Assessing the Potential of Old and Modern Serbian Wheat Genotypes: Yield Components and Nutritional Profiles in a Comprehensive Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Plant Material
2.2. Analysis of Grain Yield Components
2.3. Analysis of Protein Content
2.4. Analysis of Amino Acid Content
2.5. Meteorological Conditions
2.6. Statistical Analysis
3. Results and Discussion
3.1. Grain Yield Components
3.2. Protein Content
3.3. Nonessential Amino Acid Content
3.4. Essential Amino Acid Content
3.5. Amino Acid Score
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Braun, H.-J.; Atlin, G.; Payne, T. Multi-location testing as a tool to identify plant response to global climate change. Clim. Change Crop Prod. 2010, 46, 239–250. [Google Scholar]
- Erenstein, O.; Jaleta, M.; Mottaleb, K.A.; Sonder, K.; Donovan, J.; Braun, H.J. Global Trends in Wheat Production, Consumption and Trade. In Wheat Improvement; Reynolds, M.P., Braun, H.J., Eds.; Springer: Cham, Switzerland, 2022; pp. 47–66. [Google Scholar]
- Ramadas, S.; Kumar, T.K.; Singh, G.P. Wheat Production in India: Trends and Prospects. In Recent Advances in Grain Crops Research; IntechOpen: London, UK, 2020. [Google Scholar]
- Philipp, N.; Weichert, H.; Bohra, U.; Weschke, W.; Schulthess, A.W.; Weber, H. Grain number and grain yield distribution along the spike remain stable despite breeding for high yield in winter wheat. PLoS ONE 2018, 13, e0205452. [Google Scholar] [CrossRef] [PubMed]
- Zečević, V.; Knežević, D.; Kraljević-Balalić, M.; Mićanović, D. Genetic and phenotypic variability of yield components in wheat, Triticum aestivum L. Genetika 2004, 36, 151–159. [Google Scholar] [CrossRef]
- Janmohammadi, M.; Movahedi, Z.; Sabaghnia, N. Multivariate statistical analysis of some traits of bread wheat for breeding under rainfed conditions. J. Agric. Sci. 2014, 59, 1–14. [Google Scholar] [CrossRef]
- Cseh, A.; Poczai, P.; Kiss, T.; Balla, K.; Berki, Z.; Horváth, Á.; Kuti, C.; Karsai, I. Exploring the legacy of central European historical winter wheat landraces. Sci. Rep. 2021, 11, 23915. [Google Scholar] [CrossRef]
- Achilli, A.L.; Roncallo, P.F.; Echenique, V. Genetic gains in grain yield and agronomic traits of Argentinian durum wheat from 1934 to 2015. Agronomy 2022, 12, 2151. [Google Scholar] [CrossRef]
- Longin, C.F.H.; Reif, J.C. Redesigning the exploitation of wheat genetic resources. Trends Plant Sci. 2014, 19, 631–636. [Google Scholar] [CrossRef]
- Balkan, A. Genetic variability, heritability and genetic advance for yield and quality traits in M2-4 generations of bread wheat (Triticum aestivum L.) genotypes. Turk. J. Field Crops 2018, 23, 173–179. [Google Scholar] [CrossRef]
- Borrás, L.; Slafer, G.A.; Otegui, M.E. Seed dry weight response to source–sink manipulations in wheat, maize and soybean: A quantitative reappraisal. Field Crops Res. 2004, 86, 131–146. [Google Scholar] [CrossRef]
- Slafer, G.A.; Savin, R.; Sadras, V.O. Coarse and fine regulation of wheat yield components in response to genotype and environment. Field Crops Res. 2014, 157, 71–83. [Google Scholar] [CrossRef]
- Jaenisch, B.R.; Munaro, L.B.; Jagadish, S.V.K.; Lollato, R.P. Modulation of wheat yield components in response to management intensification to reduce yield gaps. Front. Plant Sci. 2022, 13, 772232. [Google Scholar] [CrossRef] [PubMed]
- Shearman, V.J.; Sylvester-Bradley, R.; Scott, R.K.; Foulkes, M.J. Physiological processes associated with wheat yield progress in the UK. Crop Sci. 2005, 45, 175–185. [Google Scholar] [CrossRef]
- Foulkes, M.J.; Slafer, G.A.; Davies, W.J.; Berry, P.M.; Sylvester-Bradley, R.; Martre, P.; Calderini, W.J.; Griffith, S.; Reynolds, M.P. Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. J. Exp. Bot. 2011, 62, 469–486. [Google Scholar] [CrossRef]
- Foulkes, M.J.; Reynolds, M.; Sylvester-Bradley, R. Genetic improvement of grain crops: Yield potential. In Crop Physiology: Applications for Genetic Improvement and Agronomy; Sadras, V., Calderini, D., Eds.; Elsevier: Amsterdam, The Neatherlands, 2009. [Google Scholar]
- Zečević, V.; Bošković, J.; Dimitrijević, M.; Petrović, S. Genetic and phenotypic variability of yield components in wheat (Triticum aestivum L.). Bulg. J. Agric. Sci. 2010, 16, 422–428. [Google Scholar]
- Knežević, D.; Laze, A.; Paunović, A.; Đurović, V.; Đukić, N.; Valjarević, D.; Kondić, D.; Mićanović, D.; Živić, J.; Zečević, V. Approaches in cereal breeding. Acta Agric. Serb. 2020, 25, 179–186. [Google Scholar] [CrossRef]
- Matković Stojšin, M.; Petrović, S.; Banjac, B.; Roljević Nikolić, S.; Zečević, V.; Bačić, J.; Đorđević, R.; Knežević, D. Development of selection criteria for improving grain yield in wheat grown in different agro-ecological environments. Acta Agric. Serb. 2022, 27, 79–87. [Google Scholar] [CrossRef]
- Tomičić, Z.M.; Pezo, L.L.; Spasevski, N.J.; Lazarević, J.M.; Čabarkapa, I.S.; Tomičić, R.M. Diversity of amino acids composition in cereals. Food Feed Res. 2022, 49, 11–22. [Google Scholar] [CrossRef]
- Zečević, V.; Knežević, D.; Mićanović, D. Variability of technological quality components in winter wheat. Genetika 2007, 39, 365–374. [Google Scholar] [CrossRef]
- Zečević, V.; Bosković, J.; Knežević, D.; Mićanović, D.; Milenković, S. Influence of cultivar and growing season on quality properties of winter wheat (Triticum aestivum L.). Afr. J. Agric. Res. 2013, 8, 2545–2550. [Google Scholar]
- Knezevic, D.; Paunovic, A.; Madic, M.; Djukic, N. Genetic analysis of nitrogen accumulation in four wheat cultivars and their hybrids. Cereal Res. Commun. 2007, 35, 633–636. [Google Scholar] [CrossRef]
- Govindan, V.; Michaux, K.D.; Pfeiffer, W.H. Nutritionally Enhanced Wheat for Food and Nutrition Security. In Wheat Improvement; Reynolds, M.P., Braun, H.J., Eds.; Springer: Cham, Switzerland, 2022; pp. 195–214. [Google Scholar]
- Gaikwad, K.B.; Rani, S.; Kumar, M.; Gupta, V.; Babu, P.H.; Bainsla, N.K.; Yadav, R. Enhancing the Nutritional Quality of Major Food Crops through Conventional and Genomics-Assisted Breeding. Front. Nutr. 2020, 7, 533453. [Google Scholar] [CrossRef] [PubMed]
- Shiferaw, B.; Smale, M.; Braun, H.J.; Duveiller, E.; Reynolds, M.; Mauricho, G. Crops that feed the world 10. Past scuccesses and future challenges to the role played by wheat in global food security. Food Secur. 2013, 5, 291–317. [Google Scholar] [CrossRef]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Boye, J.; Wijesinha-Bettoni, R.; Burlingame, B. Protein quality evaluation twenty years after the introduction of the protein digestibility corrected amino acid score method. Br. J. Nutr. 2012, 108, 183–211. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Sec. 2015, 4, 178–202. [Google Scholar] [CrossRef]
- Reeds, P.J. Dispensable and indispensable amino acids for humans. J. Nutr. 2000, 130, 1835–1840. [Google Scholar] [CrossRef]
- Knežević, D.; Mihajlović, D.; Kondić, D. Contents of Amino acids in grains of different bread wheat genotypes. Agro-Know. J. 2013, 14, 431–439. [Google Scholar] [CrossRef]
- Tsochatzis, E.; Papageorgiou, M.; Kalogiannis, S. Validation of a HILIC UHPLC-MS/MS Method for Amino Acid Profiling in Triticum Species Wheat Flours. Foods 2019, 8, 514. [Google Scholar] [CrossRef]
- Siddiqi, R.A.; Singh, T.P.; Rani, M.; Sogi, D.S.; Bhat, M.A. Diversity in grain, flour, amino acid composition, protein profiling, and proportion of total flour proteins of different wheat cultivars of North India. Front. Nutr. 2020, 7, 141. [Google Scholar] [CrossRef]
- Davies, R.W.; Jakeman, P.M. Separating the Wheat from the Chaff: Nutritional Value of Plant Proteins and Their Potential Contribution to Human Health. Nutrients 2020, 12, 2410. [Google Scholar] [CrossRef]
- Khan, M.S.; Ali, E.; Ali, S.; Khan, W.M.; Sajjad, M.A.; Hussain, F. Assessment of essential amino acids in wheat proteins: A case study. J. Biodivers. Environ. Sci. 2014, 4, 185–189. [Google Scholar]
- Cavanagh, C.R.; Taylor, J.L.; Larroque, O.; Coombes, N.; Verbyla, A.P.; Nath, Z.; Kutty, I.; Rampling, L.; Butow, B.; Ral, J.-P.; et al. Sponge and dough bread making: Genetic and phenotypic relationships with wheat quality traits. Theor. Appl. Genet. 2010, 121, 815–828. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tang, J.W.; Zhang, Y.L.; Yan, J.; Xiao, Y.G.; Zhang, Y.; Xia, X.; He, Z. QTL mapping for quantities of protein fractions in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 2011, 122, 971–987. [Google Scholar] [CrossRef] [PubMed]
- Punia, S.; Sandhu, K.S.; Siroha, A.K. Difference in protein content of wheat (Triticum aestivum L.): Effect on functional, pasting, color and antioxidant properties. J. Saudi Soc. Agric. Sci. 2019, 18, 378–384. [Google Scholar] [CrossRef]
- Czaja, T.; Sobota, A.; Szostak, R. Quantification of ash and moisture in wheat flour by Raman spectroscopy. Foods 2020, 9, 280. [Google Scholar] [CrossRef]
- Zečević, V.; Knežević, D.; Mićanović, D.; Dimitrijević, B. The investigation of some quality parameters of wheat grain in different maturity stages. Kragujev. J. Sci. 2005, 27, 143–146. [Google Scholar]
- Knežević, D.; Zečević, V.; Stamenković, S.; Atanasijević, S.; Milošević, B. Variability of number of kernels per spike in wheat cultivars (Triticum aestivum L.). J. Cent. Eur. Agric. 2012, 13, 617–623. [Google Scholar] [CrossRef]
- Hristov, N.; Mladenov, N.; Djuric, V.; Kondic-Spika, A.; Marjanovic-Jeromela, A.; Simic, D. Genotype by environment interactions in wheat quality breeding programs in southeast Europe. Euphytica 2010, 174, 315–324. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International Method; No. 08-01 and No. 44-10; AOAC: Washington, DC, USA, 1995. [Google Scholar]
- Spackman, D.H.; Stein, W.H.; Moore, S. Automatic recording apparatus for use in chromatography of amino acids. Anal. Chem. 1958, 30, 1190–1206. [Google Scholar] [CrossRef]
- FAO. Dietary Protein Quality Evaluation in Human Nutrition; Report of an FAO Expert Consultation; FAO Food and Nutrition Paper 92; FAO: Rome, Italy, 2013; ISBN 978-92-5-107417-6. [Google Scholar]
- Republic Hydrometeorological Institute of Serbia. Available online: http://www.hidmet.gov.rs/ (accessed on 26 June 2022).
- IBM SPSS Statistics, Trial Version 22.0. Available online: https://www.ibm.com/ (accessed on 29 June 2021).
- R Foundation for Statistical Computing. R Project for Statistical Computing; Version 4.2.0 (2022-04-22 ucrt); R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 20 May 2023).
- Matković Stojšin, M.; Zečević, V.; Petrović, S.; Dimitrijević, M.; Mićanović, D.; Banjac, B.; Knežević, D. Variability, correlation, path analysis and stepwise regression for yield components of different wheat genotypes. Genetika 2018, 50, 817–828. [Google Scholar] [CrossRef]
- Luković, K.; Prodanović, S.; Perišić, V.; Milovanović, M.; Perišić, V.; Rajičić, V.; Zečević, V. Multivariate analysis of morphological traits and the most important productive traits of wheat in extreme wet conditions. Appl. Ecol. Environ. Res. 2020, 18, 5857–5871. [Google Scholar] [CrossRef]
- Zečević, V.; Bošković, J.; Knežević, D.; Mićanović, D. Effect of seeding rate on grain quality of winter wheat. Chil. J. Agric. Res. 2014, 74, 23–28. [Google Scholar] [CrossRef]
- Mitura, K.; Cacak-Pietrzak, G.; Feledyn-Szewczyk, B.; Szablewski, T.; Studnicki, M. Yield and grain quality of common wheat (Triticum aestivum L.) depending on the different farming systems (organic vs. integrated vs. conventional). Plants 2023, 12, 1022. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, R.; Armion, M.; Zadhasan, E.; Ahamdi, M.M.; Amir, A. The use of AMMI model for interpreting genotype × environment interaction in durum wheat. Exp. Agric. 2018, 54, 670–683. [Google Scholar] [CrossRef]
- Popović, V.; Ljubičić, N.; Kosrić, M.; Radulović, M.; Blagojević, D.; Ugrenović, V.; Popović, D.; Ivošević, B. Genotype × environment interaction for wheat yield traits suitable for selection in different seed priming conditions. Plants 2020, 9, 1804. [Google Scholar] [CrossRef]
- Banjac, B.; Mladenov, V.; Dimitrijević, M.; Petrović, S.; Boćanski, J. Genotype × environment interactions and phenotypic stability for wheat grown in stressful conditions. Genetika 2014, 46, 799–806. [Google Scholar] [CrossRef]
- Royo, C.; Álvaro, F.; Martos, V.; Ramdani, A.; Isidro, J.; Villegas, D.; García Del Moral, L.F. Genetic changes in durum wheat yield components and associated traits in Italian and Spanish varieties during the 20th century. Euphytica 2007, 155, 259–270. [Google Scholar] [CrossRef]
- Ali, N.; Hussain, I.; Ali, S.; Khan, N.U.; Hussain, I. Multivariate analysis for various quantitative traits in wheat advanced lines. Saudi J. Biol.Sci. 2021, 28, 347–352. [Google Scholar] [CrossRef]
- Verma, S.P.; Pathak, V.N.; Verma, O.P. Interrelationship between yield and its contributing traits in wheat (Triticum aestivum L.). Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 3209–3215. [Google Scholar] [CrossRef]
- Sourour, A.; Afef, O.; Salah, B.; Mounir, R.; Mongi, B.Y. Correlation between agronomical and quality traits in durum wheat (Triticum durum Desf.) germplasm in semi arid environment. Adv. Plants Agric. Res. 2018, 8, 612–615. [Google Scholar]
- Zečević, V.; Knežević, D.; Mićanović, D. Genetic correlations and Path-coefficient analysis of yield and quality components in wheat (Triticum aestivum L.). Genetika 2004, 36, 13–21. [Google Scholar] [CrossRef]
- Laze, A.; Arapi, V.; Ceca, E.; Gusho, K.; Pezo, L.; Brahushi, F.; Knežević, D. Chemical composition and amino acid content in different genotypes of wheat flour. Period. Polytech. Chem. Eng. 2019, 63, 618–628. [Google Scholar] [CrossRef]
- Mondal, S.; Rutkoski, J.E.; Velu, G.; Singh, P.K.; Crespo-Herrera, L.A.; Guzmán, C.; Bhavani, S.; Lan, C.; He, X.; Singh, R.P. Harnessing Diversity in Wheat to Enhance Grain Yield, Climate Resilience, Disease and Insect Pest Resistance and Nutrition Through Conventional and Modern Breeding Approaches. Front. Plant Sci. 2016, 7, 991. [Google Scholar] [CrossRef] [PubMed]
- Anjum, F.M.; Ahmad, I.; Butt, M.S.; Arshad, M.U.; Pasha, I. Improvement in end-use quality of spring wheat varieties grown in different eras. Food Chem. 2008, 106, 482–486. [Google Scholar] [CrossRef]
- Tomičić, M.Z.; Spasevski, J.N.; Popović, J.S.; Banjac, V.V.; Đuragić, M.O.; Ružica, M.; Tomičić, M.R. By-products of the oil industry as sources of amino acids in feed. Food Feed Res. 2020, 47, 131–137. [Google Scholar] [CrossRef]
- Knezevic, S.D.; Djukić, N.; Paunović, A.; Madić, M. Amino acid content in grains of different winter wheat (Triticum aestivum L.) varieties. Cereal Res. Commun. 2009, 37, 647–650. [Google Scholar]
- Alijošius, S.; Švirmickas, G.J.; Bliznikas, S.; Gružauskas, R.; Šašytė, V.; Racevičiūtė-Stupelienė, A.; Kliševičiūtė, V.; Daukšienė, A. Grain chemical composition of different varieties of winter cereals. Zemdirbyste-Agriculture 2016, 103, 273–280. [Google Scholar] [CrossRef]
- Zhou, Y.; Danbolt, N.C. Glutamate as a neurotransmitter in the healthy brain. J. Neural Transm. 2014, 121, 799–817. [Google Scholar] [CrossRef]
- Walker, M.C.; van der Donk, W.A. The many roles of glutamate in metabolism. J. Ind. Microbiol. Biotechnol. 2016, 43, 419–430. [Google Scholar] [CrossRef]
- Anjum, F.M.; Ahmad, I.; Butt, M.S.; Sheikh, M.A.; Pasha, I. Amino acid composition of spring wheats and losses of lysine during chapati baking. J. Food Compos. Anal. 2005, 18, 523–532. [Google Scholar] [CrossRef]
- Sułek, A.; Cacak-Pietrzak, G.; Różewicz, M.; Nieróbca, A.; Grabiński, J.; Studnicki, M.; Sujka, K.; Dziki, D. Effect of production technology intensity on the grain yield, protein content and amino acid profile in common and durum wheat grain. Plants 2023, 12, 364. [Google Scholar] [CrossRef] [PubMed]
- Hosseinifard, M.; Stefaniak, S.; Ghorbani Javid, M.; Soltani, E.; Wojtyla, Ł.; Garnczarska, M. Contribution of exogenous proline to abiotic stresses tolerance in plants: A Review. Int. J. Mol. Sci. 2022, 23, 5186. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef] [PubMed]
- Yongqing, H.; Guoyao, W. Nutritionally essential amino acids. Adv. Nutr. 2018, 9, 849–851. [Google Scholar]
- Duan, Y.; Li, F.; Li, Y.; Tan, Y.; Kon, X.; Fen, Z.; Anthony, T.; Waterford, M.; Hou, Y.; Wu, G.; et al. The role of leucine and its metabolites in protein and energy metabolism. Amino Acids 2016, 48, 41–51. [Google Scholar] [CrossRef]
- Gammoh, S.; Alu’datt, M.H.; Alhamad, M.N.; Tranchant, C.C.; Rababah, T.; Al-U’datt, D.; Hussein, N.; Alrosan, M.; Tan, T.-C.; Kubow, S.; et al. Functional and bioactive properties of wheat protein fractions: Impact of digestive enzymes on antioxidant, α-amylase, and angiotensin-converting enzyme inhibition potential. Molecules 2023, 28, 6012. [Google Scholar] [CrossRef]
- Yoo, H.; Widhalm, J.; Qian, Y.; Maeda, H.; Cooper, B.R.; Jammasch, A.S.; Gonda, I.; Lewinsohn, E.; Rhodes, D.; Dudareva, N. An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine:phenylpyruvate aminotransferase. Nat. Commun. 2013, 4, 2833. [Google Scholar] [CrossRef]
- Xing, A.; Last, R.L. A regulatory hierarchy of the Arabidopsis branched-vhain amino acid metabolic network. Plant Cell 2017, 29, 1480–1499. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, D.; Liu, Q. Connections between amino acid metabolisms in plants: Lysine as an example. Front. Plant Sci. 2020, 11, 928. [Google Scholar] [CrossRef]
- Joshi, V.; Joung, J.-G.; Fei, Z.; Jander, G. Interdependence of threonine, methionine and isoleucine metabolism in plants: Accumulation and transcriptional regulation under abiotic stress. Amino Acids 2010, 39, 933–947. [Google Scholar] [CrossRef]
- Stepanski, A.; Leustek, T. Histidine biosynthesis in plants. Amino Acids 2006, 30, 127–142. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Wang, Y.; Gu, D.; Nan, J.; Chen, S.; Li, H. Overexpression of S-adenosyl-L-methionine synthetase 2 from sugar beet M14 increased Arabidopsis tolerance to salt and oxidative stress. Int. J. Mol. Sci. 2017, 18, 847. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Hou, W.; Godo, I.; Wu, C.; Yu, Y.; Matityahu, I.; Hacham, Y.; Sun, S.; Han, T.; Amir, R. Soybean seeds expressing feedback-insensitive cystathionine γ-synthase exhibit a higher content of methionine. J. Exp. Bot. 2013, 64, 1917–1926. [Google Scholar] [CrossRef] [PubMed]
- Erland, L.A.E.; Saxena, P. Auxin driven indoleamine biosynthesis and the role of tryptophan as an inductive signal in Hypericum perforatum (L.). PLoS ONE 2019, 17, e0223878. [Google Scholar] [CrossRef] [PubMed]
- Parathasaranthy, A.; Cross, P.J.; Dobson, R.C.J.; Adams, L.E.; Savka, M.A.; Hudson, A.O. A Three-ring circus: Metabolism of the three proteogenic aromatic amino acids and their role in the health of plants and animals. Front. Mol. Biosci. 2018, 5, 29. [Google Scholar] [CrossRef]
- Caporaso, N.; Whitworth, M.B.; Fisk, I.D. Protein content prediction in single wheat kernels using hyperspectral imaging. Food Chem. 2018, 240, 32–42. [Google Scholar] [CrossRef]
- Chernova, E.; Bazhenova, I.; Bazhenova, T. Development of the composition of cereal dishes of higher biological value. BIO Web Conf. EDP Sci. 2021, 29, 01022. [Google Scholar] [CrossRef]
- Mohite, B. Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J. Soil Sci. Plant Nutr. 2013, 13, 638–649. [Google Scholar] [CrossRef]
- Höglund, E.; Øverli, Ø.; Winberg, S. Tryptophan Metabolic Pathways and Brain Serotonergic Activity: A Comparative Review. Front. Endocrinol. 2019, 10, 158. [Google Scholar] [CrossRef]
- Jood, S.; Kapoor, A.C.; Singh, R. Amino acid composition and chemical ecaluation of protein qualtiy of cereals as affected by insect indestation. Plant Foods Hum. Nutr. 1995, 48, 159–167. [Google Scholar] [CrossRef]
- Tomé, D.; Bos, C. Lysine Requirement through the Human Life Cycle. J. Nutr. 2007, 137, 1642S–1645S. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Tian, J.; Hao, Z.; Zhang, W. Protein Content and Amino Acid Composition in Grains of Wheat-Related Species. Agric. Sci. China 2008, 7, 272–279. [Google Scholar] [CrossRef]
- Hu, X.; Ma, J.; Qian, W.; Cao, Y.; Zhang, Y.; Liu, B.; Tang, L.; Cao, W.; Zhu, Y.; Liu, L. Effects of Low Temperature on the Amino Acid Composition of Wheat Grains. Agronomy 2022, 12, 1171. [Google Scholar] [CrossRef]
- Malik, A.H.; Kuktaite, R.; Johansson, E. Combined effect of genetic and environmental factors on the accumulation of proteins in the wheat grain and their relationship to bread-making quality. J. Cereal Sci. 2013, 57, 170–174. [Google Scholar] [CrossRef]
- Wu, X.R.; Chen, Z.; Folk, W.R. Enrichment of cereal protein lysine content by altered tRNAlys coding during protein synthesis. Plant Biotech. J. 2003, 1, 187–194. [Google Scholar] [CrossRef]
- Shewry, P.R. Improving the protein content and composition of cereal grain. J. Cereal Sci. 2007, 46, 239–250. [Google Scholar] [CrossRef]
- Matthews, D.E. Review of Lysine Metabolism with a Focus on Humans. J. Nutr. 2020, 150 (Suppl. S1), 2548S–2555S. [Google Scholar] [CrossRef]
No. | Genotype | Pedigree | Year of Approval |
---|---|---|---|
1. | Evropa 90 | Talent/NSR–2 | 1971 |
2. | Gružanka | Leonardo/Argento | 1972 |
3. | Zastava | Bezostaja/Abbodanza | 1973 |
4. | KG–56 | Bezostaja 1/Halle Stamm//Bezostaja 1 | 1975 |
5. | Orašanka | Bezostaja 1/Halle Stamm | 1976 |
6. | Balkan | Bačka/Bezostaja 1/Mironovskaya 808/NS 433/Skor.35 | 1979 |
7. | Jugoslavija | NS 646/Bezostaja 1//Aurora | 1980 |
8. | Oplenka | Kavkaz/KG–56 | 1982 |
9. | Lasta | Dunav/NS611/NS736/Stepnjač K30/NS 736/Lcs32//Bezostaya 1/Aurora/Mironovskaya 808/Jubil50 | 1987 |
10. | Agrounija | Kavkaz/Zlatna Dolina/KG–56 | 1988 |
11. | Rodna | NS 646/Bezostaya 1//Aurora/Partizanka | 1988 |
12. | Tanjugovka | Jugoslavija/Partizanka | 1988 |
13. | Zadruga | Jugoslavija/Balkan | 1989 |
14. | Proteinka | NS 2726/3/Mačvanka 1 | 1990 |
15. | NSR–5 | [(NSR-1/Tisa)/Partizanka)]/Mačvanka 1 | 1991 |
16. | Gruža | KM 20/KM192-75/KG 56 | 1991 |
17. | Milica | Zelengora/Mačvanka 2//Partizanka | 1992 |
18. | Sloga | NS 2986/ZG 628/77 | 1993 |
19. | Dejana | NS 7016/NS7001 | 1994 |
20. | Tera | NS 2979/5-1/NS 3000/Rana niska | 1995 |
No. | Genotype | Thr | Val | Met + Cys | Ile | Leu | Phe + Tyr | His | Trp | Lys | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
FAO/WHO Standard (mg/g) for adults [45] | 25 | 40 | 23 | 30 | 61 | 41 | 16 | 6.6 | 48 | 290.6 | |
1. | Evropa 90 | 1.15 | 1.16 | 1.50 | 1.30 | 0.93 | 1.86 | 1.72 | 1.78 | 0.64 | 0.41 |
2. | Gružanka | 1.13 | 1.18 | 0.63 | 1.36 | 0.95 | 2.04 | 1.67 | 1.66 | 0.63 | 0.39 |
3. | Zastava | 1.16 | 1.15 | 1.49 | 1.31 | 0.96 | 1.84 | 1.74 | 1.95 | 0.59 | 0.42 |
4. | KG–56 | 1.18 | 1.10 | 1.52 | 1.28 | 0.93 | 1.93 | 1.72 | 2.02 | 0.63 | 0.42 |
5. | Orašanka | 1.10 | 1.09 | 1.47 | 1.23 | 0.93 | 1.68 | 1.63 | 1.87 | 0.55 | 0.40 |
6. | Balkan | 1.18 | 1.16 | 1.53 | 1.32 | 0.95 | 1.82 | 1.70 | 1.47 | 0.63 | 0.40 |
7. | Jugoslavija | 1.13 | 1.12 | 1.46 | 1.34 | 0.95 | 1.75 | 1.84 | 1.48 | 0.60 | 0.40 |
8. | Oplenka | 1.16 | 1.16 | 0.53 | 1.31 | 0.93 | 1.58 | 1.69 | 1.56 | 0.59 | 0.36 |
9. | Lasta | 1.14 | 1.14 | 1.40 | 1.31 | 0.90 | 1.49 | 1.74 | 2.15 | 0.62 | 0.41 |
10. | Agrounija | 1.16 | 1.15 | 0.61 | 1.30 | 1.27 | 1.91 | 1.72 | 1.77 | 0.65 | 0.40 |
11. | Rodna | 1.13 | 1.14 | 1.41 | 1.37 | 0.94 | 1.53 | 1.85 | 2.14 | 0.60 | 0.42 |
12. | Tanjugovka | 1.23 | 1.22 | 1.64 | 1.40 | 0.99 | 2.04 | 1.92 | 2.05 | 0.66 | 0.45 |
13. | Zadruga | 1.15 | 1.16 | 1.75 | 1.39 | 0.96 | 1.90 | 1.79 | 1.98 | 0.61 | 0.44 |
14. | Proteinka | 1.19 | 1.16 | 1.55 | 1.43 | 0.98 | 1.90 | 1.78 | 1.74 | 0.62 | 0.42 |
15. | NSR–5 | 1.12 | 1.12 | 1.46 | 1.29 | 0.91 | 1.67 | 1.64 | 2.02 | 0.58 | 0.41 |
16. | Gruža | 1.10 | 1.12 | 1.53 | 1.31 | 0.92 | 2.07 | 1.66 | 1.59 | 0.60 | 0.41 |
17. | Milica | 1.13 | 1.16 | 1.43 | 1.34 | 0.92 | 1.55 | 1.75 | 1.74 | 0.59 | 0.40 |
18. | Sloga | 1.18 | 1.17 | 1.33 | 1.44 | 0.96 | 1.71 | 1.85 | 1.93 | 0.63 | 0.42 |
19. | Dejana | 1.13 | 1.12 | 1.65 | 1.29 | 0.93 | 1.81 | 1.73 | 1.56 | 0.59 | 0.41 |
20. | Tera | 1.15 | 1.13 | 1.57 | 1.33 | 0.94 | 1.67 | 1.84 | 1.80 | 0.61 | 0.41 |
Average | 1.15 | 1.14 | 1.37 | 1.33 | 0.96 | 1.79 | 1.75 | 1.81 | 0.61 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urošević, D.; Knežević, D.; Đurić, N.; Matković Stojšin, M.; Kandić, V.; Mićanović, D.; Stojiljković, J.; Zečević, V. Assessing the Potential of Old and Modern Serbian Wheat Genotypes: Yield Components and Nutritional Profiles in a Comprehensive Study. Agronomy 2023, 13, 2426. https://doi.org/10.3390/agronomy13092426
Urošević D, Knežević D, Đurić N, Matković Stojšin M, Kandić V, Mićanović D, Stojiljković J, Zečević V. Assessing the Potential of Old and Modern Serbian Wheat Genotypes: Yield Components and Nutritional Profiles in a Comprehensive Study. Agronomy. 2023; 13(9):2426. https://doi.org/10.3390/agronomy13092426
Chicago/Turabian StyleUrošević, Dušan, Desimir Knežević, Nenad Đurić, Mirela Matković Stojšin, Vesna Kandić, Danica Mićanović, Jelena Stojiljković, and Veselinka Zečević. 2023. "Assessing the Potential of Old and Modern Serbian Wheat Genotypes: Yield Components and Nutritional Profiles in a Comprehensive Study" Agronomy 13, no. 9: 2426. https://doi.org/10.3390/agronomy13092426