Genetic Diversity as a Key to Understanding Physiological and Biochemical Mechanisms
1. Introduction
2. To Be or Never to Be
3. From Diversity Springs Richness
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Dubey, P.K.; Singh, A.; Merah, O.; Abhilash, P.C. Managing Agroecosystems for Food and Nutrition Security. Curr. Res. Environ. Sustain. 2022, 4, 100127. [Google Scholar] [CrossRef]
- De Andrade, S.A.L.; Borghi, A.A.; De Oliveira, V.H.; Gouveia, L.d.M.; Martins, A.P.I.; Mazzafera, P. Phosphorus Shortage Induces an Increase in Root Exudation in Fifteen Eucalypts Species. Agronomy 2022, 12, 2041. [Google Scholar] [CrossRef]
- Ibrahimova, U.; Suleymanova, Z.; Brestic, M.; Mammadov, A.; Ali, O.M.; Abdel Latef, A.A.H.; Hossain, A. Assessing the Adaptive Mechanisms of Two Bread Wheat (Triticum aestivum L.) Genotypes to Salinity Stress. Agronomy 2021, 11, 1979. [Google Scholar] [CrossRef]
- Adda, A.; Regagba, Z.; Latigui, A.; Merah, O. Effect of salt stress on α-amylase activity, sugars mobilization and osmotic potential of Phaseolus vulgaris L. Seeds var. ‘Cocorose’ and ‘Djadida’ during germination. J. Biol. Sci. 2014, 14, 370–375. [Google Scholar] [CrossRef]
- Soualem, M.; Adda, A.; Belkhodja, M.; Merah, O. Calcium supply reduced effect of salinity on growth in the Mediterranean shrub (Atriplex halimus L.). Life Sci. J. 2014, 11, 278–284. [Google Scholar]
- Uzair, M.; Ali, M.; Fiaz, S.; Attia, K.; Khan, N.; Al-Doss, A.A.; Khan, M.R.; Ali, Z. The characterization of wheat genotypes for salinity tolerance using morpho-physiological indices under hydroponic conditions. Saudi J. Biol. Sci. 2022, 29, 103299. [Google Scholar] [CrossRef]
- Ghoname, A.A.; Abdel Motlib, N.A.; Abdel-al, F.S.; Abu El-Azm, N.A.I.; Abd Elhady, S.A.; Merah, O.; Abdelhamid, M.T. Brassinosteroids or proline alleviate photosynthetic and yield inhibition under salt stress via modulating physio-biochemical activities and antioxidant systems in snap bean. J. Hortic. Sci. Biotechnol. 2023, 98, 526–539. [Google Scholar] [CrossRef]
- El-Mageed, T.A.; Semida, W.; Hemida, K.; Gyushi, M.; Rady, M.; Abdelkhalik, A.; Merah, O.; Brestic, M.; Mohamed, H.; El Sabagh, A.; et al. Glutathione-mediated changes in productivity, photosynthetic efficiency, osmolytes, and antioxidant capacity of common beans (Phaseolus vulgaris) grown under water deficit. PeerJ 2023, 11, e15343. [Google Scholar] [CrossRef]
- Ma, Y.; Qiu, C.-W.; Fan, Y.; Huang, X.; Khan, W.; Wu, F.; Zhou, M.; Wang, Y.; Cao, F. Genome-wide association and transcriptome analysis reveals candidate genes for potassium transport under salinity stress in wheat. Environ. Exp. Bot. 2022, 202, 105034. [Google Scholar] [CrossRef]
- Chen, L.; Meng, Y.; Yang, W.; LV, Q.; Zhou, L.; Liu, S.; Tang, C.; Xie, Y.; Li, X. Genome-wide analysis and identification of TaRING-H2 gene family and TaSDIR1 positively regulates salt stress tolerance in wheat. Intern. J. Biol. Macromol. 2023, 242, 125162. [Google Scholar] [CrossRef]
- Radzikowska, D.; Sulewska, H.; Bandurska, H.; Ratajczak, K.; Szymańska, G.; Kowalczewski, P.Ł.; Głowicka-Wołoszyn, R. Analysis of Physiological Status in Response to Water Deficit of Spelt (Triticum aestivum ssp. spelta) Cultivars in Reference to Common Wheat (Triticum aestivum ssp. vulgare). Agronomy 2022, 12, 1822. [Google Scholar] [CrossRef]
- Monneveux, P.; Rekika, D.; Acevedo, E.; Merah, O. Leaf gas exchange, carbon isotope discrimination, transpiration efficiency and productivity in durum wheat. Plant Sci. 2006, 170, 867–872. [Google Scholar] [CrossRef]
- Lv, Q.; Wang, J.; Sun, P.; Cai, F.; Ran, B.; Deng, J.; Shi, T.; Chen, Q.; Li, H. Evaluation of the Composition and Accumulation Pattern of Fatty Acids in Tartary Buckwheat Seed at the Germplasm Level. Agronomy 2022, 12, 2447. [Google Scholar] [CrossRef]
- Pi, X.; Chang, N.; Zhou, Z.; Li, Y.; Zhang, X. CsFAD2 and CsFAD5 are key genes for C18:2 fatty acid pathway-mediated cold tolerance in tea (Camellia sinensis). Environ. Exp. Bot. 2023, 210, 105317. [Google Scholar] [CrossRef]
- Merah, O.; Deléens, E.; Monneveux, P. Relationships between flag leaf carbon isotope discrimination and several morphophysiological traits in durum wheat under Mediterranean conditions. Environ. Exp. Bot. 2001, 45, 63–71. [Google Scholar] [CrossRef]
- Merah, O.; Deléens, E.; Monneveux, P. Carbon isotope discrimination, dry matter production and harvest index in durum wheat. J. Plant Physiol. 2001, 158, 723–729. [Google Scholar] [CrossRef]
- Kumar, S.; Bhushan, B.; Wakchaure, G.C.; Dutta, R.; Jat, B.S.; Meena, K.K.; Rakshit, S.; Pathak, H. Unveiling the impact of heat stress on seed biochemical composition of major cereal crops: Implications for crop resilience and nutritional value. Plant Stress 2023, 9, 100183. [Google Scholar] [CrossRef]
- Islam, M.A.; De, R.K.; Hossain, M.A.; Haque, M.S.; Uddin, M.N.; Fakir, M.S.A.; Kader, M.A.; Dessoky, E.S.; Attia, A.O.; El-Hallous, E.I.; et al. Evaluation of the Tolerance Ability of Wheat Genotypes to Drought Stress: Dissection through Culm-Reserves Contribution and Grain Filling Physiology. Agronomy 2021, 11, 1252. [Google Scholar] [CrossRef]
- Tambussi, E.A.; Bort, J.; Guiamet, J.J.; Nogués, S.; Araus, J.L. The photosynthetic role of ears in C3 cereals: Metabolism, water use efficiency and contribution to grain yield. Crit. Rev. Plant Sci. 2007, 26, 1–16. [Google Scholar] [CrossRef]
- Merah, O.; Monneveux, P. Contribution of different organs to grain filling in durum wheat under Mediterranean conditions. I- Contribution of post-anthesis photosynthesis and re-mobilization. J. Agron. Crop Sci. 2015, 201, 344–352. [Google Scholar] [CrossRef]
- Merah, O.; Evon, P.; Monneveux, P. Participation of green organs to grain filling in Triticum turgidum var durum grown under Mediterranean condition. Int. J. Mol. Sci. 2018, 19, 56. [Google Scholar] [CrossRef] [PubMed]
- Bouzid, A.; Arous, A.; Felouah, O.C.; Merah, O.; Adda, A. Contribution of current photosynthesis and reserves remobilization in grain filling and its composition under different water supplies. Acta Univ. Agric. Silvic. Mendel. Brun. 2020, 68, 937–945. [Google Scholar] [CrossRef]
- Shirvani, F.; Mohammadi, R.; Daneshvar, M.; Ismaili, A. Genetic variability, response to selection for agro-physiological traits, and traits-enhanced drought tolerance in durum wheat. Acta Ecol. Sin. 2023, 43, 810–819. [Google Scholar] [CrossRef]
- Dukamo, B.H.; Gedebo, A.; Tesfaye, B.; Degu, H.D. Genetic diversity of Ethiopian durum wheat (T. turgidum subsp. durum) landraces under water stressed and non stressed conditions. Heliyon 2023, 9, e18359. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Sun, X.; Zhang, Q.; Anwar, S.; Lu, J.; Guo, H.; Qin, L.; Zhang, L.; Wang, C. Comprehensive Evaluation and Physiological Response of Quinoa Genotypes to Low Nitrogen. Agronomy 2023, 13, 1597. [Google Scholar] [CrossRef]
- Barboza, M.; Lima, F.L.d.S.; Ribeiro, R.M.P.; Pereira, C.C.A.; Santos, M.G.d.; Silveira, F.P.d.M.; Nascimento, A.K.Q.d.; Passos, A.B.R.d.J.; Chagas, P.S.F.d.; Ribeiro, J.E.d.S.; et al. Determination of Total Carotenoids and β-Carotene in Germplasm of Pumpkin Caboclo (Cucurbita maxima). Agronomy 2023, 13, 1109. [Google Scholar] [CrossRef]
- Roche, J.; Mouloungui, Z.; Cerny, M.; Merah, O. Effect of sowing date on fatty acid and phytosterols patterns of carthamus tinctoria L. Appl. Sci. 2019, 9, 2839. [Google Scholar] [CrossRef]
- Zemour, K.; Adda, A.; Labdelli, A.; Dellal, A.; Cerny, M.; Merah, O. Effects of genotype and climatic conditions on the oil content and its fatty acids composition of Carthamus tinctorius L. Agronomy 2021, 11, 2048. [Google Scholar] [CrossRef]
- Xu, M.; Du, C.; Zhang, N.; Shi, X.; Wu, Z.; Qiao, Y. Color spaces of safflower (Carthamus tinctorius L.) for quality assessment. J. Trad. Chin. Med. Sci. 2016, 3, 168–175. [Google Scholar] [CrossRef]
- Khalid, N.; Khan, R.S.; Hussain, M.I.; Farooq, M.; Ahmad, A.; Ahmed, I. Comprehensive characterisation of safflower oil for its potential applications as a bioactive food ingredient-A review. Trends Food Sci Technol. 2017, 66, 176–186. [Google Scholar] [CrossRef]
- Erbaş, S.; Mutlucan, M. Investigation of Flower Yield and Quality in Different Color Safflower Genotypes. Agronomy 2023, 13, 956. [Google Scholar] [CrossRef]
- Díaz-Fernández, Á.; Díaz-Losada, E.; Domínguez, J.M.; Cortés-Diéguez, S. Part II—Aroma Profile of Twenty White Grapevine Varieties: A Chemotaxonomic Marker Approach. Agronomy 2023, 13, 1168. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merah, O.; Abhilash, P.C.; Gharnaout, M.L. Genetic Diversity as a Key to Understanding Physiological and Biochemical Mechanisms. Agronomy 2023, 13, 2315. https://doi.org/10.3390/agronomy13092315
Merah O, Abhilash PC, Gharnaout ML. Genetic Diversity as a Key to Understanding Physiological and Biochemical Mechanisms. Agronomy. 2023; 13(9):2315. https://doi.org/10.3390/agronomy13092315
Chicago/Turabian StyleMerah, Othmane, Purushothaman C. Abhilash, and Mohammed Lotfi Gharnaout. 2023. "Genetic Diversity as a Key to Understanding Physiological and Biochemical Mechanisms" Agronomy 13, no. 9: 2315. https://doi.org/10.3390/agronomy13092315