Enhancing Corn Pest and Disease Recognition through Deep Learning: A Comprehensive Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Construction
2.2. Data Preprocessing
2.3. Comparison of Maize Disease Classification Models
3. Pest and Disease Identification Model Improvement with ECA
3.1. ResNet50 Model Structure
Residual Network
3.2. Improvement Strategies
3.2.1. ECA Attention Mechanism Module
3.2.2. Model Proposed
3.2.3. Adam Optimizer
3.3. Model Building
3.3.1. ECA Attention Mechanism Module
3.3.2. Algorithm: ECA_ResNet-Based Maize Pest Identification Model
Algorithms 1 ECA_ResNet-Based Maize Pest Identification Model |
Preprocessing: |
Resize input pics to 224 × 224 pixels. |
Normalize pixel values to [0, 1] range. |
Model Architecture: |
Convolutional layer for preliminary capabilities. |
Max-pooling for substantial features and dimension discount. |
Improved residual blocks A and B with embedded ECA interest. |
Fully connected layer for deep capabilities. |
Dropout for regularization. |
Softmax layer for multi-class category. |
Training: |
Partition dataset into training, validation, and test sets. |
Train in the use of cross-entropy loss. |
Use Adam optimizer with appropriate hyperparameters. |
Apply back-propagation to replace model weights. |
Testing and Evaluation: |
Evaluate model on check set. |
Compute accuracy, precision, bear in mind, F1-rating. |
Construct confusion matrix for performance analysis. |
CInterpretation: |
Visualize misclassified pictures. |
Analyze elegance activation maps. |
Deployment: |
Deploy model for real-time pest identification. |
4. Experiments and Analysis
4.1. Ablation Experiment
4.2. Comparison of Detection Results of Different Models
4.3. Confusion Matrix for Maize Pest and Disease Identification Model
4.4. Performance of the Improved Model on Maize Pests and Diseases
5. Discussion
5.1. Challenges Faced
5.2. Outlook
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Edde, P.A. Arthropod pests of maize Zea mays (L.). In Field Crop Arthropod Pests of Economic Importance; Edde, P.A., Ed.; Academic Press: New York, NY, USA, 2022; pp. 410–465. [Google Scholar]
- Wu, J.; Li, B.; Wu, Z. Detection of crop pests and diseases based on deep convolutional neural network and improved algorithm. In Proceedings of the ICMLT ‘19: 2019 4th International Conference on Machine Learning Technologies, Taipei, Taiwan, 21–23 June 2019; Association for Computing Machinery: New York, NY, USA; pp. 20–27.
- Rodríguez-García, M.N.; García-Sánchez, F.; Valencia-García, R. Knowledge-Based System for Crop Pests and Diseases Recognition. Electronics 2021, 10, 905. [Google Scholar] [CrossRef]
- Ishengoma, F.S.; Rai, I.A.; Said, R.N. Identification of maize leaves infected by fall armyworms using UAV-based imagery and convolutional neural networks. Comput. Electron. Agric. 2021, 184, 106124. [Google Scholar] [CrossRef]
- Kong, J.; Wang, H.; Yang, C.; Jin, X.; Zuo, M.; Zhang, X. A spatial feature-enhanced attention neural network with high-order pooling representation for application in pest and disease recognition. Agriculture 2022, 12, 500. [Google Scholar] [CrossRef]
- Wang, B. Identification of crop diseases and insect pests based on deep learning. Sci. Program. 2022, 2022, 9179998. [Google Scholar] [CrossRef]
- Abdelmalek, B.; Hafed, Z.; Ahmed, K.; Mohammed, T.A. A survey on deep learning-based identification of plant and crop diseases from UAV-based aerial images. Cluster Comput. 2023, 26, 1297–1317. [Google Scholar] [CrossRef]
- Artzai, P.; Aitor, A.G.; Maximiliam, S.; Amaia, O.B.; Jone, E.; Alexander, J. Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild. Comput. Electron. Agric. 2019, 161, 280–290. [Google Scholar] [CrossRef]
- Mallick, T.; Biswas, S.; Das, A.K.; Saha, H.N.; Chakrabarti, A.; Deb, N. Deep learning based automated disease detection and pest classification in Indianmung bean. Multimed. Tools Appl. 2023, 82, 11204–12017. [Google Scholar] [CrossRef]
- Ratnadass, A.; Avelino, J.; Fernandes, P.; Letourmy, P.; Babin, R.; Deberdt, P.; Deguine, J.P.; Grechi, I.; Naudin, K.; Rhino, B. Synergies and tradeoffs in natural regulation of crop pests and diseases under plant species diversification. Crop. Prot. 2021, 146, 105658. [Google Scholar] [CrossRef]
- Nandhini, S.; Ashokkumar, K. Identification of maize plant diseases based on linear vector quantization with neural network. J. Uncertain. Syst. 2022, 15, 2241005. [Google Scholar] [CrossRef]
- Esgario, J.; Castro, P.; Tassis, L.M.; Krohling, R.A. An app to assist farmers in the identification of diseases and pests of coffee leaves using deep learning. Inf. Process. Agric. 2022, 9, 37–38. [Google Scholar] [CrossRef]
- Loti, N.; Noor, M.; Chang, S. Integrated analysis of machine learning and deep learning in chili pest and disease identification. J. Sci. Food Agric. 2021, 101, 3582–3594. [Google Scholar] [CrossRef] [PubMed]
- Rahman, C.M.; Arko, P.S.; Ali, M.E.; Khan, M.A.I.; Apon, S.H.; Nowrin, F.; Wasif, A. Identification and recognition of rice diseases and pests using convolutional neural networks. Biosyst. Eng. 2020, 194, 112–120. [Google Scholar] [CrossRef]
- Waheed, H.; Zafar, N.; Akram, W.; Manzoor, A.; Gani, A.; Islam, S.U. Deep learning based disease, pest pattern and nutritional deficiency detection system for “Zingiberaceae” crop. Agriculture 2022, 12, 742. [Google Scholar] [CrossRef]
- Tripathi, R.K. A deep learning approach for plant material disease identification. Mater. Sci. Eng. 2021, 1116, 012133. [Google Scholar] [CrossRef]
- Butte, S.; Vakanski, A.; Duellman, K.; Wang, H.; Mirkouei, A. Potato crop stress identification in aerial images using deep learning-based object detection. Agron. J. 2021, 113, 3991–4002. [Google Scholar] [CrossRef]
- Yadav, S.; Sengar, N.; Singh, A.; Singh, A.; Dutta, M.K. Identification of disease using deep learning and evaluation of bacteriosis in peach leaf. Ecol. Inform. 2021, 61, 101247. [Google Scholar] [CrossRef]
- Mondal, D.; Roy, K.; Pal, D.; Kole, D.K. Deep learning-based approach to detect and classify signs of crop leaf diseases and pest damage. SN Comput. Sci. 2022, 3, 433. [Google Scholar] [CrossRef]
- Arshaghi, A.; Ashourian, M.; Ghabeli, L. Potato diseases detection and classification using deep learning methods. Multimed. Tools Appl. 2023, 82, 5725–5742. [Google Scholar] [CrossRef]
- Bhullar, H.S.; Sharma, A.; Gill, R. Identification and management of diseases and insect pests of rainy season vegetables. Progress. Farming 2020, 56, 18–20. [Google Scholar]
- Zhang, Y.E.; Liu, Y.P. Identification of navel orange diseases and pests based on the fusion of DenseNet and Self-Attention mechanism. Comput. Intell. Neurosci. 2021, 2021, 5436729. [Google Scholar] [CrossRef] [PubMed]
- Chapwanya, M.; Matusse, A.; Dumont, Y. On synergistic co-infection in crop diseases. The case of the Maize Lethal Necrosis Disease. Appl. Math. Model. 2021, 90, 912–942. [Google Scholar] [CrossRef]
- Reddy, S.R.G.; Varma, G.P.S.; Davuluri, R.L. Resnet-based modified red deer optimization with DLCNN classifier for plant disease identification and classification. Comput. Electr. Eng. 2023, 105, 108492. [Google Scholar] [CrossRef]
- Yue, J.Q.; Huang, H.Y.; Wang, Y.Z. Extended application of deep learning combined with 2DCOS: Study on origin identification in the medicinal plant of Paris polyphylla var. Yunnanensis. Phytochem. Anal. 2022, 33, 136–150. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.M.; Gabr, D.G.I.; Rahman, A.; Dash, S.; Nayyar, A. A deep learning approach to intelligent fruit identification and family classification. Multimed. Tools Appl. 2022, 81, 27783–27798. [Google Scholar] [CrossRef]
- Mainak, D.; Gopal, D.K.; Ranjan, M.; Jorge, G. Paddy disease classification study: A deep convolutional neural network approach. Opt. Mem. Neural. Netw. 2021, 30, 338–357. [Google Scholar] [CrossRef]
- Qian, Z.; Mu, J.; Tian, F.; Gao, Z.; Zhang, J. Facial expression recognition based on strong attention mechanism and residual network. Multimed. Tools Appl. 2023, 82, 14287–14306. [Google Scholar] [CrossRef]
- Ganguly, S.; Bhowal, P.; Oliva, D.; Sarkar, R. BLeafNet: A Bonferroni mean operator based fusion of CNN models for plant identification using leaf image classification. Ecol. Inform. 2022, 69, 101585. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, J.; Xu, X.; Lei, J.; Zhou, W. SEV-Net: Residual network embedded with attention mechanism for plant disease severity detection. Concurr. Comput. 2021, 33, e6161. [Google Scholar] [CrossRef]
- Chebet, T.E.; Li, Y.; Sam, N.; Liu, Y. A comparative study of fine-tuning deep learning models for plant disease identification. Comput. Electron. Agric. 2019, 161, 272–279. [Google Scholar] [CrossRef]
- Lukas, B.; Tobias, P.; Claudia, B.; Jens, H.; Christoph, B.; Ian, M.P. Computer vision tool for detection, mapping, and fault classification of photovoltaics modules in aerial IR videos. Prog. Photovolt. 2021, 29, 1236–1251. [Google Scholar] [CrossRef]
- Rangarajan, A.K.; Balu, E.J.; Boligala, M.S.; Jagannath, A.; Ranganathan, B.N. A low-cost UAV for detection of Cercospora leaf spot in okra using deep convolutional neural network. Multimed. Tools Appl. 2022, 81, 21565–21589. [Google Scholar] [CrossRef]
- Ahmad, I.; Hamid, M.; Yousaf, S.; Shah, S.T.; Ahmad, M.O. Optimizing pretrained convolutional neural networks for tomato leaf disease detection. Complexity 2020, 2020, 8812019. [Google Scholar] [CrossRef]
- Chandra, N.V.M.; Reddy, K.A.; Sushanth, G.; Sujatha, S. A versatile approach based on convolutional neural networks for early identification of diseases in tomato plants. Int. J. Wavelets Multiresolut. Inf. Process 2022, 20, 2150043. [Google Scholar] [CrossRef]
- Xu, L.; Cao, B.; Ning, S.; Zhang, W.; Zhao, F. Peanut leaf disease identification with deep learning algorithms. Mol. Breed. 2023, 43, 25. [Google Scholar] [CrossRef]
- Shah, S.R.; Qadri, S.; Bibi, H.; Shah, S.M.W.; Sharif, M.I.; Marinello, F. Comparing Inception V3, VGG 16, VGG 19, CNN, and ResNet 50: A Case Study on Early Detection of a Rice Disease. Agronomy 2023, 13, 1633. [Google Scholar] [CrossRef]
- Sladojevic, S.; Arsenovic, M.; Anderla, A.; Culibrk, D. Deep neural networks based recognition of plant diseases by leaf image classification. Comput. Intell. Neurosci. 2016, 2016, 3289801. [Google Scholar] [CrossRef]
- Xing, S.; Lee, H.J. Crop pests and diseases recognition using DANet with TLDP. Comput. Electron. Agric. 2022, 199, 107144. [Google Scholar] [CrossRef]
- Saleem, M.H.; Potgieter, J.; Arif, K.M. Plant disease classification: A comparative evaluation of convolutional neural networks and deep learning optimizers. Plants 2020, 9, 1319. [Google Scholar] [CrossRef]
Model | Number of Iterations | Validation Set Accuracy/% | Test Set Accuracy/% |
---|---|---|---|
ResNet50 | 10,000 | 93.05 | 89.14 |
ECA-ResNet50 | 10,000 | 94.21 | 91.93 |
Adam-ResNet50 | 10,000 | 93.73 | 89.86 |
ECA-Adam-ResNet50 | 10,000 | 96.02 | 93.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Li, W.; Wang, L.; Pompelli, M.F. Enhancing Corn Pest and Disease Recognition through Deep Learning: A Comprehensive Analysis. Agronomy 2023, 13, 2242. https://doi.org/10.3390/agronomy13092242
Xu W, Li W, Wang L, Pompelli MF. Enhancing Corn Pest and Disease Recognition through Deep Learning: A Comprehensive Analysis. Agronomy. 2023; 13(9):2242. https://doi.org/10.3390/agronomy13092242
Chicago/Turabian StyleXu, Wenqing, Weikai Li, Liwei Wang, and Marcelo F. Pompelli. 2023. "Enhancing Corn Pest and Disease Recognition through Deep Learning: A Comprehensive Analysis" Agronomy 13, no. 9: 2242. https://doi.org/10.3390/agronomy13092242
APA StyleXu, W., Li, W., Wang, L., & Pompelli, M. F. (2023). Enhancing Corn Pest and Disease Recognition through Deep Learning: A Comprehensive Analysis. Agronomy, 13(9), 2242. https://doi.org/10.3390/agronomy13092242