Comparative Analysis of Leaf Vegetable Productivity, Quality, and Profitability among Different Cultivation Modes: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Germination Condition
2.2. Cultivation Modes
2.2.1. Greenhouse Structure and Cultivation System of Different Cultivation Modes
2.2.2. Cultivation Management of Different Cultivation Modes
2.2.3. Cultivation Design of Different Cultivation Modes
2.3. Plant Quality and Fresh Weight Assessment
2.4. Fuzzy Comprehensive Evaluation
2.5. Production Benefit Analysis
2.6. Data Analysis
3. Results
3.1. Environmental Conditions under Different Cultivation Modes
3.2. Plant Growth and Biomass Assessment under Different Cultivation Modes
3.3. Plant Quality Assessment under Different Cultivation Modes
3.3.1. Photosynthetic Pigment
3.3.2. Nutritional Quality
3.3.3. Comprehensive Analysis and Evaluation of Leafy Vegetable Properties
3.4. Cost–Benefit Evaluation of Leafy Vegetables in Different Cultivation Modes
3.5. Analysis of Production Benefits Based on Different Pricing Strategies
3.5.1. Benefit Analysis Based on SP
3.5.2. Benefit Analysis Based on QP
3.5.3. Benefit Analysis of BP
4. Discussion
4.1. Growth Differences of Leafy Vegetables in Different Cultivation Systems
4.2. Comprehensive Evaluation of Leafy Vegetable Quality and Suggestions for Quality Improvement
4.3. Analysis of Production Cost of Leafy Vegetables
4.4. Economic Benefit Analysis of Leafy Vegetables Based on Pricing Scenarios
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, A.H.; Ye, Z.C. China Statistical Yearbook; China Statistics Press: Beijing, China, 2020; pp. 373–402. (In Chinese) [Google Scholar]
- Gao, J.J.; Cao, D.H.; Zhang, G.H. Leafy Vegetables; China Agricultural University Press: Beijing, China, 2006; pp. 10–11. (In Chinese) [Google Scholar]
- Gong, J.P.; Yang, X.X.; Gao, J.; Hong, Y.J.; Li, B.Q. Current situation and suggestions on the quality and safety of pesticide residues in vegetables in Chongqing. South. Agric. 2017, 11, 96–99. (In Chinese) [Google Scholar]
- Hu, Y. Effects of Cultivation Methods and Optimal Management on the Growth and Quality of Green Leafy Vegetables. Master’s Thesis, Shanghai Normal University, Shanghai, China, 2017. (In Chinese). [Google Scholar]
- Qiu, Y.J.; Li, Q.; He, J.; Yang, P.H. Comparative study on the quality of hydroponic vegetables and traditional vegetables. Grain Sci. Technol. Econ. 2019, 7, 95–98. (In Chinese) [Google Scholar] [CrossRef]
- Deng, S.Y.; Zhang, J.R.; Yao, L. Comparative study on quality and yield of Roman cauliflower in substrate cultivation and soil cultivation. Hortic. Seedl. 2020, 6, 13–14. (In Chinese) [Google Scholar]
- Siomos, A.S.; Beis, G.; Papadopoulou, P.P.; Nasi, P.; Kaberidou, I.; Barbayiannis, N.; Gerasopoulos, D. Quality and composition of lettuce (cv. ‘plenty’) grown in soil and soilless culture. Acta Hortic. 2001, 548, 445–450. [Google Scholar] [CrossRef]
- Sandhu, R.S. Variety Evaluation, Nutrient Assessment and Effect of Stimplex on Yield Performance of Leafy Greens in Organic Management System. Master’s Thesis, Tennessee State University, Nashville, TN, USA, 2016. [Google Scholar]
- Wu, W.J. Analysis on cost, benefit and their influence factors of vegetable production in China. J. Chang. Veg. 2015, 12, 53–56. (In Chinese) [Google Scholar]
- Ayinde, I.A.; Akerele, D.; Ojeniyi, O.T. Resource use efficiency and profitability of fluted pumpkin production under tropical conditions. Int. J. Veg. Sci. 2011, 17, 75–82. [Google Scholar] [CrossRef]
- Adeagbo, O.A.; Adejumo, O.O. Economic analysis of dry season vegetable production in Ogun State, Nigeria. Afr. J. Econ. Manag. Stud. 2020, 11, 427–441. [Google Scholar] [CrossRef]
- Song, Y.Z.; Zhang, C. Analysis of the production and investment benefits of soilless cultivation of vegetables in modern greenhouses. Shaanxi J. Agric. Sci. 2008, 4, 100–102. (In Chinese) [Google Scholar]
- Ferguson, S.D.; Saliga, R.P.I.; Omaye, S.T. Investigating the effects of hydroponic media on quality of greenhouse grown leafy greens. Int. J. Agric. Ext. 2014, 2, 227–234. [Google Scholar]
- Gregory, V.; Wang, W.; Gao, X.; Shang, Y.; Lian, J. The Modern Chinese Farmer: Technical Adoptions and Marketing Innovations among Vegetable Farmers in Shijiazhuang, Hebei. Eurasian Geogr. Econ. 2003, 44, 65–86. [Google Scholar] [CrossRef]
- Geven, C.G.M. Economic perspectives of organic vegetable farms in the Netherlands. Acta Hortic. 2000, 2000, 27–32. [Google Scholar] [CrossRef]
- Bielik, P.; Hupkova, D. The technical efficiency analysis–case of agricultural basic industry in Slovakia. AGRIS-Line Pap. Econ. Inform. 2011, 3, 3–12. [Google Scholar] [CrossRef]
- Yu, F.M. Analysis of the economic benefits of two kinds of facility cultivation vegetables in the suburbs of Shanghai. China Veg. 2004, 1, 48–50. (In Chinese) [Google Scholar]
- Bhattarai, S.P.; Palada, M.C.; Midmore, D.J.; Wu, D.; Salas, R. On-farm evaluation of fertilizer briquettes and low-cost drip irrigation for smallholder vegetable production in Cambodia. Irrig. Drain. 2011, 60, 318–329. [Google Scholar] [CrossRef]
- Ghosh, C.; Raychaudhuri, A. Measurement of cost efficiency in the case of rice production in west Bengal and Andhra Pradesh. IUP J. Agric. Econ. 2010, 7, 31–47. [Google Scholar]
- Moghaddam, P.R.; Feizi, H.; Mondani, F. Evaluation of tomato production systems in terms of energy use efficiency and economical analysis in Iran. Not. Sci. Biol. 2011, 3, 58–65. [Google Scholar] [CrossRef]
- Sassenrath, G.F.; Heilman, P.; Luschei, E.; Bennett, G.L.; Fitzgerald, G.; Klesius, P.; Zimba, P.V. Technology, complexity and change in agricultural production systems. Renew. Agric. Food Syst. 2008, 23, 285–295. [Google Scholar] [CrossRef]
- Sohail, N.; Latif, K.; Abbas, N.; Shahid, M. Estimation of technical efficiency and investigation of efficiency variables in wheat production: A case of district Sargodha (Pakistan). Interdiscip. J. Contemp. Res. Bus. 2012, 3, 897–904. [Google Scholar]
- Phokele, M.; Sylvester, M. Climate change and agricultural production in south Africa: Impacts and adaptation options. J. Agric. Sci. 2012, 4, 121–136. [Google Scholar] [CrossRef]
- Fussy, A.; Papenbrock, J. An Overview of Soil and Soilless Cultivation Techniques—Chances, Challenges and the Neglected Question of Sustainability. Plants 2022, 11, 1153. [Google Scholar] [CrossRef]
- Cao, J.K.; Jiang, W.B.; Zhao, Y.M. Experiment Guidance of Postharvest Physiology and Biochemistry of Fruits and Vegetables; China Light Industry Press Ltd.: Beijing, China, 2017. (In Chinese) [Google Scholar]
- Baligar, V.; Fageria, N.; He, Z. Nutrient use efficiency in plants. Commun. Soil Sci. Plant Anal. 2001, 32, 921–950. [Google Scholar] [CrossRef]
- Kharkina, T.G.; Ottosen, C.; Rosenqvist, E. Effects of root restriction on the growth and physiology of cucumber plants. Physiol. Plant. 2010, 105, 434–441. [Google Scholar] [CrossRef]
- Kozai, T.; Niu, G.; Takagaki, M. Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Fandi, M.; Al-Muhtaseb, J.A.; Hussein, M.A. Yield and Fruit Quality of Tomato as Affected by the Substrate in an Open Soilless Culture. Jordan J. Agric. Sci. 2010, 4, 65–72. [Google Scholar]
- Selma, M.V.; Luna, M.C.; Martínez-Sánchez, A.; Tudela, J.A.; Beltrán, D.; Baixauli, C.; Gil, M.I. Sensory quality, bioactive constituents and microbiological quality of green and red fresh-cut lettuces (Lactuca sativa L.) are influenced by soil and soilless agricultural production systems. Postharvest Biol. Technol. 2012, 63, 16–24. [Google Scholar] [CrossRef]
- Bian, Z.H.; Lei, B.; Cheng, R.F.; Yu, W.A.N.G.; Tao, L.I.; Yang, Q.C. Selenium distribution and nitrate metabolism in hydroponic lettuce (Lactuca sativa L.): Effects of selenium forms and light spectra. J. Integr. Agric. 2020, 19, 133–144. [Google Scholar] [CrossRef]
- Miao, C.; Yang, S.; Xu, J.; Wang, H.; Zhang, Y.; Cui, J.; Ding, X. Effects of Light Intensity on Growth and Quality of Lettuce and Spinach Cultivars in a Plant Factory. Plants 2023, 12, 3337. [Google Scholar] [CrossRef]
- Xu, J.; Guo, Z.; Jiang, X.; Ahammed, G.J.; Zhou, Y. Light regulation of horticultural crop nutrient uptake and utilization. Hortic. Plant J. 2021, 7, 367–379. [Google Scholar] [CrossRef]
- Zha, L.Y.; Liu, W.K.; Zhang, Y.B.; Zhou, C.; Shao, M. Morphological and physiological stress responses of lettuce to different intensities of continuous light. Front. Plant Sci. 2019, 10, 1440. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Fan, H.; Wu, W.; Liu, H.; Ma, F.; Niu, Y. Water Retention Parameters of Soilless-culture Substrates. Trans. Chin. Soc. Agric. Mach. 2013, 44, 113–118+142. (In Chinese) [Google Scholar]
- Shan, Q.L.; Yang, C.M.; Li, S.; Wang, J.; Qu, Y.; Wang, G.; Jiang, H. Effects of Substrate and Plant Growth Regulator on Gerbera Jamesonii Rooting. Southwest China J. Agric. Sci. 2014, 27, 307–310. [Google Scholar] [CrossRef]
- Lei, J.L.; Chen, J.; Dai, D.L. Study on the hydroponics technique of leaf vegetables with low-nitrate content. Acta Agric. Zhejiangensis 2004, 16, 102–104. (In Chinese) [Google Scholar]
- Guo, J.H.; Dong, L.D.; Jiao, Y.G.; Shi, L.Q.; Hao, C.X.; Yang, Y.B.; Li, M. Optimum formula of hydroponic nutrient solution for low nitrate leaf vegetables. J. Agric. 2017, 5, 28–32. (In Chinese) [Google Scholar]
- Azad, M.A.K.; Islam, N.; Ishikawa, K. Quartz porphyry treatment alters irrigation water chemistry, affecting hydroponic vegetable production. J. Plant Nutr. 2010, 33, 1712–1731. [Google Scholar] [CrossRef]
- Zheng, G.H. Production cost and development prospect of soilless culture. Chin. J. Agric. Eng. 1988, 1, 65–71. (In Chinese) [Google Scholar]
- Engindeniz, S.; Gül, A. Economic analysis of soilless and soil-based greenhouse cucumber production in Turkey. Sci. Agric. 2009, 66, 606–614. [Google Scholar] [CrossRef]
- Suárez, I.E.; Yépez, J.E.; López, C.M.; Agrarios, T. Effect of different substrates on adaptation of arrow cane (Gynerium sagitatum aub L.) micropropagated plants. Temas Agrar. 2020, 25, 77–84. [Google Scholar] [CrossRef]
- Incrocci, L.; Malorgio, F.; Della Bartola, A.; Pardossi, A. The influence of drip irrigation or subirrigation on tomato grown in closed-loop substrate culture with saline water. Sci. Hortic. 2005, 107, 365–372. [Google Scholar] [CrossRef]
- Steiner, J. Sustainable solutions to solve today’s and future agricultural production challenges. Agric. Res. 2007, 55, 2. [Google Scholar]
- Weng, J.H. Effects of Micro-Climate in Glasshouse and Root Temperature of Hydroponic Vegetables. J. Agric. Meteorol. 1997, 52, 857–862. [Google Scholar] [CrossRef]
- Wang, M.Y.; Li, J.P.; Li, J.J. Research on the production efficiency of Chinese facility vegetables from the perspective of cost and benefit: Taking cucumber and tomato cultivation as examples. China Agric. Resour. Zoning 2021, 42, 170–183. (In Chinese) [Google Scholar]
- Chen, Y.S.; Liu, X.C.; Han, B.H.; Yang, Y.T.; Guan, C.S.; Gao, Q.S. Report on the Development of Vegetable Production Mechanization in China. Chin. J. Agric. Mach. 2021, 42, 1–9+34. (In Chinese) [Google Scholar] [CrossRef]
- Gautam, R.; Singh, P.K.; Kumar, P.; Singh, M.C.; Dhital, S.; Rani, M.; Kumar, J. Advances in soilless cultivation technology of horticultural crops: Review. Indian J. Agric. Sci. 2021, 91, 503–511. [Google Scholar] [CrossRef]
- Balqiah, T.E.; Pardyanto, A.; Astuti, R.D. Understanding how to increase hydroponic attractiveness: Economic and ecological benefit. E3S Web Conf. 2020, 211, 01015. [Google Scholar] [CrossRef]
Treatment | Number of Seedlings | Planting Area | Planting Density | Growing Period after Transplant |
---|---|---|---|---|
(Plants) | (m2) | (Plants·m−2) | (Days) | |
Sub-C | 2240 | 64.3 | 34.9 | 24 |
Sub-LG | 1920 | 55.1 | 34.9 | 24 |
Sub-LR | 640 | 18.4 | 34.9 | 24 |
Hyd-C | 1600 | 38.4 | 41.7 | 25 |
Hyd-LG | 1200 | 28.8 | 41.7 | 28 |
Hyd-LR | 400 | 9.6 | 41.7 | 28 |
Soi-C | 1029 | 60.0 | 17.2 | 30 |
Soi-LG | 465 | 30.0 | 15.5 | 35 |
Soi-LR | 180 | 10.0 | 18.0 | 35 |
Cost Category | Seedling Period | Growing Period | Harvest Stage |
---|---|---|---|
Fixed cost | Production depreciation | ||
Input cost | Number of seeds Seed varieties and price Substrate consumption and price | Transfer area Transfer density Fertilizer or nutrient solution price | Packing quantity and cost |
Labor cost | Labor unit | ||
Management cost | Electricity consumption Water consumption |
Treatment | Fresh Weight (g·Plant−1) | Total Yield (kg) | Daily Biomass Integral (g·d−1·Plant−1) |
---|---|---|---|
Hyd-C | 47.08 ± 8.54 a | 68.0 | 1.70 |
Sub-C | 24.42 ± 3.04 b | 62.7 | 1.17 |
Soi-C | 52.97 ± 11.48 a | 85.0 | 2.75 |
Hyd-LG | 25.04 ± 4.20 a | 27.0 | 0.80 |
Sub-LG | 10.45 ± 1.51 c | 75.0 | 1.63 |
Soi-LG | 19.62 ± 4.74 b | 34.4 | 2.11 |
Hyd-LR | 17.41 ± 2.77 a | 7.5 | 0.67 |
Sub-LR | 9.92±1.83 c | 25.0 | 1.63 |
Soi-LR | 14.18 ± 3.17 b | 11.5 | 1.82 |
Treatment | Membership Function Values | Average Score | Overall Ranking | ||||||
---|---|---|---|---|---|---|---|---|---|
Soluble Protein | Soluble Solids | Vitamin C | Total chl | Carotenoid | Nitrate | Fresh Weight | |||
Hyd-C | 0.82 | 0.25 | / | / | / | 0.05 | 0.56 | 0.42 | 7 |
Sub-C | 0.25 | 0.83 | / | / | / | 0.97 | 0.06 | 0.53 | 2 |
Soi-C | 0.76 | 0.11 | / | / | / | 0.40 | 0.66 | 0.48 | 4 |
Hyd-LG | 0.16 | 0.51 | 0.05 | / | / | 0.46 | 0.64 | 0.36 | 9 |
Sub-LG | 0.20 | 0.80 | 0.46 | / | / | 0.80 | 0.04 | 0.46 | 5 |
Soi-LG | 0.66 | 0.13 | 0.76 | / | / | 0.10 | 0.56 | 0.44 | 6 |
Hyd-LR | / | 0.86 | 0.20 | / | 0.74 | 0.91 | 0.83 | 0.71 | 1 |
Sub-LR | / | 0.80 | 0.79 | / | 0.30 | 0.52 | 0.23 | 0.53 | 3 |
Soi-LR | / | 0.30 | 0.49 | / | 0.15 | 0.40 | 0.66 | 0.40 | 8 |
Treatment | Unit Fixed Cost CNY·m−2 | Unit Input Cost CNY·m−2 | Unit Labor Cost CNY·m−2 | Unit Management Cost CNY·m−2 | Unit Cost CNY·m−2 |
---|---|---|---|---|---|
Hyd-C | 4.00 | 1.47 | 1.39 | 1.40 | 8.26 |
Sub-C | 3.36 | 4.17 | 2.60 | 0.17 | 10.30 |
Soi-C | 0.30 | 1.31 | 0.79 | 0.06 | 2.45 |
Hyd-LG | 4.48 | 1.47 | 1.39 | 1.41 | 8.75 |
Sub-LG | 3.36 | 4.02 | 2.27 | 0.15 | 9.80 |
Soi-LG | 0.35 | 1.44 | 0.94 | 0.09 | 2.82 |
Hyd-LR | 4.48 | 1.47 | 1.39 | 1.39 | 8.73 |
Sub-LR | 3.36 | 4.02 | 2.27 | 0.15 | 9.80 |
Soi-LR | 0.35 | 1.57 | 0.94 | 0.09 | 2.95 |
Treatment | Unit Cost CNY·m−2 | Unit Yield kg·m−2 | Cost per Unit of Yield CNY·kg−1 | SP CNY·kg−1 | Unit Income CNY·m2 | Unit Benefit CNY·m2 |
---|---|---|---|---|---|---|
Hyd-C | 8.26 | 0.86 | 9.61 | 20.00 | 17.20 | 8.94 |
Sub-C | 10.30 | 0.60 | 17.12 | 10.00 | 6.02 | −4.28 |
Soi-C | 2.45 | 1.21 | 2.02 | 6.00 | 7.29 | 4.83 |
Hyd-LG | 8.75 | 0.46 | 19.21 | 20.00 | 9.11 | 0.36 |
Sub-LG | 9.80 | 0.84 | 11.67 | 12.00 | 10.08 | 0.28 |
Soi-LG | 2.82 | 0.98 | 2.87 | 10.00 | 9.81 | 7.00 |
Hyd-LR | 8.73 | 0.38 | 23.01 | 20.00 | 7.59 | −1.14 |
Sub-LR | 9.80 | 0.84 | 11.67 | 12.00 | 10.08 | 0.28 |
Soi-LR | 2.95 | 0.98 | 3.00 | 12.00 | 11.78 | 8.83 |
Treatment | Score | QP (CNY·kg−1) | Unit Benefit (CNY·m−2) |
---|---|---|---|
Hyd-C | 3.02 | 10.11 | 0.44 |
Sub-C | 3.74 | 17.66 | 0.29 |
Soi-C | 3.25 | / | / |
Hyd-LG | 2.08 | 6.00 | −5.99 |
Sub-LG | 3.11 | 12.86 | 1.00 |
Soi-LG | 3.87 | / | / |
Hyd-LR | 4.00 | 30.00 | 2.67 |
Sub-LR | 3.44 | 17.66 | 5.03 |
Soi-LR | 2.19 | / | / |
Sort | Treatment | Unit Cost CNY·m−2 | Cost per Unit of Yield CNY·kg−1 | 20% Revenue Pricing CNY·kg−1 | Unit Benefit CNY·m−2 | 40% Revenue Pricing CNY·kg−1 | Unit Benefit CNY·m−2 |
---|---|---|---|---|---|---|---|
1 | Sub-C | 10.30 | 17.12 | 20.54 | 2.03 | 23.97 | 4.08 |
2 | Sub-LG | 9.80 | 11.67 | 14.00 | 1.96 | 16.34 | 3.92 |
3 | Sub-LR | 9.80 | 11.67 | 14.00 | 1.96 | 16.34 | 3.92 |
4 | Hyd-LG | 8.75 | 19.21 | 23.05 | 1.85 | 26.89 | 3.62 |
5 | Hyd-LR | 8.73 | 23.01 | 27.61 | 1.76 | 32.21 | 3.51 |
6 | Hyd-C | 8.26 | 9.61 | 11.53 | 1.66 | 13.45 | 3.31 |
7 | Soi-LR | 2.95 | 3.00 | 3.60 | 0.58 | 4.20 | 1.17 |
8 | Soi-LG | 2.82 | 2.87 | 3.44 | 0.56 | 4.02 | 1.12 |
9 | Soi-C | 2.45 | 2.02 | 2.42 | 0.48 | 2.83 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zha, L.; Wang, Z.; Huang, C.; Duan, Y.; Tian, Y.; Wang, H.; Zhang, J. Comparative Analysis of Leaf Vegetable Productivity, Quality, and Profitability among Different Cultivation Modes: A Case Study. Agronomy 2024, 14, 76. https://doi.org/10.3390/agronomy14010076
Zha L, Wang Z, Huang C, Duan Y, Tian Y, Wang H, Zhang J. Comparative Analysis of Leaf Vegetable Productivity, Quality, and Profitability among Different Cultivation Modes: A Case Study. Agronomy. 2024; 14(1):76. https://doi.org/10.3390/agronomy14010076
Chicago/Turabian StyleZha, Lingyan, Zuoqi Wang, Chengan Huang, Yiwen Duan, Yuanyuan Tian, Haolin Wang, and Jingjin Zhang. 2024. "Comparative Analysis of Leaf Vegetable Productivity, Quality, and Profitability among Different Cultivation Modes: A Case Study" Agronomy 14, no. 1: 76. https://doi.org/10.3390/agronomy14010076
APA StyleZha, L., Wang, Z., Huang, C., Duan, Y., Tian, Y., Wang, H., & Zhang, J. (2024). Comparative Analysis of Leaf Vegetable Productivity, Quality, and Profitability among Different Cultivation Modes: A Case Study. Agronomy, 14(1), 76. https://doi.org/10.3390/agronomy14010076