Elevated CO2 Influences the Growth, Root Morphology, and Leaf Photosynthesis of Cacao (Theobroma cacao L.) Seedlings
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growing Environment
2.2. Growth Measurement and Root Extraction Methods
2.3. Leaf Stomatal Measurement
2.4. Three-Dimensional Root Imaging and Root Volume and Surface Measurement
2.5. Leaf Photosynthetic Rate Measurement
2.6. Statistical Analysis
3. Results
3.1. Growing Environment
3.2. Growth
3.3. Leaf Stomata
3.4. Three-Dimensional Root Imaging, Root Volume, and Surface Area
3.5. Leaf Photosynthetic Rate
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Motamayor, J.C.; Risterucci, A.M.; Lopez, P.A.; Ortiz, C.F.; Moreno, A.; Lanaud, C. Cacao domestication I: The origin of the cacao cultivated by the Mayas. Heredity 2002, 89, 380–386. [Google Scholar] [CrossRef]
- Cheesman, E. Notes on the nomenclature, classification and possible relationships of cocoa populations. Trop. Agric. 1944, 21, 144–159. [Google Scholar]
- Bertolde, F.Z.; Almeida, A.A.F.; Almeida, A.F.; Pirovani, C.P.; Pirovani, C.P.; Gomes, F.P.; Ahnert, D.; Baligar, V.C.; Valle, R.R. Physiological and biochemical responses of Theobroma cacao L. genotypes to flooding. Photosynthetica 2012, 50, 447–457. [Google Scholar] [CrossRef]
- International Cocoa Organization. ICCO Quarterly Bulletin of Cocoa Statistics, XLIX, 1, Cocoa Year 2022/23; International Cocoa Organization: Abidjan, Côte d’Ivoire, 2023. [Google Scholar]
- International Cocoa Organization. ICCO Quarterly Bulletin of Cocoa Statistics, XLV, 1, Cocoa Year 2018/19; International Cocoa Organization: Abidjan, Côte d’Ivoire, 2019. [Google Scholar]
- World Cocoa Foundation. Cocoa & Forests Initiative Annual Report Ghana 2021; World Cocoa Foundation: Washington, DC, USA, 2021. [Google Scholar]
- Wood, G.A.R.; Lass, R.A. Cocoa, 4th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2001; ISBN 978-0-470-69898-3. [Google Scholar]
- Famuwagun, I.B.; Agele, S.O. Cacao growth and development under different nursery and field conditions. In Theobroma Cacao, Deploying Science for Sustainability of Global Cocoa Economy; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef][Green Version]
- Almeida, A.A.F.; Valle, R.R. Ecophysiology of the cacao tree. Braz. J. Plant Physiol. 2008, 19, 425–448. [Google Scholar] [CrossRef]
- Zuidema, P.A.; Leffelaar, P.A.; Gerritsma, W.; Mommer, L.; Anten, N.P.R. A physiological production model for cocoa (Theobroma cacao). Agric. Syst. 2005, 84, 195–225. [Google Scholar] [CrossRef]
- Lahive, F.; Hadley, P.; Daymond, A.J. The physiological responses of cacao to the environment and the implications for climate change resilience. A review. Agron. Sustain. Dev. 2019, 39, 5. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, V.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis, in Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, NY, USA, 2013; pp. 1–30. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Long, S.P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 2005, 165, 351–372. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Sharkey, T.D. Stomatal conductance and photosynthesis. Annu. Rev. Plant Biol. 1982, 33, 317–345. [Google Scholar] [CrossRef]
- Long, S.P.; Ainsworth, E.A.; Rogers, A.; Ort, D.R. Rising atmospheric carbon dioxide: Plants FACE the future. Annu. Rev. Plant Biol. 2004, 55, 591–628. [Google Scholar] [CrossRef]
- Wang, L.; Feng, Z.; Schjoerring, J.K. Effects of elevated atmospheric CO2 on physiology and yield of wheat (Triticum aestivum L.): A meta-analytic test of current hypotheses. Agric. Ecosyst. Environ. 2013, 178, 57–63. [Google Scholar] [CrossRef]
- Lahive, F.; Hadley, P.; Daymond, A.J. The impact of elevated CO2 and water deficit stress on growth and photosynthesis of juvenile cacao (Theobroma cacao L.). Photosynthetica 2018, 56, 911–920. [Google Scholar] [CrossRef]
- Baligar, V.C.; Bunce, J.A.; Machado, R.C.R.; Elson, M.K. Photosynthetic photon flux density, carbon dioxide concentration, and vapor pressure deficit effects on photosynthesis in cacao seedlings. Photosynthetica 2008, 46, 216–221. [Google Scholar] [CrossRef]
- Lahive, F.; Handley, L.R.; Hadley, P. Climate Change Impacts on Cacao: Genotypic Variation in Responses of Mature Cacao to Elevated CO2 and Water Deficit. Agronomy 2021, 11, 818. [Google Scholar] [CrossRef]
- De Kroon, H.; Visser, E.J. Root Ecology; Springer Science & Business Media: Berlin, Germany, 2003; p. 168. [Google Scholar]
- Weaver, J.E.; Jean, F.C.; Crist, J.W. Development and Activities of Roots of Crop Plants: A Study in Crop Ecology; No. 316; Carnegie Institution of Washington: Washington, DC, USA, 1922. [Google Scholar]
- Kummerow, J.; Kummerow, M.; Souza, S.W. Fine-root growth dynamics in cacao (Theobroma cacao). Plant Soil 1982, 65, 193–201. [Google Scholar] [CrossRef]
- Moser, G.; Leuschner, C.; Hertel, D.; Holsche, D.; Kohler, M.; Leitner, D.; Michalzik, B.; Prihastanti, E.; Tjitrosemito, S.; Schwendenmann, L. Response of cocoa trees (Theobroma cacao) to a 13-month desiccation period in Sulawesi, Indonesia. Agrofor. Syst. 2010, 79, 171–187. [Google Scholar] [CrossRef]
- Nygren, P.; Leblanc, H.A.; Lu, M.; Cristino, A.; Gómez, L. Distribution of coarse and fine roots of Theobroma cacao and shade tree Inga edulis in a cocoa plantation. Ann. For. Sci. 2013, 70, 229–239. [Google Scholar] [CrossRef]
- Abe, J.; Morita, S. Growth direction of nodal roots in rice: Its variation and contribution to root system formation. Plant Soil 1994, 165, 333–337. [Google Scholar] [CrossRef]
- Morita, S.; Toyota, M. Root system morphology of pepper and melon at harvest stage grown with drip irrigation under dessert conditions in Baja California Mexico. Jpn. J. Crop Sci. 1998, 67, 353–357. [Google Scholar] [CrossRef][Green Version]
- Nakanishi, T.; Matsubayashi, M. Nondestructive water imaging by neutron beam analysis in living plants. J. Plant Physiol. 1997, 151, 442–445. [Google Scholar] [CrossRef]
- Arsenault, J.L.; Pouleur, S.; Messier, C.; Guay, R. WinRhizo, a root measuring system with a unique overlap correction method. Hortic. Sci. 1995, 30, 906. [Google Scholar]
- Mooney, S.J.; Pridmore, T.P.; Helliwell, J.; Bennett, M.J. Developing X-ray computed tomography to non-invasively image 3-D root systems architecture in soil. Plant Soil 2012, 352, 1–22. [Google Scholar] [CrossRef]
- Pfeifer, J.; Kirchgessner, N.; Colombi, T.; Walter, A. Rapid phenotyping of crop root systems in undisturbed field soils using X-ray computed tomography. Plant Methods 2015, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Baligar, V.C.; Elson, M.K.; Almeida, A.A.F.; de Araujo, Q.R.; Ahnert, D.; He, Z. The impact of carbon dioxide concentrations and low to adequate photosynthetic photon flux density on growth, physiology and nutrient use efficiency of juvenile cacao genotypes. Agronomy 2021, 11, 397. [Google Scholar] [CrossRef]
- Santos, E.A.d.; Almeida, A.A.F.d.; Branco, M.C.d.S.; Santos, I.C.d.; Ahnert, D. Path analysis of phenotypic traits in young cacao plants under drought conditions. PLoS ONE 2018, 13, e0191847. [Google Scholar] [CrossRef]
- Barber, S.A. Soil Nutrient Bioavailability: A Mechanistic Approach; John Wiley & Sons: New York, NY, USA, 1995. [Google Scholar]
- Balasimha, D.; Daniel, E.V.; Bhat, P.G. Influence of environmental factors on photosynthesis in cocoa trees. Agric. For. Meteorol. 1991, 55, 15–21. [Google Scholar] [CrossRef]
- Niether, W.; Armengot, L.; Andres, C.; Schneider, M.; Gerold, G. Shade trees and tree pruning alter throughfall and microclimate in cocoa (Theobroma cacao L.) production systems. Ann. For. Sci. 2018, 75, 38. [Google Scholar] [CrossRef]
- Salazar, J.C.S.; Melgarejo, L.M.; Casanoves, F.; Rienzo, J.A.D.; DaMatta, F.M.; Armas, C. Photosynthesis limitations in cacao leaves under different agroforestry systems in the Colombian Amazon. PLoS ONE 2018, 13, e0206149. [Google Scholar] [CrossRef]
- Plessis, A.d.; Broeckhoven, C. Looking deep into nature: A review of micro-computed tomography in biomimicry. Acta Biomater. 2019, 85, 27–40. [Google Scholar] [CrossRef]
Items | Specifications |
---|---|
X-ray tube type | Open directional microfocus X-ray tube, equipped with 2 tubes |
Maximum voltage/Maximum power | 300 kV/500 W |
Geometrical magnification | 1.3× to 100× |
Minimum voxel size | 2 μm |
Minimum detection size | 4 μm |
Detector type | Dynamic 41|100, Flat panel detector, 410 × 410 mm, 4048 × 4048 pixels, pixel size 100 μm |
Focus–detector distance | 800 mm |
Maximum focus object distance | 600 mm |
Manipulation | Granite-based precision 4-axis manipulator |
Rotatable angle | 0–360° |
Equipment | Phoenix V|tome|x M300 |
Software | Phoenix datos|x |
Items | Conditions |
---|---|
Voxel size | 0.0673 mm |
Number of pictures | 2700–3600 sheets |
Exposure time | 334 ms |
Voltage | 100 kV |
Power | 150 μA |
Temperature (°C) | Relative Humidity (%) | CO2 Concentration (μmol mol−1) | ||
---|---|---|---|---|
Ambient CO2 | Daytime (06:00–17:59) | 31.0 ± 3.3 | 57.6 ± 12.7 | 512.5 ± 112.6 |
Nighttime (18:00–05:59) | 25.0 ± 2.9 | 73.9 ± 7.1 | 513.3 ± 83.5 | |
Elevated CO2 | Daytime (06:00–17:59) | 30.6 ± 3.3 | 58.0 ± 12.8 | 801.6 ± 178.8 |
Nighttime (18:00–05:59) | 24.7 ± 2.9 | 75.5 ± 7.3 | 517.1 ± 87.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishida, A.; Ogiwara, I.; Suzuki, S. Elevated CO2 Influences the Growth, Root Morphology, and Leaf Photosynthesis of Cacao (Theobroma cacao L.) Seedlings. Agronomy 2023, 13, 2264. https://doi.org/10.3390/agronomy13092264
Ishida A, Ogiwara I, Suzuki S. Elevated CO2 Influences the Growth, Root Morphology, and Leaf Photosynthesis of Cacao (Theobroma cacao L.) Seedlings. Agronomy. 2023; 13(9):2264. https://doi.org/10.3390/agronomy13092264
Chicago/Turabian StyleIshida, Akiko, Isao Ogiwara, and Sakae Suzuki. 2023. "Elevated CO2 Influences the Growth, Root Morphology, and Leaf Photosynthesis of Cacao (Theobroma cacao L.) Seedlings" Agronomy 13, no. 9: 2264. https://doi.org/10.3390/agronomy13092264
APA StyleIshida, A., Ogiwara, I., & Suzuki, S. (2023). Elevated CO2 Influences the Growth, Root Morphology, and Leaf Photosynthesis of Cacao (Theobroma cacao L.) Seedlings. Agronomy, 13(9), 2264. https://doi.org/10.3390/agronomy13092264