Salt and Water Stress Tolerance in Ipomoea purpurea and Ipomoea tricolor, Two Ornamentals with Invasive Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Seed Germination
2.3. Plant Growth and Stress Treatments
2.4. Photosynthetic Pigments
2.5. Ion Content Measurements
2.6. Osmolyte Concentrations
2.7. Statistical Analysis
3. Results
3.1. Seed Germination
3.2. Plant Growth
3.3. Photosynthetic Pigments
3.4. Ion Contents
3.5. Osmolytes Contents
3.6. Multivariate Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilcove, D.S.; Rothstein, D.; Dubow, J.; Phillips, A.; Losos, E. Quantifying threats to imperiled species in the United States. Bioscience 1998, 48, 607–615. [Google Scholar] [CrossRef]
- Hayden Reichard, S.; White, P. Horticulture as a pathway of invasive plant introductions in the United States: Most invasive plants have been introduced for horticultural use by nurseries, botanical gardens, and individuals. Bioscience 2001, 51, 103–113. [Google Scholar] [CrossRef]
- Castro-Díez, P.; Alonso, Á. Alteration of Nitrogen cycling as a result of invasion. In Impact of Biological Invasions on Ecosystem Services; Springer International Publishing: Cham, Switzerland, 2017; pp. 49–62. [Google Scholar]
- Catford, J.A. Hydrological impacts of biological invasions. In Impact of Biological Invasions on Ecosystem Services; Springer International Publishing: Cham, Switzerland, 2017; pp. 63–80. [Google Scholar]
- Vilà, M.; Hulme, P.E. Non-Native species, ecosystem services, and human well-being. In Impact of Biological Invasions on Ecosystem Services; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–14. [Google Scholar]
- Bacher, S.; Blackburn, T.M.; Essl, F.; Genovesi, P.; Heikkilä, J.; Jeschke, J.M.; Jones, G.; Keller, R.; Kenis, M.; Kueffer, C.; et al. Socio-economic impact classification of alien taxa (SEICAT). Methods Ecol. Evol. 2018, 9, 159–168. [Google Scholar] [CrossRef]
- Neill, P.E.; Arim, M. Human health link to invasive species. In Encyclopedia of Environmental Health; Elsevier: Amsterdam, The Netherlands, 2019; pp. 570–578. [Google Scholar]
- Denóbile, C.; Chiba de Castro, W.A.; Silva Matos, D.M.d. Public health implications of invasive plants: A scientometric study. Plants 2023, 12, 661. [Google Scholar] [CrossRef] [PubMed]
- Bayón, Á.; Godoy, O.; Vilà, M. Invasion risks and social interest of non-native woody plants in urban parks of mainland Spain. Anales Jard. Bot. 2022, 79, e121. [Google Scholar] [CrossRef]
- Pyšek, P.; Hulme, P.E.; Simberloff, D.; Bacher, S.; Blackburn, T.M.; Carlton, J.T.; Dawson, W.; Essl, F.; Foxcroft, L.C.; Genovesi, P.; et al. Scientists’ warning on invasive alien species. Biol. Rev. 2020, 95, 1511–1534. [Google Scholar] [CrossRef]
- Renteria, J.L.; Darin, G.M.S.; Grosholz, E.D. Assessing the risk of plant species invasion under different climate change scenarios in California. Invasive Plant Sci. Manag. 2021, 14, 172–182. [Google Scholar] [CrossRef]
- Vilà, M.; Espinar, J.L.; Hejda, M.; Hulme, P.E.; Jarošík, V.; Maron, J.L.; Pergl, J.; Schaffner, U.; Sun, Y.; Pyšek, P. Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 2011, 14, 702–708. [Google Scholar] [CrossRef]
- Mollot, G.; Pantel, J.H.; Romanuk, T.N. The effects of invasive species on the decline in species richness. In A Global Meta-Analysis; David, A., Bohan, A.J., Dumbrell, F.M., Eds.; Advances in ecological research; Academic Press: Cambridge, MA, USA, 2017; Volume 56, pp. 61–83. [Google Scholar]
- Kueffer, C.; Pyšek, P.; Richardson, D.M. Integrative invasion science: Model systems, multi-site studies, focused meta-analysis and invasion syndromes. New Phytol. 2013, 200, 615–633. [Google Scholar] [CrossRef]
- van Kleunen, M.; Weber, E.; Fischer, M. A Meta-Analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 2010, 13, 235–245. [Google Scholar] [CrossRef]
- Yang, B.; Cui, M.; Du, Y.; Ren, G.; Li, J.; Wang, C.; Li, G.; Dai, Z.; Rutherford, S.; Wan, J.S.H.; et al. Influence of multiple global change drivers on plant invasion: Additive effects are uncommon. Front. Plant. Sci. 2022, 13, 1020621. [Google Scholar] [CrossRef] [PubMed]
- Seebens, H.; Bacher, S.; Blackburn, T.M.; Capinha, C.; Dawson, W.; Dullinger, S.; Genovesi, P.; Hulme, P.E.; Kleunen, M.; Kühn, I.; et al. Projecting the continental accumulation of alien species through to 2050. Glob. Chang. Biol. 2021, 27, 970–982. [Google Scholar] [CrossRef] [PubMed]
- Seebens, H.; Blackburn, T.M.; Dyer, E.E.; Genovesi, P.; Hulme, P.E.; Jeschke, J.M.; Pagad, S.; Pyšek, P.; Winter, M.; Arianoutsou, M.; et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 2017, 8, 14435. [Google Scholar] [CrossRef] [PubMed]
- Hulme, P.E.; Brundu, G.; Carboni, M.; Dehnen-Schmutz, K.; Dullinger, S.; Early, R.; Essl, F.; González-Moreno, P.; Groom, Q.J.; Kueffer, C.; et al. Integrating invasive species policies across ornamental horticulture supply chains to prevent plant invasions. J. Appl. Ecol. 2018, 55, 92–98. [Google Scholar] [CrossRef]
- van Kleunen, M.; Essl, F.; Pergl, J.; Brundu, G.; Carboni, M.; Dullinger, S.; Early, R.; González-Moreno, P.; Groom, Q.J.; Hulme, P.E.; et al. The changing role of ornamental horticulture in alien plant invasions. Biol. Rev. 2018, 93, 1421–1437. [Google Scholar] [CrossRef]
- Dai, Z.-C.; Zhu, B.; Wan, J.S.H.; Rutherford, S. Editorial: Global changes and plant invasions. Front. Ecol. Evol. 2022, 10, 845816. [Google Scholar] [CrossRef]
- Bellard, C.; Thuiller, W.; Leroy, B.; Genovesi, P.; Bakkenes, M.; Courchamp, F. Will climate change promote future invasions? Glob. Chang. Biol. 2013, 19, 3740–3748. [Google Scholar] [CrossRef]
- Bradley, B.A.; Wilcove, D.S.; Oppenheimer, M. Climate change increases risk of plant invasion in the eastern United States. Biol. Invasions 2010, 12, 1855–1872. [Google Scholar] [CrossRef]
- Dullinger, I.; Wessely, J.; Bossdorf, O.; Dawson, W.; Essl, F.; Gattringer, A.; Klonner, G.; Kreft, H.; Kuttner, M.; Moser, D.; et al. Climate change will increase the naturalization risk from garden plants in Europe. Glob. Ecol. Biogeogr. 2017, 26, 43–53. [Google Scholar] [CrossRef]
- Van der Veken, S.; Hermy, M.; Vellend, M.; Knapen, A.; Verheyen, K. Garden plants get a head start on climate change. Front. Ecol. Environ. 2008, 6, 212–216. [Google Scholar] [CrossRef]
- Richards, C.L.; Bossdorf, O.; Muth, N.Z.; Gurevitch, J.; Pigliucci, M. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol. Lett. 2006, 9, 981–993. [Google Scholar] [CrossRef] [PubMed]
- Zenni, R.D.; Lamy, J.-B.; Lamarque, L.J.; Porté, A.J. Adaptive evolution and phenotypic plasticity during naturalization and spread of invasive species: Implications for tree invasion biology. Biol. Invasions 2014, 16, 635–644. [Google Scholar] [CrossRef]
- Miller, R.E.; Rausher, M.D.; Manos, P.S. Phylogenetic systematics of Ipomoea (Convolvulaceae) based on ITS and Waxy sequences. Syst. Bot. 1999, 24, 209. [Google Scholar] [CrossRef]
- Morales Rodríguez, A.; Morales Tejón, A.; Rodríguez del Sol, D.; Javier, I.; Vargas, P.; Aracelis Méndez, C. Origen, evolución y distribución del boniato (Ipomoea batatas (L.) Lam.). Una revisión. Rev. Agric. Trop. 2017, 3, 1–13. [Google Scholar]
- Baucom, R.S.; Chang, S.M.; Kniskern, J.M.; Rausher, M.D.; Stinchcombe, J.R. Morning glory as a powerful model in ecological genomics: Tracing adaptation through both natural and artificial selection. Heredity 2011, 107, 377–385. [Google Scholar] [CrossRef]
- Randall, R.P. A Global Compendium of Weeds. Perth. Australia: Department of Agriculture and Food Western Australia. 2012. Available online: http://www.cabi.org/isc/FullTextPDF/2013/20133109119.pdf (accessed on 23 June 2023).
- Sanz-Elorza, M.; Dana, E.D.; Sobrino Vesperinas, E. Atlas de las plantas alóctonas invasoras en España. In Dirección General para la Biodiversidad; Gobierno de España: Madrid, Spain, 2004. [Google Scholar]
- Defelice, M.S. Tall morning glory, Ipomoea purpurea (L.) Roth—Flower or foe? Weed Technol. 2001, 15, 601–606. [Google Scholar] [CrossRef]
- Rojas-Sandoval, J.; Acevedo-Rodríguez, P. Ipomoea purpurea (Tall Morning Glory). CABI Compendium 2022. CABI Compendium. 2014. [Google Scholar] [CrossRef]
- Halvorson, W.L.; Guertin, P. USGS Weeds in the West Project: Status of Introduced Plants in Southern Arizona Parks, Plant Fact Sheets Prepared for Tuzigoot National Monument, Tucson, AZ: U.S. Geological Survey. 2003. Available online: http://sdrsnet.srnr.arizona.edu/index.php?page=datamenu&lib=2&sublib=13 (accessed on 23 June 2023).
- Oviedo Prieto, R.; Herrera Oliver, P.; Caluff, M.G.; Regalado, L.; Ventosa Rodríguez, I.; Plasencia Fraga, J.M.; Baró Oviedo, I.; González Gutiérrez, P.A.; Pérez Camacho, J.; Hechavarría Schwesinger, L.; et al. National list of invasive and potentially invasive plants in the Republic of Cuba—2011. (Lista nacional de especies de plantas invasoras y potencialmente invasoras en la República de Cuba—2011). Bissea Boletín Sobre Conserv. Plantas Jardín Botánico Nac. Cuba. 2012, 6, 22–96. [Google Scholar]
- Guillot Ortiz, D. Ipomea nil (L.) Roth e I. hederacea (L.) Jacquin, Dos especies invasoras nuevas para la flora Valenciana. Acta Bot. 2006, 31, 153–156. [Google Scholar] [CrossRef]
- Villaseñor, R.J.L.; Espinosa, F.J.G. Catálogo de malezas de México. Universidad Nacional Autónoma de México. In Consejo Nacional Consultivo Fitosanitario; Fondo de Cultura Económica: Mexico City, Mexico, 1998. [Google Scholar]
- Onen, H.; Farooq, S.; Muñoz-Rodríguez, P.; Alharbi, S.A.; Alfarraj, S. Ipomoea tricolor (Convolvulaceae) in Turkey: New occurrence record and potential spread areas under current climatic conditions. J. King. Saud Univ. Sci. 2023, 35, 102543. [Google Scholar] [CrossRef]
- Ben-Gal, A.; Borochov-Neori, H.; Yermiyahu, U.; Shani, U. Is osmotic potential a more appropriate property than electrical conductivity for evaluating whole-plant response to salinity? Environ. Exp. Bot. 2009, 65, 232–237. [Google Scholar] [CrossRef]
- Ellis, R.A.; Roberts, E.H. The quantification of aging and survival in orthodox seeds. Seed Sci. Technol. 1981, 9, 373–409. [Google Scholar]
- Abdul-Baki, A.A.; Anderson, J.D. Vigor determination in soybean seed by multiple criteria. Crop. Sci. 1973, 13, 630–633. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef]
- Weimberg, R. Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiol. Plant 1987, 70, 381–388. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Baker, H.G. The evolution of weeds. Annu. Rev. Ecol. Syst. 1974, 5, 1–24. [Google Scholar] [CrossRef]
- Moravcová, L.; Pyšek, P.; Jarošík, V.; Pergl, J. Getting the right traits: Reproductive and dispersal characteristics predict the invasiveness of herbaceous plant species. PLoS ONE 2015, 10, e0123634. [Google Scholar] [CrossRef]
- Gioria, M.; Pyšek, P. Early bird catches the worm: Germination as a critical step in plant invasion. Biol. Invasions 2017, 19, 1055–1080. [Google Scholar] [CrossRef]
- Grime, J.P.; Mason, G.; Curtis, A.V.; Rodman, J.; Band, S.R. A comparative study of germination characteristics in a local flora. J. Ecol. 1981, 69, 1017. [Google Scholar] [CrossRef]
- Gioria, M.; Pyšek, P. The legacy of plant invasions: Changes in the soil seed bank of invaded plant communities. Bioscience 2016, 66, 40–53. [Google Scholar] [CrossRef]
- Chrobock, T.; Kempel, A.; Fischer, M.; van Kleunen, M. Introduction bias: Cultivated alien plant species germinate faster and more abundantly than native species in Switzerland. Basic Appl. Ecol. 2011, 12, 244–250. [Google Scholar] [CrossRef]
- Yuan, X.; Wen, B. Seed germination response to high temperature and water stress in three invasive Asteraceae weeds from Xishuangbanna, SW China. PLoS ONE 2018, 13, e0191710. [Google Scholar] [CrossRef] [PubMed]
- Bellache, M.; Moltó, N.; Benfekih, L.A.; Torres-Pagan, N.; Mir, R.; Verdeguer, M.; Boscaiu, M.; Vicente, O. Physiological and biochemical responses to water stress and salinity of the invasive moth plant, Araujia sericifera Brot., during seed germination and vegetative growth. Agronomy 2022, 12, 361. [Google Scholar] [CrossRef]
- Mircea, D.M.; Estrelles, E.; Al Hassan, M.; Soriano, P.; Sestras, R.E.; Boscaiu, M.; Sestras, A.F.; Vicente, O. Effect of water deficit on germination, growth and biochemical responses of four potentially invasive ornamental grass species. Plants 2023, 12, 1260. [Google Scholar] [CrossRef]
- Cervera, J.C.; Parra-Tabla, V. Seed germination and seedling survival traits of invasive and non-invasive congeneric Ruellia species (Acanthaceae) in Yucatan, Mexico. Plant. Ecol. 2009, 205, 285–293. [Google Scholar] [CrossRef]
- Wainwright, C.E.; Cleland, E.E. Exotic species display greater germination plasticity and higher germination rates than native species across multiple cues. Biol. Invasions 2013, 15, 2253–2264. [Google Scholar] [CrossRef]
- Pérez-Fernández, M.A.; Lamont, B.B.; Marwick, A.L.; Lamont, W.G. Germination of seven exotic weeds and seven native species in South-Western Australia under steady and fluctuating water supply. Acta Oecol. 2000, 21, 323–336. [Google Scholar] [CrossRef]
- Paudel, S.; Battaglia, L.L. Germination responses of the invasive Triadica sebifera and two co-occurring native woody species to elevated salinity across a gulf coast transition ecosystem. Wetlands 2013, 33, 527–535. [Google Scholar] [CrossRef]
- Infante-Izquierdo, M.D.; Castillo, J.M.; Grewell, B.J.; Nieva, F.J.J.; Muñoz-Rodríguez, A.F. Differential effects of increasing salinity on germination and seedling growth of native and exotic invasive cordgrasses. Plants 2019, 8, 372. [Google Scholar] [CrossRef] [PubMed]
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Uçarlı, C. Effects of salinity on seed germination and early seedling stage. In Abiotic Stress in Plants; Intech Open: London, UK, 2020; p. 211. [Google Scholar]
- Hohl, M.; Schopfer, P. Water relations of growing maize coleoptiles: Comparison between mannitol and polyethylene glycol 6000 as external osmotica for adjusting turgor pressure. Plant Physiol. 1991, 95, 716–722. [Google Scholar] [CrossRef]
- Singh, M.; Ramirez, A.H.M.; Sharma, S.D.; Jhala, A.J. Factors affecting the germination of tall morning glory (Ipomoea purpurea). Weed Sci. 2012, 60, 64–68. [Google Scholar] [CrossRef]
- Kiani, A.; Siahmarguee, A.; Soltani, E. Effects of temperature, salinity, and planting depth on seed germination and emergence of tall morning glory (Ipomoea spp.). Iran. J. Plant Prot. Res. 2015, 29, 437–448. [Google Scholar] [CrossRef]
- Abbasi, I.; Zaefarian, F.; Younesabadi, M. Study of biological aspect of germination and emergence in morning glory (Ipomoea purpurea L.). Iran. J. Plant Prot. Res. 2022, 36, 125–139. [Google Scholar] [CrossRef]
- Dehghan, S.; Siahmarguee, A.; Ghaderi Far, F.; Azimmohseni, M. Germination and emergence response of white morning glory (Ipomoea lacunose L.) to some environmental factors. Iran. J. Weed Sci. 2023, 19, 129111. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Abugho, S.B. Three lobe morning glory (Ipomoea triloba) germination and response to herbicides. Weed Sci. 2012, 60, 199–204. [Google Scholar] [CrossRef]
- Siahmarguee, A.; Taheri, M.; Ghaderi-Far, F.; Torabi, B. Germination ecology of invasive common morning-glory (Ipomoea purpurea L.) in Golestan province. J. Plant Prod. 2022, 29, 221–240. [Google Scholar]
- Chaney, L.; Baucom, R.S. The evolutionary potential of baker’s weediness traits in the common morning glory, Ipomoea purpurea (Convolvulaceae). Am. J. Bot. 2012, 99, 1524–1530. [Google Scholar] [CrossRef]
- Baker, H.G. Characteristics and mode of origin of weeds. In The Genetics of Colonizing Species; Baker, H.G., Stebbins, G.L., Eds.; Academic Press: New York, NY, USA, 1965; pp. 147–172. [Google Scholar]
- Graebner, R.C.; Callaway, R.M.; Montesinos, D. Invasive species grows faster, competes better, and shows greater evolution toward increased seed size and growth than exotic non-invasive congeners. Plant Ecol. 2012, 213, 545–553. [Google Scholar] [CrossRef]
- Chaney, L.; Baucom, R.S. The costs and benefits of tolerance to competition in Ipomoea purpurea, the common morning glory. Evolution 2014, 68, 1698–1709. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Huang, Q.Q.; Lin, Z.G.; Huang, F.F.; Liao, H.X.; Peng, S.L. High tolerance to salinity and herbivory stresses may explain the expansion of Ipomoea cairica to salt marshes. PLoS ONE 2012, 7, e48829. [Google Scholar] [CrossRef]
- Huerta-Ramos, G.; Moreno-Casasola, P.; Sosa, V. Wetland conservation in the Gulf of Mexico: The example of the salt marsh morning glory, Ipomoea sagittata. Wetlands 2015, 35, 709–721. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, X.B.; Zhao, L.K.; Huo, K.S.; Jin, P.F.; Zhao, D.L.; Zhou, Z.L.; Tang, J.; Xiao, S.Z.; Cao, Q.H. RNA-Seq reveals the salt tolerance of Ipomoea pes-caprae, a wild relative of sweet potato. J. Plant Physiol. 2020, 255, 153276. [Google Scholar] [CrossRef]
- Liu, D.; He, S.; Song, X.; Zhai, H.; Liu, N.; Zhang, D.; Ren, Z.; Liu, Q. IbSIMT1, a novel salt-induced methyltransferase gene from Ipomoea batatas, is involved in salt tolerance. Plant Cell Tissue Organ Cult. (PCTOC) 2015, 120, 701–715. [Google Scholar] [CrossRef]
- Atala, C.; Gianoli, E. Effect of water availability on tolerance of leaf damage in tall morning glory, Ipomoea purpurea. Acta Oecol. 2009, 35, 236–242. [Google Scholar] [CrossRef]
- Atala, C.; Cordero, C.; Gianoli, E. Drought and leaf damage limit the search for support in the climbing plant Ipomoea purpurea (L.) Roth (Convolvulaceae). Gayana Bot. 2011, 68, 207–212. [Google Scholar] [CrossRef]
- Mason, C.M.; Christopher, D.A.; Rea, A.M.; Eserman, L.A.; Pilote, A.J.; Batora, N.l.; Chang, S.M. Low inbreeding depression and high plasticity in the tall morning glory (Ipomoea purpurea). Weed Sci. 2015, 63, 864–876. [Google Scholar] [CrossRef]
- Cha-Um, S.; Roytrakul, S.; Kirdmanee, C.; Akutagawa, I.; Takagaki, M. A rapid method for identifying salt tolerant water convolvulus (Ipomoea aquatica Forsk) under in vitro photoautotrophic conditions. Plant Stress 2007, 1, 228–234. [Google Scholar]
- Szabados, L.; Savouré, A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010, 15, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Gupta, B.; Huang, B. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int. J. Genom. 2014, 2014, 701596. [Google Scholar] [CrossRef] [PubMed]
- Bose, J.; Rodrigo-Moreno, A.; Shabala, S. ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot. 2014, 65, 1241–1257. [Google Scholar] [CrossRef]
- Venkatesan, A.; Chellappan, K.P. Accumulation of proline and glycine betaine in Ipomoea pes-caprae induced by NaCl. Biol. Plant 1998, 41, 271–276. [Google Scholar] [CrossRef]
- Yooyongwech, S.; Theerawitaya, C.; Samphumphuang, T.; Cha-um, S. Water-deficit tolerant identification in sweet potato genotypes (Ipomoea batatas (L.) Lam.) in vegetative developmental stage using multivariate physiological indices. Sci. Hortic. 2013, 162, 242–251. [Google Scholar] [CrossRef]
- Yooyongwech, S.; Samphumphung, T.; Tisaram, R.; Theerawitaya, C.; Cha-Um, S. Physiological, morphological changes and storage root yield of sweet potato (Ipomoea batatas (L.) Lam.) under PEG-Induced Water Stress. Not. Bot. Horti. Agrobot. Cluj Napoca 2017, 45, 164–171. [Google Scholar] [CrossRef]
- Jia, L.; Yang, Y.; Zhai, H.; He, S.; Xin, G.; Zhao, N.; Zhang, H.; Gao, S.; Liu, Q. Production and characterization of a novel interspecific somatic hybrid combining drought tolerance and high quality of sweet potato and Ipomoea triloba L. Plant Cell Rep. 2022, 41, 2159–2171. [Google Scholar] [CrossRef]
- Kitayama, M.; Samphumphuang, T.; Tisarum, R.; Theerawitaya, C.; Cha-um, K.; Takagaki, M.; Cha-um, S. Calcium and soluble sugar enrichments and physiological adaptation to mild NaCl salt stress in sweet potato (Ipomoea batatas) genotypes. J. Hortic. Sci. Biotechnol. 2020, 95, 782–793. [Google Scholar] [CrossRef]
- Gil, R.; Boscaiu, M.; Lull, C.; Bautista, I.; Lidón, A.; Vicente, O. Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Funct. Plant Biol. 2013, 40, 805. [Google Scholar] [CrossRef]
- Sami, F.; Yusuf, M.; Faizan, M.; Faraz, A.; Hayat, S. Role of sugars under abiotic stress. Plant Physiol. Biochem. 2016, 109, 54–61. [Google Scholar] [CrossRef]
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef] [PubMed]
- Maathuis, F.J.M. Sodium in plants: Perception, signalling, and regulation of sodium fluxes. J. Exp. Bot. 2014, 65, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Volkov, V. Salinity tolerance in plants. quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. Front. Plant. Sci. 2015, 6, 873. [Google Scholar] [CrossRef] [PubMed]
- Shabala, S.; Pottosin, I. Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance. Physiol. Plant. 2014, 151, 257–279. [Google Scholar] [CrossRef]
- Assaha, D.V.M.; Ueda, A.; Saneoka, H.; Al-Yahyai, R.; Yaish, M.W. The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front. Physiol. 2017, 8, 509. [Google Scholar] [CrossRef]
- Solis, J.; Baisakh, N.; Brandt, S.R.; Villordon, A.; La Bonte, D. Transcriptome profiling of beach morning glory (Ipomoea imperati) under salinity and its comparative analysis with sweet potato. PLoS ONE 2016, 11, e0147398. [Google Scholar] [CrossRef]
- Mondal, S.; Rahaman, E.H.M.S.; Asch, F. Potassium content is the main driver for salinity tolerance in sweet potato before tuber formation. J. Agron. Crop. Sci. 2022, 208, 645–661. [Google Scholar] [CrossRef]
- Wang, B.; Zhai, H.; He, S.; Zhang, H.; Ren, Z.; Zhang, D.; Liu, Q. A vacuolar Na+/H+ antiporter gene, IbNHX2, enhances salt and drought tolerance in transgenic sweet potato. Sci. Hort. 2016, 30, 153–166. [Google Scholar] [CrossRef]
- Yoshida, K.; Kawachi, M.; Mori, M.; Maeshima, M.; Kondo, M.; Nishimura, M.; Kondo, T. The involvement of tonoplast proton pumps and Na+(K+)/H+ exchangers in the change of petal color during flower opening of morning glory, Ipomoea tricolor cv. Heavenly Blue. Plant Cell Physiol. 2005, 46, 407–415. [Google Scholar] [CrossRef]
- Seifikalhor, M.; Aliniaeifard, S.; Shomali, A.; Azad, N.; Hassani, B.; Lastochkina, O.; Li, T. Calcium signaling and salt tolerance are diversely entwined in plants. Plant Signal. Behav. 2019, 14, 1665455. [Google Scholar] [CrossRef]
Species | Osmotic Potential | Treatment | First Day of Germination (FGD) | Last Day of Germination (LGD) | Total Spread of Germination (TSG) |
---|---|---|---|---|---|
I. purpurea | 0 | Control | 1.0 ± 0.0 a | 3.8 ± 1.1 a | 2.8 ± 1.1 a |
−0.22 MPa | NaCl | 1.0 ± 0.0 a | 5.0 ± 1.4 a | 4.0 ± 1.4 a | |
−0.44 MPa | NaCl | 1.0 ± 0.0 a | 7.5 ± 3.1 a | 6.5 ± 3.1 a | |
−0.88 MPa | NaCl | 3.0 ± 0.0 bc | 7.5 ± 1.5 a | 4.5 ± 1.5 a | |
−1.76 MPa | NaCl | 7.3 ± 1.2 d | 10.3 ± 1.2 a | 3.0 ± 0.0 a | |
−0.22 MPa | PEG | 1.5 ± 0.5 ab | 6.5 ± 1.3 a | 5.0 ± 1.0 ab | |
−0.44 MPa | PEG | 2.3 ± 0.6 ab | 9.5 ± 3.5 a | 7.3 ± 2.9 a | |
−0.88 Mpa | PEG | 4.0 ± 0.5 c | 13.5 ± 2.5 a | 9.5 ± 2.6 a | |
−1.76 Mpa | - | - | - | - | |
I. tricolor | 0 | Control | 1.0 ± 0.0 A | 4.5 ± 0.2 A | 3.5 ± 0.2 A |
−0.22 Mpa | NaCl | 1.0 ± 0.0 A | 6.5 ± 0.5 A | 5.5 ± 0.5 A | |
−0.44 Mpa | NaCl | 1.0 ± 0.0 A | 7.3 ± 3.0 A | 6.3 ± 3.0 A | |
−0.88 MPa | NaCl | 1.5 ± 0.2 A | 6.0 ± 1.7 A | 4.5 ± 1.4 A | |
−1.76 MPa | NaCl | 5.8 ± 1.1 B | 11.0 ± 0.8 A | 5.3 ± 1.6 A | |
−0.22 MPa | PEG | 1.0 ± 0.0 A | 8.0 ± 1.2 A | 7.0 ± 1.2 A | |
−0.44 MPa | PEG | 1.0 ± 0.0 A | 5.5 ± 1.3 A | 4.5 ± 1.3 A | |
−0.88 Mpa | PEG | 4.5 ± 0.5 B | 9.5 ± 0.5 A | 5.0 ± 0.0 A | |
−1.76 MPa | PEG | - | - | - |
Species | Osmotic Potential | Treatment | Radicle Length (mm) | Hypocotyl Length (mm) | Seedling Vigour Index (SVI) |
---|---|---|---|---|---|
I. purpurea | 0 | Control | 56.1 ± 1.8 c | 39 ± 1.4 d | 92.8 ± 1.6 c |
−0.22 MPa | NaCl | 44.7 ± 3.1 bc | 25.2 ± 2.8 c | 70.0 ± 5.4 bc | |
−0.44 MPa | NaCl | 39.5 ± 2.9 bc | 20.2 ± 2.4 c | 55.1 ± 4.9 b | |
−0.88 MPa | NaCl | 15.0 ± 3.8 a | 7.2 ± 0.8 a | 21.4 ± 4.9 a | |
−1.76 MPa | NaCl | - | - | - | |
−0.22 MPa | PEG | 60.8 ± 12.2 c | 13.3 ± 1.7 b | 71.2 ± 14.4 bc | |
−0.44 MPa | PEG | 40.9 ± 15.7 bc | 8.6 ± 1.9 ab | 43.1 ± 19.6 ab | |
−0.88 MPa | PEG | 28.3 ± 4.1 ab | 7.2 ± 1.0 a | 24.9 ± 0.7 a | |
−1.76 MPa | PEG | - | - | - | |
I. tricolor | 0 | Control | 61.3 ± 3.6 A | 25.7 ± 0.6 A | 85.0 ± 4.8 CD |
−0.22 MPa | NaCl | 66.9 ± 3.5 A | 20.5 ± 0.9 A | 87.4 ± 4.3 CD | |
−0.44 MPa | NaCl | 53.2 ± 5.5 A | 22.4 ± 2.0 A | 75.6 ± 6.6 BC | |
−0.88 MPa | NaCl | 44.5 ± 10.2 A | 13.4 ± 0.8 A | 56.7 ± 9.9 AB | |
−1.76 MPa | NaCl | - | - | - | |
−0.22 MPa | PEG | 65.3 ± 7.7 A | 13.5 ± 1.7 A | 75.6 ± 10.4 BC | |
−0.44 MPa | PEG | 68.9 ± 20.2 A | 37.5 ± 23.6 A | 106.4 ± 10.9 D | |
−0.88 MPa | PEG | 42 ± 6.3 A | 14.5 ± 0.8 A | 48.4 ± 7.3 A | |
−1.76 MPa | PEG | - | - | - |
Ion | Treatment | I. purpurea | I. tricolor |
---|---|---|---|
Na+ roots (µmol/g) | C | 963.6 ± 102.3 a | 1028.3 ± 55.3 A |
WS | 821.3 ± 34.0 a | 946.7 ± 73.9 A | |
100 mM NaCl | 2185.4 ± 163.4 b | 1440.9 ± 189.6 A | |
200 mM NaCl | 1714.0 ± 261.4 b | 1298.4 ± 153.7 A | |
Na+ leaves (µmol/g) | C | 522.9 ± 84.8 a | 426.6 ± 108.5 A |
WS | 473.8 ± 39.4 a | 347.5 ± 54.0 A | |
100 mM NaCl | 409.0 ± 34.7 a | 583.4 ± 34.6 AB | |
200 mM NaCl | 531.6 ± 26.4 a | 732.2 ± 48.6 B | |
K+ roots (µmol/g) | C | 503.1 ± 71.2 b | 553.5 ± 59.8 B |
WS | 573.1 ± 24.7 b | 563.5 ± 23.8 B | |
100 mM NaCl | 278.5 ± 32.2 a | 219.0 ± 57.7 A | |
200 mM NaCl | 250.5 ± 23.4 a | 132.5 ± 16.3 A | |
K+ leaves (µmol/g) | C | 518.4 ± 41.4 a | 649.8 ± 93.5 AB |
WS | 507.2 ± 18.2 a | 576.2 ± 81.6 A | |
100 mM NaCl | 555.4 ± 45.3 a | 920.4 ± 51.3 BC | |
200 mM NaCl | 656.2 ± 67.3 a | 995.4 ± 38.9 C | |
Cl− roots (µmol/g) | C | 442.1 ± 63.1 a | 520.8 ± 65.4 A |
WS | 429.5 ± 44.5 a | 456.3 ± 30.3 B | |
100 mM NaCl | 1986.0 ± 175.4 b | 1655.4 ± 171.9 B | |
200 mM NaCl | 1977.9 ± 169.5 b | 1352.7 ± 150.7 B | |
Cl− leaves (µmol/g) | C | 663.3 ± 40.6 a | 439.6 ± 72.0 A |
WS | 649.3 ± 51.3 a | 313.1 ± 48.9 A | |
100 mM NaCl | 1610.8 ± 103.4 b | 2029.4 ± 178.1 B | |
200 mM NaCl | 1624.9 ± 75.9 b | 1978.5 ± 141.0 B | |
Ca2+ roots (µmol/g) | C | 74.5 ± 8.7 a | 79.0 ± 6.4 A |
WS | 59.6 ± 2.8 a | 49.1 ± 0.9 A | |
100 mM NaCl | 305.1 ± 43.6 b | 257.7 ± 33.7 B | |
200 mM NaCl | 283.9 ± 35 b | 226.6 ± 49.1 B | |
Ca2+ leaves (µmol/g) | C | 259.4 ± 59.9 ab | 126.8 ± 35.0 A |
WS | 151.3 ± 34.4 a | 77.7 ± 14.0 A | |
100 mM NaCl | 267.4 ± 67.5 ab | 411.4 ± 32.0 B | |
200 mM NaCl | 399.3 ± 28.4 b | 362.3 ± 38.7 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mircea, D.-M.; Li, R.; Blasco Giménez, L.; Vicente, O.; Sestras, A.F.; Sestras, R.E.; Boscaiu, M.; Mir, R. Salt and Water Stress Tolerance in Ipomoea purpurea and Ipomoea tricolor, Two Ornamentals with Invasive Potential. Agronomy 2023, 13, 2198. https://doi.org/10.3390/agronomy13092198
Mircea D-M, Li R, Blasco Giménez L, Vicente O, Sestras AF, Sestras RE, Boscaiu M, Mir R. Salt and Water Stress Tolerance in Ipomoea purpurea and Ipomoea tricolor, Two Ornamentals with Invasive Potential. Agronomy. 2023; 13(9):2198. https://doi.org/10.3390/agronomy13092198
Chicago/Turabian StyleMircea, Diana-Maria, Riwen Li, Lorena Blasco Giménez, Oscar Vicente, Adriana F. Sestras, Radu E. Sestras, Mónica Boscaiu, and Ricardo Mir. 2023. "Salt and Water Stress Tolerance in Ipomoea purpurea and Ipomoea tricolor, Two Ornamentals with Invasive Potential" Agronomy 13, no. 9: 2198. https://doi.org/10.3390/agronomy13092198