavispora) on strawberry in Spain. Plant Dis. 2016, 100, 1495. [Google Scholar] [CrossRef]
- Gilardi, G.; Bergeretti, F.; Gullino, M.L.; Garibaldi, A. First report of Neopestalotiopsis clavispora causing root and crown rot in strawberry in Italy. Plant Dis. 2019, 103, 2959. [Google Scholar] [CrossRef]
- Baggio, J.S.; Forcelini, B.B.; Wang, N.-Y.; Ruschel, R.G.; Mertely, J.C.; Peres, N.A. Outbreak of leaf spot and fruit rot in Florida strawberry caused by Neopestalotiopsis spp. Plant Dis. 2021, 105, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Stensvand, A.; Herrero, M.L.; Talgø, V. Crown rot caused by Phytophthora cactorum in Norwegian strawberry production. EPPO Bull. 1999, 29, 155–158. [Google Scholar] [CrossRef]
- Chen, X.-R.; Wen, K.; Zhou, X.; Zhu, M.-Y.; Liu, Y.; Jin, J.-H.; Nellist, C.F. The devastating oomycete phytopathogen Phytophthora cactorum: Insights into its biology and molecular features. Mol. Plant Pathol. 2023, 24, 1017–1032. [Google Scholar] [CrossRef]
- Grove, G.G.; Madden, L.V.; Ellis, M.A. Splash dispersal of Phytophthora cactorum from infected strawberry fruit. Phytopathology 1985, 75, 611–615. [Google Scholar] [CrossRef]
- Fennimore, S.A.; Duniway, J.M.; Browne, G.T.; Martin, F.N.; Ajwa, H.A.; Westerdahl, B.B.; Goodhue, R.E.; Haar, M.; Winterbottom, C. Methylbromide alternatives evaluated for Californian strawberry nurseries. Calif. Agric. 2008, 62, 62–67. [Google Scholar] [CrossRef]
- Mezzetti, B.; Giampieri, F.; Zhang, Y.T.; Zhong, C.F. Status of strawberry breeding programs and cultivation systems in Europe and the rest of the world. J. Berry Res. 2018, 8, 205–211. [Google Scholar] [CrossRef]
- Evenhuis, B.; Nijhuis, E.; Lamers, J.; Verhoeven, J.; Postma, J. Alternative methods to control Phytophthora cactorum in strawberry cultivated in soilless growing media. Acta Hortic. 2014, 1044, 337–342. [Google Scholar] [CrossRef]
- Chen, X.-R.; Huang, S.-X.; Zhang, Y.; Sheng, G.-L.; Zhang, B.-Y.; Li, Q.-Y.; Zhu, F.; Xu, J.-Y. Transcription profiling and identification of infection related genes in Phytophthora cactorum. Mol. Genet. Genom. 2018, 293, 541–555. [Google Scholar] [CrossRef] [PubMed]
- Armitage, A.D.; Lysøe, E.; Nellist, C.F.; Lewis, L.A.; Cano, L.M.; Harrison, R.J.; Brurberg, M.B. Bioinformatic characterization of the effector repertoire of the strawberry pathogen Phytophthora cactorum. PLoS ONE 2018, 13, e0203205. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Marin, M.V.; Lee, M.B.; Baggio, J.S.; Peres, N.A.; Lee, S. Genomic approaches for improving resistance to Phytophthora crown rot caused by P. cactorum in strawberry (Fragraria x ananassa). Front. Agron. 2022, 4, 941111. [Google Scholar] [CrossRef]
- Hautsalo, J.; Vestberg, M.; Parikka, P.; Kukkonen, S.; Karhu, S. Biological control of strawberry crown rot is substrate dependent phenomenon. J. Berry Res. 2016, 6, 65–79. [Google Scholar] [CrossRef]
- Madden, L.V.; Ellis, M.A. Effect of ground cover on splash dispersal of Phytophthora cactorum from strawberry fruits. J. Phytopathol. 1990, 129, 170–174. [Google Scholar] [CrossRef]
- Baggio, J.; Marin, M.V.; Peres, N.A. Phytophthora crown rot of Florida strawberry: Inoculum sources and thermotherapy of transplants for disease management. Plant Dis. 2021, 105, 3496–3502. [Google Scholar] [CrossRef]
- Ghimire, S.R.; Richardson, P.A.; Moorman, G.W.; Lea-Cox, J.D.; Ross, D.S.; Hong, C.X. An in-situ baiting bioassay for detecting Phytophthora species in irrigation runoff containment basins. Plant Pathol. 2009, 58, 577–583. [Google Scholar] [CrossRef]
- Rollins, L.; Coats, K.; Elliott, M.; Chastagner, G. Comparison of five detection and quantification methods for Phytophthora ramorum in stream and irrigation water. Plant Dis. 2016, 100, 1202–1211. [Google Scholar] [CrossRef]
- Li, M.; Inada, M.; Watanabe, H.; Suga, H.; Kageyama, K. Simultaneous detection and quantification of Phytophthora nicotianae and P. cactorum, and distribution analyses in strawberry greenhouses by duplex real-time PCR. Microbes Environ. 2013, 28, 195–203. [Google Scholar] [CrossRef]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef]
- Koressaar, T.; Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 2007, 23, 1289–1291. [Google Scholar] [CrossRef] [PubMed]
- McNemar, Q. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 1947, 12, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Kumar, R.; Mazákova, J.; Maňasova, M.; Zouhar, M.; Pánek, M. Evaluation of the ability of seven active ingredients of fungicides to suppress Phytophthora cactorum at diverse life stages, and variability in resistance found among isolates. J. Fungi 2022, 8, 1039. [Google Scholar] [CrossRef]
- Blanco, C.; de los Santos, B.; Arroyo, B.F.T.; Porras, M. Relationship among concentrations of Spaerotheca macularis conidia in the air, environmental conditions and the incidence of powdery mildew in strawberry. Plant Dis. 2008, 88, 878–881. [Google Scholar] [CrossRef] [PubMed]
- Prasannath, K.; Galea, V.L.; Akinsanmi, O.A. Molecular methods for detection and quantification of Pestalotiopsis and Neopestalotiopsis inoculum associated with macademia. Plant Pathol. 2020, 70, 1209–1218. [Google Scholar] [CrossRef]
- Nicolaï, B.; de Ketelaere, B.; Dizon, A.; Wouters, N.; Postelmans, A.; Saeys, W.; van de Looverbosch, T.; Verboven, P.; Hertog, L.M.A.T.M. Nondestructive evaluation: Detection of external and internal attributes frequently associated with quality and damage. In Postharvest Handling, 4th ed.; Florkowski, W.J., Banks, N.H., Shewfelt, R.L., Prussia, S.E., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 399–433. [Google Scholar]
- Toumainen, T.V.; Toljamo, A.; Kokko, H.; Nissi, M.J. Non-invasive assessment and visualization of Phytophthora cactorum infection in strawberry crowns using quantitative magnetic resonance imaging. Sci. Rep. 2024, 14, 2129. [Google Scholar] [CrossRef]
- Marin, M.V.; Seijo, T.E.; Baggio, J.S.; Whitaker, V.M.; Peres, N.A. Resistance of strawberry cultivars and the effects of plant ontogenesis on Phytophthora cactorum and P. nicotianae causing crown rot. Plant Dis. 2023, 107, 651–657. [Google Scholar] [CrossRef]
Primer/Probe | Sequences (5′→3′) | T (°C) | Specificity | Amplicon Size (bp) |
---|---|---|---|---|
Ypt-cacF3 | CATGGCATTATCGTGGTGTA | 54.0 | P. cactorum | |
Ypt-cacR3 | GCTCTTTTCCGTCGGC | 53.7 | 122 | |
P-cac4 (probe) | 6-HEX-CGGACCAGGAGTCGTTCAACAAC-TAMRA | 63.7 | ||
qNeoClaF | GAACCAGCGGAGGGATCATT | 55.9 | N. clavispora | 107 |
qNeoClaR | CACCGGCAGCAGCTATAAGA | 58.5 | ||
qPodAphF1 | CCCCAACTCGTGCAGTTAGT | 56.0 | P. aphanis | 221 |
qPodAphR1 | GCCAGGCTTGAGAGGATGTT | 56.8 |
2022 | 2023 | ||||
---|---|---|---|---|---|
Height | Samples Positive (%) | Concentration (ng/g Leaves) | Samples Positive (%) | Concentration (ng/g Leaves) | |
P. cactorum | 5 cm | 22 bc | 4.25 (±0.52) | 45 c | 3.69 (±0.90) |
32 cm | 0 a | - | 10 b | 0.01 (±0.00) | |
50 cm | 0 a | - | 5 b | 0.01 (±0.00) | |
N. clavispora | 5 cm | 100 d | 3.19 (±1.70) | 100 d | 80.21 (±32) |
32 cm | 100 d | 0.59 (±0.34) | 100 d | 35.99 (±26) | |
50 cm | 94 d | 1.63 (±0.68) | 100 d | 71.68 (±40) |
2021 | 2022 | 2023 | ||||
---|---|---|---|---|---|---|
Samples Positive (%) | Concentration (pg/day) | Samples Positive (%) | Concentration (pg/day) | Samples Positive (%) | Concentration (pg/day) | |
P. cactorum | 0 a | - | 0 a | - | 0 a | - |
N. clavispora | - * | - * | 32 b | 1.59 (±0.16) | 0 a | - |
P. aphanis | 86 c | 68 (± 7.8) | 84 c | 277 (±26) | 74 c | 759 (±55) |
What | When | System | Only P. cactorum | Only N. clavispora | P. cactorum + N. clavispora | Negative | Samples Tested |
---|---|---|---|---|---|---|---|
Tips | Start | 0 | 3 | 0 | 5 | 8 | |
Plant debris | End | Elevated | 1 | 4 | 2 | 1 | 8 |
Traditional No | 2 | 2 | 4 | 0 | 8 | ||
Rhizomes with symptoms | End | Elevated | 11 | 0 | 1 | 20 | 32 |
Traditional No | 20 | 0 | 5 | 7 | 32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evenhuis, A.; Bac-Molenaar, J.A.; Pham, K.; Leiss, K.A. Sustainable Disease Control of Phytophthora cactorum in a Strawberry Nursery by Adapting the Growing System. Agronomy 2024, 14, 2809. https://doi.org/10.3390/agronomy14122809
Evenhuis A, Bac-Molenaar JA, Pham K, Leiss KA. Sustainable Disease Control of Phytophthora cactorum in a Strawberry Nursery by Adapting the Growing System. Agronomy. 2024; 14(12):2809. https://doi.org/10.3390/agronomy14122809
Chicago/Turabian StyleEvenhuis, Albartus, Johanna A. Bac-Molenaar, Khanh Pham, and Kirsten A. Leiss. 2024. "Sustainable Disease Control of Phytophthora cactorum in a Strawberry Nursery by Adapting the Growing System" Agronomy 14, no. 12: 2809. https://doi.org/10.3390/agronomy14122809
APA StyleEvenhuis, A., Bac-Molenaar, J. A., Pham, K., & Leiss, K. A. (2024). Sustainable Disease Control of Phytophthora cactorum in a Strawberry Nursery by Adapting the Growing System. Agronomy, 14(12), 2809. https://doi.org/10.3390/agronomy14122809