Assessing Organic Farming Adoption in Selected Districts of Tamil Nadu: Challenges, Practices, and Pathways for Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study
2.2. Clustering Analysis of Crop Yield Patterns
2.3. Impact of Different Services on the Promotion of Organic Farming
2.4. Adoption of Organic Formulations
2.5. Major Challenges
2.6. Farmers’ Perceptions Toward Various Outcomes/Factors
2.7. Statistical Analysis
3. Results
3.1. Clustering Analysis of Crop Yield Percentages
3.2. The Impact of Different Services on the Promotion of Organic Farming
3.3. Adoption Level of Organic Practices by Growers
3.4. Chi-Squared Analysis of Challenges in Organic Farming
3.5. Farmers’ Perceptions on Various Outcomes/Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krishnaprabu, S. Organic Farming in India: Concept, Applications and Perspectives. J. Phys. Conf. Ser. 2019, 1362, 012020. [Google Scholar] [CrossRef]
- Raut, V.D.; Raut, D.D.; Deshpande, S.K. A Boost of Organic Farming to Farmers. Gujarat J. Ext. Educ. 2018, 29, 159–162. [Google Scholar]
- Thakur, N.; Nigam, M.; Tewary, R.; Rajvanshi, K.; Kumar, M.; Shukla, S.K.; Mahmoud, G.A.-E.; Gupta, S. Drivers for the Behavioural Receptiveness and Non-Receptiveness of Farmers towards Organic Cultivation System. J. King Saud. Univ. Sci. 2022, 34, 102107. [Google Scholar] [CrossRef]
- Priyadarshini, P.; Abhilash, P.C. Policy Recommendations for Enabling Transition towards Sustainable Agriculture in India. Land. Use Policy 2020, 96, 104718. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the Yields of Organic and Conventional Agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef]
- Ravisankar, N.; Panwar, A.S.; Prasad, K.; Kumar, V.; Bhaskar, S. Organic Farming (Crop Production Guide) Network Project on Organic Farming; ICAR: Meerut, India, 2017; Volume 1, ISBN 9788192899336. [Google Scholar]
- Das, S.; Chatterjee, A.; Pal, T.K. Organic Farming in India: A Vision towards a Healthy Nation. Food Qual. Saf. 2020, 4, 69–76. [Google Scholar] [CrossRef]
- Paramasivam, S.; Henry, P.; Seethapathy, P.; Rajamohan, T. A Strategic Model for Empowering Farmers by Improving Livelihood Security through Organic Farming Practices in Tamil Nadu, India. J. Agric. Sci. Sri Lanka 2022, 17, 471. [Google Scholar] [CrossRef]
- Somasundaram, E.; Ganesan, K.; Ravisankar, N.; Panwar, A.S. Integrated Organic Farming System Approach to Sustain Productivity, Income and Employment of Marginal Farm Holdings of Southern India. Indian. J. Agron. 2021, 66, 286–294. [Google Scholar]
- APEDA Organic Products in India 2023–2024. Available online: https://apeda.gov.in/apedawebsite/organic/Organic_Products.htm (accessed on 23 February 2024).
- Department of Agriculture Policy Note Department of Agriculture and Farmers Welfare, Tamil Nadu. Available online: https://www.tn.gov.in/documents/dept/2 (accessed on 31 May 2024).
- Yadava, A.K.; Komaraiah, J.B. Benchmarking the Performance of Organic Farming in India. J. Public. Aff. 2021, 21, e2208. [Google Scholar] [CrossRef]
- Logesh, V.; Ramasubramanian, M.; Vennila, M.A.; Karthikeyan, C.; Prahadeeswaran, M. An Analysis of Constraints Faced by Organic Farmers in the Cauvery Delta Zone of Tamil Nadu, India. Int. J. Environ. Clim. Chang. 2023, 13, 888–895. [Google Scholar] [CrossRef]
- Paramasivam, S. Training Needs Analysis for Certified Organic Growers in Tamil Nadu on Organic Agricultural Practices. Int. J. Agric. Stat. Sci. 2022, 18, 575–582. [Google Scholar]
- Tscharntke, T.; Grass, I.; Wanger, T.C.; Westphal, C.; Batáry, P. Beyond Organic Farming—Harnessing Biodiversity-Friendly Landscapes. Trends Ecol. Evol. 2021, 36, 919–930. [Google Scholar] [CrossRef]
- Łuczka, W.; Kalinowski, S. Barriers to the Development of Organic Farming: A Polish Case Study. Agriculture 2020, 10, 536. [Google Scholar] [CrossRef]
- Gamage, A.; Gangahagedara, R.; Gamage, J.; Jayasinghe, N.; Kodikara, N.; Suraweera, P.; Merah, O. Role of Organic Farming for Achieving Sustainability in Agriculture. Farming Syst. 2023, 1, 100005. [Google Scholar] [CrossRef]
- Panday, D.; Bhusal, N.; Das, S.; Ghalehgolabbehbahani, A. Rooted in Nature: The Rise, Challenges, and Potential of Organic Farming and Fertilizers in Agroecosystems. Sustainability 2024, 16, 1530. [Google Scholar] [CrossRef]
- Durham, T.C.; Mizik, T. Comparative Economics of Conventional, Organic, and Alternative Agricultural Production Systems. Economies 2021, 9, 64. [Google Scholar] [CrossRef]
- Baker, B.P.; Green, T.A.; Loker, A.J. Biological Control and Integrated Pest Management in Organic and Conventional Systems. Biol. Control 2020, 140, 104095. [Google Scholar] [CrossRef]
- Li, M.; Peterson, C.A.; Tautges, N.E.; Scow, K.M.; Gaudin, A.C.M. Yields and Resilience Outcomes of Organic, Cover Crop, and Conventional Practices in a Mediterranean Climate. Sci. Rep. 2019, 9, 12283. [Google Scholar] [CrossRef]
- Fess, T.; Benedito, V. Organic versus Conventional Cropping Sustainability: A Comparative System Analysis. Sustainability 2018, 10, 272. [Google Scholar] [CrossRef]
- Rani, M.; Kaushik, P.; Bhayana, S.; Kapoor, S. Impact of Organic Farming on Soil Health and Nutritional Quality of Crops. J. Saudi Soc. Agric. Sci. 2023, 22, 560–569. [Google Scholar] [CrossRef]
- Singh, A. Understanding the Perception, Constraints and Reasons for the Adoption of Organic Farming. Indian. Res. J. Ext. Educ. 2022, 22, 110–117. [Google Scholar] [CrossRef]
- Alotaibi, B.A.; Yoder, E.; Kassem, H.S. Extension Agents’ Perceptions of the Role of Extension Services in Organic Agriculture: A Case Study from Saudi Arabia. Sustainability 2021, 13, 4880. [Google Scholar] [CrossRef]
- Sapbamrer, R.; Thammachai, A. A Systematic Review of Factors Influencing Farmers’ Adoption of Organic Farming. Sustainability 2021, 13, 3842. [Google Scholar] [CrossRef]
- Parajuli, S.; Shrestha, J.; Ghimire, S. Organic Farming in Nepal: A Viable Option for Food Security and Agricultural Sustainability. Arch. Agric. Environ. Sci. 2020, 5, 223–230. [Google Scholar] [CrossRef]
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental Impact of Different Agricultural Management Practices: Conventional vs. Organic Agriculture. CRC Crit. Rev. Plant Sci. 2011, 30, 95–124. [Google Scholar] [CrossRef]
- Lotter, D.W. Organic Agriculture. J. Sustain. Agric. 2003, 21, 59–128. [Google Scholar] [CrossRef]
- Murphy, B.; Martini, M.; Fedi, A.; Loera, B.L.; Elliott, C.T.; Dean, M. Consumer Trust in Organic Food and Organic Certifications in Four European Countries. Food Control 2022, 133, 108484. [Google Scholar] [CrossRef]
- Pretty, J. Agricultural Sustainability: Concepts, Principles and Evidence. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 447–465. [Google Scholar] [CrossRef] [PubMed]
- Altieri, M.A.; Nicholls, C.I. Agroecology: Challenges and Opportunities for Farming in the Anthropocene. Int. J. Agric. Nat. Resour. 2020, 47, 204–215. [Google Scholar] [CrossRef]
- Brown, K.A.; Srinivasapura Venkateshmurthy, N.; Law, C.; Harris, F.; Kadiyala, S.; Shankar, B.; Mohan, S.; Prabhakaran, D.; Knai, C. Moving towards Sustainable Food Systems: A Review of Indian Food Policy Budgets. Glob. Food Sec. 2021, 28, 100462. [Google Scholar] [CrossRef]
- Huber, R.; Bartkowski, B.; Brown, C.; El Benni, N.; Feil, J.-H.; Grohmann, P.; Joormann, I.; Leonhardt, H.; Mitter, H.; Müller, B. Farm Typologies for Understanding Farm Systems and Improving Agricultural Policy. Agric. Syst. 2024, 213, 103800. [Google Scholar] [CrossRef]
- Ramakrishnan, B.; Maddela, N.R.; Venkateswarlu, K.; Megharaj, M. Organic Farming: Does It Contribute to Contaminant-Free Produce and Ensure Food Safety? Sci. Total Environ. 2021, 769, 145079. [Google Scholar] [CrossRef] [PubMed]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public. Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- Malhan, P.; Ram, T. Farmers’ Perception Towards the Benefits of Organic Farming in Haryana. Asia-Pac. J. Manag. Res. Innov. 2023, 1–12. [Google Scholar] [CrossRef]
- Panneerselvam, P.; Hermansen, J.E.; Halberg, N.; Arthanari, P.M. Impact of Large-Scale Organic Conversion on Food Production and Food Security in Two Indian States, Tamil Nadu and Madhya Pradesh. Renew. Agric. Food Syst. 2015, 30, 252–262. [Google Scholar] [CrossRef]
- Rempelos, L.; Baranski, M.; Wang, J.; Adams, T.N.; Adebusuyi, K.; Beckman, J.J.; Brockbank, C.J.; Douglas, B.S.; Feng, T.; Greenway, J.D.; et al. Integrated Soil and Crop Management in Organic Agriculture: A Logical Framework to Ensure Food Quality and Human Health? Agronomy 2021, 11, 2494. [Google Scholar] [CrossRef]
- Aulakh, C.S.; Sharma, S.; Thakur, M.; Kaur, P. A Review of the Influences of Organic Farming on Soil Quality, Crop Productivity and Produce Quality. J. Plant Nutr. 2022, 45, 1884–1905. [Google Scholar] [CrossRef]
- Bharucha, Z.P.; Mitjans, S.B.; Pretty, J. Towards Redesign at Scale through Zero Budget Natural Farming in Andhra Pradesh, India. Int. J. Agric. Sustain. 2020, 18, 1–20. [Google Scholar] [CrossRef]
- Durán-Lara, E.F.; Valderrama, A.; Marican, A. Natural Organic Compounds for Application in Organic Farming. Agriculture 2020, 10, 41. [Google Scholar] [CrossRef]
- Sacco, D.; Moretti, B.; Monaco, S.; Grignani, C. Six-Year Transition from Conventional to Organic Farming: Effects on Crop Production and Soil Quality. Eur. J. Agron. 2015, 69, 10–20. [Google Scholar] [CrossRef]
- Zinati, G.M. Transition from Conventional to Organic Farming Systems: I. Challenges, Recommendations, and Guidelines for Pest Management. Horttechnology 2002, 12, 606–610. [Google Scholar] [CrossRef]
- Ume, C.O.; Onah, O.G.; Okpukpara, B.C.; Chukwuma-Ume, N.; Charles, U.I.; Omeje, E.E.; Chiemela, C.J.; Chituru, I.J.; Orazulike, O. Factors Influencing Smallholder Adoption of Organic Agriculture in Southeast Geopolitical Region of Nigeria. Front. Sustain. Food Syst. 2023, 7, 1173043. [Google Scholar] [CrossRef]
- Varadan, R.J.; Kumar, P. Mapping Agricultural Vulnerability of Tamil Nadu, India to Climate Change: A Dynamic Approach to Take Forward the Vulnerability Assessment Methodology. Clim. Chang. 2015, 129, 159–181. [Google Scholar] [CrossRef]
- Ataei, P.; Karimi, H.; Klöckner, C.A.; Es’haghi, S.R.; Zarei, R. The Promotion of Biofertilizer Application on Farms: Farmers’ Intentional Processes. Environ. Technol. Innov. 2022, 28, 102722. [Google Scholar] [CrossRef]
- Reza, M.N.; Na, I.S.; Baek, S.W.; Lee, K.-H. Rice Yield Estimation Based on K-Means Clustering with Graph-Cut Segmentation Using Low-Altitude UAV Images. Biosyst. Eng. 2019, 177, 109–121. [Google Scholar] [CrossRef]
- De Oliveira, M.A.; Varone, F.A.; Fraisse, C.W.; Araújo, R.M.; Cavalheiro, G.G.H. Clustering of Meteorological Data to Improve Agricultural Decisions: A Case Study with SIMAGRO-RS. In Proceedings of the 20th Brazilian Symposium on Information Systems, Juiz de Fora, Brazil, 20–23 May 2024; ACM: New York, NY, USA, 2024; pp. 1–10. [Google Scholar]
- Nzuma, J.M.; Mzera, U.I. Evaluating Aflatoxin Contamination Control Practices among Smallholder Maize Farmers in Kilifi County, Kenya: A Poisson Regression Analysis. Environ. Dev. Sustain. 2023, 26, 10029–10041. [Google Scholar] [CrossRef]
- Rai, A.; Srivastava, A.K.; Gupta, H.C. Small Sample Comparison of Modified Chi-Square Test Statistics for Survey Data. Biom. J. 2001, 43, 483–495. [Google Scholar] [CrossRef]
- Duzdemir, O.; Akca, H.; Sayili, M. Factors Affecting Fertiliser Use in Chickpea (Cicer arietinum) Growing: A Case from Turkey. N. Z. J. Crop Hortic. Sci. 2008, 36, 53–57. [Google Scholar] [CrossRef]
- Team R Core. A Language and Environment for Statistical Computing. Available online: https://www.R-project.org (accessed on 21 June 2024).
- de Ponti, T.; Rijk, B.; van Ittersum, M.K. The Crop Yield Gap between Organic and Conventional Agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Jouzi, Z.; Azadi, H.; Taheri, F.; Zarafshani, K.; Gebrehiwot, K.; Van Passel, S.; Lebailly, P. Organic Farming and Small-Scale Farmers: Main Opportunities and Challenges. Ecol. Econ. 2017, 132, 144–154. [Google Scholar] [CrossRef]
- Lori, M.; Symnaczik, S.; Mäder, P.; De Deyn, G.; Gattinger, A. Organic Farming Enhances Soil Microbial Abundance and Activity—A Meta-Analysis and Meta-Regression. PLoS ONE 2017, 12, e0180442. [Google Scholar] [CrossRef] [PubMed]
- Azam, M.S.; Shaheen, M. Decisional Factors Driving Farmers to Adopt Organic Farming in India: A Cross-Sectional Study. Int. J. Soc. Econ. 2019, 46, 562–580. [Google Scholar] [CrossRef]
- Rizzo, G.; Migliore, G.; Schifani, G.; Vecchio, R. Key Factors Influencing Farmers’ Adoption of Sustainable Innovations: A Systematic Literature Review and Research Agenda. Org. Agric. 2024, 14, 57–84. [Google Scholar] [CrossRef]
- Reganold, J.P.; Wachter, J.M. Organic Agriculture in the Twenty-First Century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef] [PubMed]
- Smith, O.M.; Cohen, A.L.; Rieser, C.J.; Davis, A.G.; Taylor, J.M.; Adesanya, A.W.; Jones, M.S.; Meier, A.R.; Reganold, J.P.; Orpet, R.J.; et al. Organic Farming Provides Reliable Environmental Benefits but Increases Variability in Crop Yields: A Global Meta-Analysis. Front. Sustain. Food Syst. 2019, 3, 82. [Google Scholar] [CrossRef]
- Läpple, D.; Rensburg, T. Van Adoption of Organic Farming: Are There Differences between Early and Late Adoption? Ecol. Econ. 2011, 70, 1406–1414. [Google Scholar] [CrossRef]
- Fan, L.; Ge, Y.; Niu, H. Effects of Agricultural Extension System on Promoting Conservation Agriculture in Shaanxi Plain, China. J. Clean. Prod. 2022, 380, 134896. [Google Scholar] [CrossRef]
- Liu, T.; Bruins, R.; Heberling, M. Factors Influencing Farmers’ Adoption of Best Management Practices: A Review and Synthesis. Sustainability 2018, 10, 432. [Google Scholar] [CrossRef]
- Šūmane, S.; Kunda, I.; Knickel, K.; Strauss, A.; Tisenkopfs, T.; Rios, I.d.I.; Rivera, M.; Chebach, T.; Ashkenazy, A. Local and Farmers’ Knowledge Matters! How Integrating Informal and Formal Knowledge Enhances Sustainable and Resilient Agriculture. J. Rural. Stud. 2018, 59, 232–241. [Google Scholar] [CrossRef]
- Noy, S.; Jabbour, R. Decision-Making in Local Context: Expertise, Experience, and the Importance of Neighbours in Farmers’ Insect Pest Management. Sociol. Rural. 2020, 60, 3–19. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A Review of Social Science on Digital Agriculture, Smart Farming and Agriculture 4.0: New Contributions and a Future Research Agenda. NJAS: Wagening. J. Life Sci. 2019, 90–91, 100315. [Google Scholar] [CrossRef]
- Fabregas, R.; Kremer, M.; Schilbach, F. Realizing the Potential of Digital Development: The Case of Agricultural Advice. Science (1979) 2019, 366, eaay3038. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Enhancing Smart Farming through the Applications of Agriculture 4.0 Technologies. Int. J. Intell. Netw. 2022, 3, 150–164. [Google Scholar] [CrossRef]
- Sewell, A.M.; Hartnett, M.K.; Gray, D.I.; Blair, H.T.; Kemp, P.D.; Kenyon, P.R.; Morris, S.T.; Wood, B.A. Using Educational Theory and Research to Refine Agricultural Extension: Affordances and Barriers for Farmers’ Learning and Practice Change. J. Agric. Educ. Ext. 2017, 23, 313–333. [Google Scholar] [CrossRef]
- Pagliarino, E.; Rolfo, S. Examining Researchers’ Attitudes, Barriers, and Opportunities for Participatory Research: The Case of the Riso-Biosystems Project on Organic Rice. Agriculture 2021, 11, 376. [Google Scholar] [CrossRef]
- Danaher, P.J.; Dagger, T.S. Comparing the Relative Effectiveness of Advertising Channels: A Case Study of a Multimedia Blitz Campaign. J. Mark. Res. 2013, 50, 517–534. [Google Scholar] [CrossRef]
- Xu, Z.; Li, J.; Ma, J. Impacts of Extension Contact on the Adoption of Formulated Fertilizers and Farm Performance among Large-Scale Farms in Rural China. Land 2022, 11, 1974. [Google Scholar] [CrossRef]
- Bressler, A.; Plumhoff, M.; Hoey, L.; Blesh, J. Cover Crop Champions: Linking Strategic Communication Approaches with Farmer Networks to Support Cover Crop Adoption. Soc. Nat. Resour. 2021, 34, 1602–1619. [Google Scholar] [CrossRef]
- Lamine, C. Transition Pathways towards a Robust Ecologization of Agriculture and the Need for System Redesign. Cases from Organic Farming and IPM. J. Rural. Stud. 2011, 27, 209–219. [Google Scholar] [CrossRef]
- Antwi-Agyei, P.; Stringer, L.C. Improving the Effectiveness of Agricultural Extension Services in Supporting Farmers to Adapt to Climate Change: Insights from Northeastern Ghana. Clim. Risk Manag. 2021, 32, 100304. [Google Scholar] [CrossRef]
- Gikunda, R.M.; Lawver, D.E.; Baker, M.; Boren-Alpizar, A.E.; Guo, W. Extension Education Needs for Improved Adoption of Sustainable Organic Agriculture in Central Kenya. Am. J. Geogr. Inf. Syst. 2021, 10, 61–71. [Google Scholar]
- Taylor, M.; Bhasme, S. Model Farmers, Extension Networks and the Politics of Agricultural Knowledge Transfer. J. Rural. Stud. 2018, 64, 1–10. [Google Scholar] [CrossRef]
- Kumar, N.; Mazhar, S.H.; Kumar, A. The Role of Agricultural Extension in Disseminating the Technology of Organic Farming among Greenhouse Farmer’s in India. Int. J. Agric. Ext. Social. Dev. 2023, 6, 23–27. [Google Scholar] [CrossRef]
- Emeana, E.M.; Trenchard, L.; Dehnen-Schmutz, K.; Shaikh, S. Evaluating the Role of Public Agricultural Extension and Advisory Services in Promoting Agro-Ecology Transition in Southeast Nigeria. Agroecol. Sustain. Food Syst. 2019, 43, 123–144. [Google Scholar] [CrossRef]
- Sivakumar, S.; Bijoshkumar, G.; Rajasekharan, A.; Panicker, V.; Paramasivam, S.; Manivasagam, V.S.; Manalil, S. Evaluating the Expediency of Smartphone Applications for Indian Farmers and Other Stakeholders. AgriEngineering 2022, 4, 656–673. [Google Scholar] [CrossRef]
- Shirur, M.; Sharath, H.N.; Tewari, G.; Gummagolmath, K.C. Implementing Indian Innovations through Trained Extension Functionaries for Improving the Agriculture in Africa and Asia. Indian. J. Ext. Educ. 2022, 58, 104–109. [Google Scholar] [CrossRef]
- Stockdale, E.A.; Shepherd, M.A.; Fortune, S.; Cuttle, S.P. Soil Fertility in Organic Farming Systems—Fundamentally Different? Soil. Use Manag. 2002, 18, 301–308. [Google Scholar] [CrossRef]
- Place, F.; Barrett, C.B.; Freeman, H.A.; Ramisch, J.J.; Vanlauwe, B. Prospects for Integrated Soil Fertility Management Using Organic and Inorganic Inputs: Evidence from Smallholder African Agricultural Systems. Food Policy 2003, 28, 365–378. [Google Scholar] [CrossRef]
- Hartman, W.H.; Richardson, C.J. Differential Nutrient Limitation of Soil Microbial Biomass and Metabolic Quotients (QCO2): Is There a Biological Stoichiometry of Soil Microbes? PLoS ONE 2013, 8, e57127. [Google Scholar] [CrossRef]
- Priya, B.V.; Sriram, N.; Kumar, M.S.; Saravanakumar, V.; Ganapati, P.S. Rooting for Change: Unveiling Farmers’ Bio-Input Awareness and Knowledge Across Tamil Nadu’s Agro-Climatic Zones. J. Sci. Res. Rep. 2024, 30, 138–147. [Google Scholar] [CrossRef]
- Gabriel, D.; Sait, S.M.; Hodgson, J.A.; Schmutz, U.; Kunin, W.E.; Benton, T.G. Scale Matters: The Impact of Organic Farming on Biodiversity at Different Spatial Scales. Ecol. Lett. 2010, 13, 858–869. [Google Scholar] [CrossRef] [PubMed]
- Koesling, M.; Løes, A.-K.; Flaten, O.; Kristensen, N.H.; Hansen, M.W. Farmers’ Reasons for Deregistering from Organic Farming. Org. Agric. 2012, 2, 103–116. [Google Scholar] [CrossRef]
- Gómez Tovar, L.; Martin, L.; Gómez Cruz, M.A.; Mutersbaugh, T. Certified Organic Agriculture in Mexico: Market Connections and Certification Practices in Large and Small Producers. J. Rural Stud. 2005, 21, 461–474. [Google Scholar] [CrossRef]
- Ferreira, S.; Oliveira, F.; Gomes da Silva, F.; Teixeira, M.; Gonçalves, M.; Eugénio, R.; Damásio, H.; Gonçalves, J.M. Assessment of Factors Constraining Organic Farming Expansion in Lis Valley, Portugal. AgriEngineering 2020, 2, 111–127. [Google Scholar] [CrossRef]
- Leduc, G.; Billaudet, L.; Engström, E.; Hansson, H.; Ryan, M. Farmers’ Perceived Values in Conventional and Organic Farming: A Comparison between French, Irish and Swedish Farmers Using the Means-End Chain Approach. Ecol. Econ. 2023, 207, 107767. [Google Scholar] [CrossRef]
- Röös, E.; Mie, A.; Wivstad, M.; Salomon, E.; Johansson, B.; Gunnarsson, S.; Wallenbeck, A.; Hoffmann, R.; Nilsson, U.; Sundberg, C.; et al. Risks and Opportunities of Increasing Yields in Organic Farming. A Review. Agron. Sustain. Dev. 2018, 38, 14. [Google Scholar] [CrossRef]
- Canwat, V.; Onakuse, S. Organic Agriculture: A Fountain of Alternative Innovations for Social, Economic, and Environmental Challenges of Conventional Agriculture in a Developing Country Context. Clean. Circ. Bioecon. 2022, 3, 100025. [Google Scholar] [CrossRef]
- Nath, C.P.; Singh, R.G.; Choudhary, V.K.; Datta, D.; Nandan, R.; Singh, S.S. Challenges and Alternatives of Herbicide-Based Weed Management. Agronomy 2024, 14, 126. [Google Scholar] [CrossRef]
- Brzozowski, L.; Mazourek, M. A Sustainable Agricultural Future Relies on the Transition to Organic Agroecological Pest Management. Sustainability 2018, 10, 2023. [Google Scholar] [CrossRef]
- Janjhua, Y.; Chaudhary, R.; Mehta, P.; Kumar, K. Determinants of Farmer’s Attitude toward Organic Agriculture and Barriers for Converting to Organic Farming Systems: Research Insights. Int. J. Econ. Plants 2019, 6, 097–103. [Google Scholar] [CrossRef]
- Kalogiannidis, S.; Kalfas, D.; Chatzitheodoridis, F.; Papaevangelou, O. Role of Crop-Protection Technologies in Sustainable Agricultural Productivity and Management. Land 2022, 11, 1680. [Google Scholar] [CrossRef]
- Sujianto; Gunawan, E.; Saptana; Syahyuti; Darwis, V.; Ashari; Syukur, M.; Ariningsih, E.; Saliem, H.P.; Mardianto, S.; et al. Farmers’ Perception, Awareness, and Constraints of Organic Rice Farming in Indonesia. Open Agric. 2022, 7, 284–299. [Google Scholar] [CrossRef]
Organic Formulations | Compositions |
---|---|
Jeevamrith | A mix of fresh cow dung and cow urine from inigenous cow (Bos indicus L.) *, brown sugar made from Saccharum officinarum, and pulse flour of Vigna radiata L., or Cicer arietinum L., or Vigna mungo L. |
Organic cake | A mixture of oil cakes of Azadirachta indica A.Juss, Pongamia pinnata L., and Arachis hypogaea L. |
Green manure (crop is grown in the field and incorporated) | Cyamopsis tetragonoloba L., Vigna unguiculata L., Vigna trilobata L., Sesbania bispinosa Jacq., Sesbania rostrata Bremek. & Oberm., and Crotalaria juncea L. |
Green leaf manure (collected and incorporated) | Gliricidia maculata Kunth, Delonix regia Raf., Azadirachta indica A.Juss, Peltophorum pterocarpum DC., and Pongamia pinnata L. |
Azophos biofertilizer | A mixture of Azospirillum spp. and Phosphobacteria bioagents |
Panchagavya | Cow milk, cow urine, cow dung, ghee, and curd from local breed of cow (Bos indicus L.,). |
Beejamurutha | A mixture of cow dung, cow urine, lime and a handful of soil and water |
Amudhakaraisal | A mixture of cow dung, cow urine, sugar made from sugarcane and water |
Fish amino acid | A mixture of Labeo catla F., Hamilton fish waste, sugar made from sugarcane and water |
Neemastra | A mixture of Azadirachta indica A.Juss leaf, cow dung, cow urine and water |
Agniasthira | A mixture of Allium sativum L., Capsicum annuum L., Zingiber officinale Roscoe, Allium cepa L., cow urine, Nicotiana tabacum L., Azadirachta indica A.Juss leaves and water |
Brahmastra | A mix of Azadirachta indica A.Juss leaves in cow urine and crushed leaves of Annona squamosa L., Carica papaya L., Punica granatum L., and Psidium guajava L. were added with water. |
3G-Extracts | A mix of grinded Capsicum annuum L., Zingiber officinale Roscoe, and Allium sativum L., in water |
Crops | Yield Group 1 (Up to 10%) | Yield Group 2 (10 to 20% Increase) | Yield Group 3 (>20% Increase) | Cluster |
---|---|---|---|---|
Rice | 44 | 44 | 11 | 1 |
Coconut | 34 | 44 | 22 | 1 |
Banana | 48 | 19 | 33 | 1 |
Sugarcane | 50 | 38 | 13 | 1 |
Mango | 59 | 29 | 12 | 1 |
Vegetables | 22 | 48 | 30 | 2 |
Flowers | 0 | 50 | 50 | 2 |
Grains | 17 | 67 | 17 | 2 |
Citrus | 0 | 100 | 0 | 2 |
Pulses | 33 | 67 | 0 | 2 |
Spices | 23 | 54 | 23 | 2 |
Sesame | 100 | 0 | 0 | 3 |
Predictor | Estimate | Std. Error | z Value |
---|---|---|---|
Educational events (Intercept) | 1.79 * | 0.41 | 4.39 |
Extension officers | −1.79 | 1.08 | −1.66 |
Fellow farmers | 3.23 * | 0.42 | 7.75 |
Magazines | 3.38 * | 0.42 | 8.14 |
Newspapers | 3.09 * | 0.42 | 7.41 |
Government departments | 3.25 * | 0.42 | 7.82 |
Radio | 1.34 * | 0.46 | 2.93 |
Social media | 3.08 * | 0.42 | 7.37 |
Television | 1.73 * | 0.44 | 3.92 |
Treatment | Chi-Squared (X2) | Yes Percentage |
---|---|---|
Crop residues | 128.05 * | 82.67% |
FYM | 40.33 * | 68.33% |
Vermicompost | 0.65 | 52.33% |
Organic cake | 13.65 * | 39.33% |
Green manure | 15.41 * | 38.67% |
Green leaf manure | 51.25 * | 70.67% |
Azophos biofertilizer | 67.21 * | 26.33% |
Azospirillum spp. | 54.61 * | 28.67% |
Acetobacter spp. | 115.32 * | 19.00% |
Beejamurutha | 20.28 * | 37.00% |
Panchagavya | 58.08 * | 72.00% |
Jeevamrith | 96.33 * | 78.33% |
Amudhakaraisal | 87.48 * | 77.00% |
Butter milk | 11.21 * | 59.67% |
Coconut milk | 4.32 * | 56.00% |
Fish amino acid | 24.65 * | 64.33% |
Fermented fruit mixture | 2.25 | 54.33% |
Effective microorganism | 3.0 * | 55.00% |
Intercropping system | 5.33 * | 56.67% |
Trap cropping | 14.52 * | 61.00% |
Trichoderma viride | 288.12 * | 1.00% |
Neemstra | 1.33 | 53.33% |
Agniasthira | 0.33 | 51.67% |
Brahmastra | 1.92 | 54.00% |
Ginger garlic paste | 1.08 | 53.00% |
3G-Extracts | 69.12 * | 74.00% |
Spraying oil mixture | 27.0 * | 65.00% |
Treatment | Chi-Squared (X2) | Yes % |
---|---|---|
Labour intensiveness | 5.33 * | 56.67 |
Lack of manure | 228.81 * | 6.33 |
Difficulty in certification | 225.33 * | 6.67 |
Issues with transport of manure | 261.33 * | 3.33 |
Market issues | 91.85 * | 77.67 |
Training issues | 3.41 | 44.67 |
Lack of extension officers visit | 144.21 * | 15.33 |
Costly for small farmers | 211.68 * | 8.00 |
Long time for benefits | 228.81 * | 93.67 |
Lot of weeds | 89.65 * | 77.33 |
Treatments | High Yield | Less Disease | Less Insect | Good Growth | Crop Health | Less Inputs | Less Labor | Easy Manure Availability |
---|---|---|---|---|---|---|---|---|
Agree (Intercept) | 4.94 * | 5.36 * | 5.26 * | 4.11 * | 5.61 * | 5.50 * | 4.37 * | 5.55 * |
Disagree | −3.84 * | −4.26 * | −2.77 * | −3.01 * | −27.92 | −3.71 * | 0.38 * | −3.36 * |
Neutral | 0.03 | −1.03 * | −0.78 * | 1.32 * | −4.52 * | −1.69 * | 0.25 | −2.26 * |
Strongly Agree | −3.00 * | −3.57 * | −3.47 * | −2.32 * | −2.57 * | −4.40 * | −4.37 * | −4.45 * |
Strongly Disagree | −3.15 * | −4.67 * | −4.56 * | −3.42 * | −4.92 * | −4.80 * | −2.76 * | −4.45 * |
AIC | 34 | 32 | 34 | 32 | 27 | 32 | 34 | 32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habanyati, E.J.; Paramasivam, S.; Seethapathy, P.; Manalil, S. Assessing Organic Farming Adoption in Selected Districts of Tamil Nadu: Challenges, Practices, and Pathways for Growth. Agronomy 2024, 14, 2537. https://doi.org/10.3390/agronomy14112537
Habanyati EJ, Paramasivam S, Seethapathy P, Manalil S. Assessing Organic Farming Adoption in Selected Districts of Tamil Nadu: Challenges, Practices, and Pathways for Growth. Agronomy. 2024; 14(11):2537. https://doi.org/10.3390/agronomy14112537
Chicago/Turabian StyleHabanyati, Estone Jiji, Sivaraj Paramasivam, Parthasarathy Seethapathy, and Sudheesh Manalil. 2024. "Assessing Organic Farming Adoption in Selected Districts of Tamil Nadu: Challenges, Practices, and Pathways for Growth" Agronomy 14, no. 11: 2537. https://doi.org/10.3390/agronomy14112537
APA StyleHabanyati, E. J., Paramasivam, S., Seethapathy, P., & Manalil, S. (2024). Assessing Organic Farming Adoption in Selected Districts of Tamil Nadu: Challenges, Practices, and Pathways for Growth. Agronomy, 14(11), 2537. https://doi.org/10.3390/agronomy14112537