Setting Irrigation Thresholds for Building a Platform Aimed at the Improved Management of Citrus Orchards in Coastal Syria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The A&P Approach
2.3. Management Scenarios
- Group 1 (G1) includes clementine and mandarin species, with flowering by March and harvesting from September to October [20].
2.4. Evaluation of Yield Decline in Relation to Deficit-Irrigation Management
3. Results and Discussion
3.1. Crop Coefficients for Citrus Orchards
3.2. Consumptive Use
3.3. Gross Irrigation Water Savings
3.4. Expected Yield Decline
3.5. Improving Water Management of Citrus Orchards in Coastal Syria
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Statistics. Available online: https://www.fao.org/statistics/en/ (accessed on 21 January 2022).
- Westlake, M. The citrus sub-sector. Syrian agriculture at the crossroads. In Syrian Agriculture at the Crossroads, FAO Agricultural Policy and Economic Development Series No. 8; Fiorillo, C., Vercueil, J., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003; Chapter 8; pp. 193–216. [Google Scholar]
- Amoudi, M.; Ahmed, T. Using Factorial Analysis to Study the Factors Affecting the Production of Fruit Trees in the Syrian Coast. Syr. J. Agric. Res. 2021, 8, 232–245. [Google Scholar]
- Central Bureau of Statistics. Agriculture, Chapter 4, Tables 7 and 10, Damascus, Syria. Available online: http://cbssyr.sy/index-EN.htm (accessed on 28 December 2021).
- Oweis, T.; Rodrigues, P.N.; Pereira, L.S. Simulation of supplemental irrigation strategies for wheat in Near East to cope with water scarcity. In Tools for Drought Mitigation in Mediterranean Regions; Rossi, G., Cancelliere, A., Pereira, L.S., Oweis, T., Shatanawi, M., Zairi, A., Eds.; Kluwer: Dordrecht, The Netherlands, 2003; pp. 259–272. [Google Scholar] [CrossRef]
- Mourad, K.A.; Alshihabi, O. Assessment of future Syrian water resources supply and demand by the WEAP model. Hydrol. Sci. J. 2016, 61, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Darouich, H.; Karfoul, R.; Eid, H.; Ramos, T.B.; Baddour, N.; Moustafa, A.; Assaad, M.I. Modeling zucchini squash irrigation requirements in the Syrian Akkar region using the FAO56 dual-Kc approach. Agric. Water Manag. 2020, 229, 105927. [Google Scholar] [CrossRef]
- Darouich, H.; Karfoul, R.; Ramos, T.B.; Moustafa, A.; Shaheen, B.; Pereira, L.S. Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region. Agric. Water Manag. 2021, 255, 107038. [Google Scholar] [CrossRef]
- Abou Zakhem, B.; Al Ain, F.; Hafez, R. Assessment of field water budget components for increasing water productivity under drip irrigation in arid and semiarid areas, Syria. Irrig. Drain. 2019, 68, 452–463. [Google Scholar] [CrossRef]
- Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W. Mediterranean irrigation under climate change: More efficient irrigation needed to compensate increases in irrigation water requirements. Hydrol. Earth Syst. Sci. 2016, 20, 953–973. [Google Scholar] [CrossRef] [Green Version]
- Darouich, H.; Gonçalves, J.M.; Muga, A.; Pereira, L.S. Water saving vs. farm economics in cotton surface irrigation: An application of multicriteria analysis. Agric. Water Manag. 2012, 115, 223–231. [Google Scholar] [CrossRef]
- Darouich, H.; Pedras, C.M.G.; Gonçalves, J.M.; Pereira, L.S. Drip vs. surface irrigation: A comparison focusing water saving and economic returns using multicriteria analysis applied to cotton. Biosyst. Eng. 2014, 122, 74–90. [Google Scholar] [CrossRef]
- Darouich, H.; Cameira, R.M.; Gonçalves, J.M.; Paredes, P.; Pereira, L.S. Comparing sprinkler and surface irrigation for wheat using multi-criteria analysis: Water saving vs. economic returns. Water 2017, 9, 50. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; Irrigation & Drainage Paper 56; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1998. [Google Scholar]
- Rallo, G.; Paço, T.A.; Paredes, P.; Puig-Sirera, À.; Massai, R.; Provenzano, G.; Pereira, L.S. Updated single and dual crop coefficients for tree and vine fruit crops. Agric. Water Manag. 2021, 250, 106645. [Google Scholar] [CrossRef]
- López-Urrea, R.; Montoro, A.; Mañas, F.; López-Fuster, P.; Fereres, E. Evapotranspiration and crop coefficients from lysimeter measurements of mature Tempranillo wine grapes. Agric Water Manag. 2012, 112, 13–20. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S. Estimating crop coefficients from fraction of ground cover and height. Irrig. Sci. 2009, 28, 17–34. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.S.; Paredes, P.; Melton, F.; Johnson, L.; Wang, T.; López-Urrea, R.; Cancela, J.J.; Allen, R. Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data. Agric. Water Manag. 2020, 240, 106197. [Google Scholar] [CrossRef]
- Pereira, L.S.; Paredes, P.; Melton, F.; Johnson, L.; Mota, M.; Wang, T. Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field, and fruit crops with focus on parameterization. Agric. Water Manag. 2021, 252, 106663. [Google Scholar] [CrossRef]
- Darouich, H.; Karfoul, R.; Ramos, T.B.; Moustafa, A.; Pereira, L.S. Searching for Sustainable-Irrigation Issues of Clementine Orchards in the Syrian Akkar Plain: Effects of Irrigation Method and Canopy Size on Crop Coefficients, Transpiration, and Water Use with SIMDualKc Model. Water 2022, 14, 2052. [Google Scholar] [CrossRef]
- Williams, L.E.; Levin, A.D.; Fidelibus, M.W. Crop coefficients (Kc) developed from canopy shaded area in California vineyards. Agric. Water Manag. 2022, 271, 107771. [Google Scholar] [CrossRef]
- Pereira, L.S.; Paredes, P.; Oliveira, C.M.; Montoya, F.; López-Urrea, R.; Salman, M. Single and basal crop coefficients for estimation of water use of tree and vine woody crops with consideration of fraction of ground cover, height, and training system for Mediterranean and warm temperate fruit and leaf crops. Irrig. Sci. 2023; submitted. [Google Scholar]
- Paço, T.; Ferreira, M.; Rosa, R.; Paredes, P.; Rodrigues, G.; Conceição, N.; Pacheco, C.; Pereira, L. The dual crop coefficient approach using a density factor to simulate the evapotranspiration of a peach orchard: SIMDualKc model versus eddy covariance measurements. Irrig. Sci. 2012, 30, 115–126. [Google Scholar] [CrossRef]
- Paço, T.A.; Paredes, P.; Pereira, L.S.; Silvestre, J.; Santos, F.L. Crop coefficients and transpiration of a super intensive Arbequina olive orchard using the dual Kc approach and the Kcb computation with the fraction of ground cover and height. Water 2019, 11, 383. [Google Scholar] [CrossRef] [Green Version]
- Puig-Sirera, À.; Rallo, G.; Paredes, P.; Paço, T.A.; Minacapilli, M.; Provenzano, G.; Pereira, L.S. Transpiration and water use of an irrigated traditional olive grove with sap-flow observations and the FAO56 dual crop coefficient approach. Water 2021, 13, 2466. [Google Scholar] [CrossRef]
- Vinci, A.; Traini, C.; Portarena, S.; Farinelli, D. Assessment of the Midseason Crop Coefficient for the Evaluation of the Water Demand of Young, Grafted Hazelnut Trees in High-Density Orchards. Water 2023, 15, 1683. [Google Scholar] [CrossRef]
- Mobe, N.T.; Dzikiti, S.; Zirebwa, S.F.; Midgley, S.J.E.; von Loeper, W.; Mazvimavi, D.; Ntshidi, Z.; Jovanovic, N.Z. Estimating crop coefficients for apple orchards with varying canopy cover using measured data from twelve orchards in the Western Cape Province, South Africa. Agric. Water Manag. 2020, 233, 106103. [Google Scholar] [CrossRef]
- Taylor, N.J.; Annandale, J.G.; Vahrmeijer, J.T.; Ibraimo, N.A.; Mahohoma, W.; Gush, M.B.; Allen, R.G. Modelling water use of subtropical fruit crops: The challenges. Acta Hortic. 2017, 1160, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Rosa, R.D. Modelação da Evapotranspiração com o Modelo SIMDualKc: Aplicação à Rega de Fruteiras, a Consociações de Culturas e a Condições Salinas, e Ligação ao SIG para Análise à Escala do Projeto de Rega. Ph.D. Thesis, Instituto Superior de Agronomia, Lisboa, Portugal, 2018. [Google Scholar]
- Fernández Hung, K.; Vargas Rodríguez, P.; Cueto Rodríguez, J.R.; Brown Manrique, O. Water requirements of new citrus orchards in “Jiguaní” Agricultural Enterprise. INGE CUC 2022, 18, 95–104. [Google Scholar]
- Ippolito, M.; De Caro, D.; Ciraolo, G.; Minacapilli, M.; Provenzano, G. Estimating crop coefficients and actual evapotranspiration in citrus orchards with sporadic cover weeds based on ground and remote sensing data. Irrig. Sci. 2023, 41, 5–22. [Google Scholar] [CrossRef]
- Mashabatu, M.; Ntshidi, Z.; Dzikiti, S.; Jovanovic, N.; Dube, T.; Taylor, N.J. Deriving crop coefficients for evergreen and deciduous fruit orchards in South Africa using the fraction of vegetation cover and tree height data. Agric. Water Manag. 2023, 286, 108389. [Google Scholar] [CrossRef]
- Paredes, P.; Rodrigues, G.C.; Alves, I.; Pereira, L.S. Partitioning evapotranspiration, yield prediction and economic returns of maize under various irrigation management strategies. Agric. Water Manag. 2014, 135, 27–39. [Google Scholar] [CrossRef]
- Paredes, P.; Pereira, L.S.; Rodrigues, G.C.; Botelho, N.; Torres, M.O. Using the FAO dual crop coefficient approach to model water use and productivity of processing pea (Pisum sativum L.) as influenced by irrigation strategies. Agric. Water Manag. 2017, 189, 5–18. [Google Scholar] [CrossRef]
- Phogat, V.; Skewes, M.A.; Cox, J.W.; Sanderson, G.; Alam, J.; Šimunek, J. Seasonal simulation of water, salinity and nitrate dynamics under drip irrigated mandarin (Citrus reticulata) and assessing management options for drainage and nitrate leaching. J. Hydrol. 2014, 513, 504–516. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Hendricks Franssen, H.-J.; Han, X.; Jiménez-Bello, M.A.; Martínez Alzamora, F.; Vereecken, H. Evaluation of an operational real-time irrigation scheduling scheme for drip irrigated citrus fields in Picassent, Spain. Agric. Water Manag. 2018, 208, 465–477. [Google Scholar] [CrossRef] [Green Version]
- Abou Ali, A.; Bouchaou, L.; Er-Raki, S.; Hssaissoune, M.; Brouziyne, Y.; Ezzahar, J.; Khabba, S.; Chakir, A.; Labbaci, A.; Chehbouni, A. Assessment of crop evapotranspiration and deep percolation in a commercial irrigated citrus orchard under semi-arid climate: Combined Eddy-Covariance measurement and soil water balance-based approach. Agric. Water Manag. 2023, 275, 107997. [Google Scholar] [CrossRef]
- Zhu, S.; Li, H.; Xu, W.; Zhang, T.; Liu, C.; Peng, Y. Dynamic process and model simulation of soil water content during citrus growth period. Acta Geophys. 2023, 71, 1525–1537. [Google Scholar] [CrossRef]
- Peddinti, S.R.; Kambhammettu, B.V.N.P. Dynamics of crop coefficients for citrus orchards of central India using water balance and eddy covariance flux partition techniques. Agric. Water Manag. 2019, 212, 68–77. [Google Scholar] [CrossRef]
- Cao, H.; Wang, H.; Li, Y.; Hamani, A.K.M.; Zhang, N.; Wang, X.; Gao, Y. Evapotranspiration Partition and Dual Crop Coefficients in Apple Orchard with Dwarf Stocks and Dense Planting in Arid Region, Aksu Oasis, Southern Xinjiang. Agriculture 2021, 11, 1167. [Google Scholar] [CrossRef]
- Fandiño, M. Necesidades de Agua e Influencia de los Sistemas de Riego en Vitis vinifera cv. Albariño. Ph.D. Thesis, Escuela de Doctorado Internacional, Universidad de Santiago de Compostela, Lugo, Spain, 2021. [Google Scholar]
- Manssur, F. The Agricultural Commodity Perspective n°5: The Citrus in Syria; FAO Project GCP/SYR/006/ITA; The National Agricultural Policy Center (NAPC): Damascus, Syria, 2007. [Google Scholar]
- Köppen, W. Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet. Meteorol. Z. 1884, 1, 215–226. [Google Scholar]
- FAO; IIASA; ISRIC; ISS-CAS; JRC. Harmonized World Soil Database (Version 1.1); FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2009. [Google Scholar]
- Mohamed, M.A. An assessment of forest cover change and its driving forces in the Syrian Coastal Region during a period of conflict, 2010 to 2020. Land 2021, 10, 191. [Google Scholar] [CrossRef]
- Allen, R.G.; Wright, J.L.; Pruitt, W.O.; Pereira, L.S.; Jensen, M.E. Water requirements. In Design and Operation of Farm Irrigation Systems, 2nd ed.; Hoffman, G.J., Evans, R.G., Jensen, M.E., Martin, D.L., Elliot, R.L., Eds.; ASABE: St. Joseph, MI, USA, 2007; pp. 208–288. [Google Scholar]
- Pérez-Pérez, J.G.; Romero, P.; Navarro, J.M.; Botía, P. Response of sweet orange cv ‘Lane late’to deficit-irrigation strategy in two rootstocks. II: Flowering, fruit growth, yield and fruit quality. Irrig. Sci. 2008, 26, 519–529. [Google Scholar] [CrossRef]
- Reykande, J.M.; Amiri, N.A.; Shahabian, M. Analyzing phenological stages of three citrus varieties at foothills, plain and shoreline areas of Sari in North of Iran. Int. J. Agric. Crop Sci. 2013, 6, 452–457. [Google Scholar]
- Shatanawi, M.R.; Suleiman, A.A.; Al-Bakri, J. Effect of deficit irrigation on lemon water requirements and yield in the Jordan Valley. Jordan J. Agric. Sci. 2011, 7, 564–573. [Google Scholar]
- Rosa, R.D.; Paredes, P.; Rodrigues, G.C.; Alves, I.; Fernando, R.M.; Pereira, L.S.; Allen, R.G. Implementing the dual crop coefficient approach in interactive software. 1. Background and computational strategy. Agric. Water Manag. 2012, 103, 8–24. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Smith, M.; Raes, D.; Wright, J.L. FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions. J. Irrig. Drain. Eng. 2005, 131, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.S.; Paredes, P.; Jovanovic, N. Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach. Agric. Water Manag. 2020, 241, 106357. [Google Scholar] [CrossRef]
- Doorenbos, J.; Kassam, A.H. Yield Response to Water; Irrigation & Drainage Paper 33; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1979. [Google Scholar]
- González-Altozano, P.; Castel, J.R. Regulated deficit irrigation in ‘Clementina de Nules’ citrus trees. II: Vegetative growth. J. Hortic. Sci. Biotechnol. 2000, 75, 388–392. [Google Scholar] [CrossRef]
- García-Tejero, I.; Durán-Zuazo, V.H.; Arriaga-Sevilla, J.; Muriel Fernández, J.L. Impact of water stress on citrus yield. Agron. Sustain. Dev. 2012, 32, 651–659. [Google Scholar] [CrossRef] [Green Version]
- Villalobos, F.J.; Testi, L.; Orgaz, F.; García-Tejera, O.; Lopez-Bernal, A.; González-Dugo, M.V.; Ballester-Lurbe, C.; Castel, J.R.; Alarcón-Cabañero, J.J.; Nicolás-Nicolás, E.; et al. Modelling canopy conductance and transpiration of fruit trees in Mediterranean areas: A simplified approach. Agric. For. Meteorol. 2013, 171–172, 93–103. [Google Scholar] [CrossRef]
- Er-Raki, S.; Chehbouni, A.; Guemouria, N.; Ezzahar, J.; Khabba, S.; Boulet, G.; Hanich, L. Citrus orchard evapotranspiration: Comparison between eddy covariance measurements and the FAO-56 approach estimates. Plant Biosyst. 2009, 143, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Ramos, T.B.; Darouich, H.; Oliveira, A.R.; Farzamian, M.; Monteiro, T.; Castanheira, N.; Paz, A.; Gonçalves, M.C.; Pereira, L.S. Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal. Agric. Water Manag. 2023, 279, 108209. [Google Scholar] [CrossRef]
- Ballester, C.; Castel, J.; Introgliolo, D.S.; Castel, J.R. Response of Clementina de Nules citrus trees to summer deficit irrigation. Yield components and fruit composition. Agric. Water Manag. 2011, 98, 1027–1032. [Google Scholar] [CrossRef]
- Maestre-Valero, J.F.; Testi, L.; Jiménez-Bello, M.A.; Castel, J.R.; Intrigliolo, D.S. Evapotranspiration and carbon exchange in a citrus orchard using eddy covariance. Irrig Sci. 2017, 35, 397–408. [Google Scholar] [CrossRef]
- Taylor, N.J.; Mahohoma, W.; Vahrmeijer, J.T.; Gush, M.B.; Allen, R.G.; Annandale, J.G. Crop coefficient approaches based on fixed estimates of leaf resistance are not appropriate for estimating water use of citrus. Irrig. Sci. 2015, 33, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Jamshidi, S.; Zand-Parsa, S.; Kamgar-Haghighi, A.A.; Shahsavar, A.R.; Niyogi, D. Evapotranspiration, crop coefficients, and physiological responses of citrus trees in semi-arid climatic conditions. Agric. Water Manag. 2020, 227, 105838. [Google Scholar] [CrossRef]
- Jafari, M.; Kamali, H.; Keshavarz, A.; Momeni, A. Estimation of evapotranspiration and crop coefficient of drip-irrigated orange trees under a semi-arid climate. Agric. Water Manag. 2021, 248, 106769. [Google Scholar] [CrossRef]
- Consoli, S.; Vanela, D. Mapping crop evapotranspiration by integrating vegetation indices into a soil water balance model. Agric. Water Manag. 2014, 143, 71–81. [Google Scholar] [CrossRef]
- Consoli, S.; O’Connell, N.; Snyder, R. Estimation of evapotranspiration of different-sized navel-orange tree orchards using energy balance. J. Irrig. Drain. Eng. 2006, 132, 2–8. [Google Scholar] [CrossRef]
- Jovanovic, N.; Pereira, L.S.; Paredes, P.; Pôças, I.; Cantore, V.; Todorovic, M. A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods. Agric. Water Manag. 2020, 239, 106267. [Google Scholar] [CrossRef]
- Keller, J.; Bliesner, R.D. Sprinkle and Trickle Irrigation; Van Nostrand Reinhold: New York, NY, USA, 1990. [Google Scholar]
- Puig-Sirera, À.; Provenzano, G.; González-Altozano, P.; Intrigliolo, D.S.; Rallo, G. Irrigation water saving strategies in citrus orchards: Analysis of the combined effects of timing and severity of soil water deficit. Agric. Water Manag. 2021, 248, 106773. [Google Scholar] [CrossRef]
- Rallo, G.; González-Altozano, P.; Manzano-Juárez, J.; Provenzano, G. Using field measurements and FAO-56 model to assess the eco-physiological response of citrus orchards under regulated deficit irrigation. Agric. Water Manag. 2017, 180, 136–147. [Google Scholar] [CrossRef]
Orchard | h (m) | fc (-) | Fr (-) |
---|---|---|---|
Low density, tall tree | 4.5 | 0.40 | 0.63 |
Med density, small tree | 3.5 | 0.65 | 0.53 |
Med density, tall tree | 4.5 | 0.65 | 0.57 |
High density, small tree | 3.5 | 0.70 | 0.61 |
High density, tall tree | 4.5 | 0.70 | 0.78 |
Demand Scenario | Non- Growing | Initial | Crop Development | Mid- Season | Late- Season | End- Season |
---|---|---|---|---|---|---|
G1: | ||||||
Low | 01-Jan | 20-Feb | 14-Mar | 15-Jun | 05-Oct | 31-Dec |
Medium | 01-Jan | 01-Feb | 15-Feb | 01-Jun | 01-Oct | 31-Dec |
High | - | 01-Jan | 31-Jan | 21-May | 01-Oct | 31-Dec |
Very high | - | 01-Jan | 22-Feb | 29-May | 19-Sep | 31-Dec |
G2: | ||||||
Low | 01-Jan | 20-Feb | 21-Mar | 21-Jun | 01-Nov | 31-Dec |
Medium | 01-Jan | 19-Jan | 01-Mar | 15-Jun | 24-Oct | 31-Dec |
High | 01-Jan | 15-Jan | 01-Mar | 15-Jun | 01-Nov | 31-Dec |
Very high | 01-Jan | 06-Feb | 29-Mar | 19-Jun | 01-Nov | 31-Dec |
G3: | ||||||
Low | 01-Jan | 19-Feb | 31-Mar | 06-Jun | 15-Sep | 31-Dec |
Medium | 01-Jan | 01-Mar | 22-Mar | 27-May | 15-Sep | 31-Dec |
High | 01-Jan | 14-Feb | 08-Mar | 22-May | 05-Sep | 31-Dec |
Very high | 01-Jan | 12-Feb | 04-Apr | 22-May | 05-Sep | 31-Dec |
Parameter | Symbol | Value |
---|---|---|
Depletion fraction for no stress | pini | 0.60 |
pmid | 0.60 | |
pend | 0.60 | |
Total evaporable water | TEW (mm) | 40 |
Readily evaporable water | REW (mm) | 8 |
Depth of the soil evaporation layer | Ze (m) | 0.10 |
Deep percolation | aD | 490 |
bD | −0.02 | |
Runoff curve number | CN | 80 |
Scenario | Initial | Mid-Season | Late Season | |||
---|---|---|---|---|---|---|
Kcb | Kc | Kcb | Kc | Kcb | Kc | |
Low Density | ||||||
Low | 0.50 | 1.12 | 0.50 | 0.70 | 0.49 | 1.09 |
Average | 0.50 | 1.15 | 0.52 | 0.72 | 0.50 | 1.12 |
High | 0.48 | 1.12 | 0.53 | 0.73 | 0.51 | 1.16 |
Very high | 0.54 | 1.25 | 0.56 | 0.78 | 0.54 | 1.21 |
Med density, small tree | ||||||
Low | 0.55 | 0.95 | 0.52 | 0.67 | 0.53 | 0.91 |
Average | 0.55 | 0.97 | 0.55 | 0.71 | 0.55 | 0.97 |
High | 0.53 | 0.93 | 0.55 | 0.72 | 0.56 | 0.98 |
Very high | 0.59 | 1.04 | 0.59 | 0.77 | 0.59 | 1.03 |
Med density, tall tree | ||||||
Low | 0.60 | 1.00 | 0.56 | 0.71 | 0.58 | 0.96 |
Average | 0.60 | 1.02 | 0.59 | 0.75 | 0.60 | 1.01 |
High | 0.57 | 0.97 | 0.60 | 0.77 | 0.61 | 1.04 |
Very high | 0.64 | 1.09 | 0.64 | 0.82 | 0.65 | 1.09 |
High density, small tree | ||||||
Low | 0.64 | 0.99 | 0.61 | 0.75 | 0.62 | 0.95 |
Average | 0.64 | 0.99 | 0.63 | 0.78 | 0.64 | 0.98 |
High | 0.62 | 0.97 | 0.64 | 0.79 | 0.66 | 1.03 |
Very high | 0.68 | 1.06 | 0.68 | 0.86 | 0.69 | 1.06 |
High density, tall tree | ||||||
Low | 0.84 | 1.17 | 0.79 | 0.93 | 0.81 | 1.11 |
Average | 0.84 | 1.16 | 0.82 | 0.97 | 0.84 | 1.16 |
High | 0.80 | 1.15 | 0.84 | 1.00 | 0.86 | 1.20 |
Very high | 0.90 | 1.27 | 0.89 | 1.06 | 0.91 | 1.25 |
Plant-Density Scenarios | Climate- Demand Scenarios | ETc (mm) | Tc (mm) | MAD Irrigation Thresholds | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1.05 | 1.10 | 1.20 | 1.30 | ||||||||
ETc act | Tc act | ETc act | Tc act | ETc act | Tc act | ETc act | Tc act | ||||
Low | Low | 869 | 579 | 856 | 561 | 841 | 547 | 809 | 520 | 778 | 493 |
Average | 939 | 614 | 927 | 597 | 911 | 583 | 880 | 556 | 847 | 528 | |
High | 959 | 648 | 939 | 624 | 920 | 605 | 879 | 570 | 838 | 533 | |
Very high | 1229 | 813 | 1203 | 782 | 1175 | 757 | 1124 | 710 | 1074 | 665 | |
Med, small tree | Low | 815 | 609 | 800 | 591 | 785 | 577 | 754 | 549 | 724 | 523 |
Average | 878 | 655 | 863 | 637 | 850 | 625 | 819 | 597 | 789 | 570 | |
High | 902 | 682 | 880 | 657 | 861 | 639 | 822 | 603 | 781 | 565 | |
Very high | 1157 | 864 | 1126 | 829 | 1100 | 805 | 1050 | 758 | 997 | 709 | |
Med, tall tree | Low | 863 | 658 | 846 | 637 | 829 | 622 | 795 | 590 | 762 | 560 |
Average | 929 | 705 | 912 | 684 | 896 | 670 | 863 | 640 | 829 | 609 | |
High | 963 | 743 | 938 | 714 | 916 | 693 | 872 | 652 | 826 | 610 | |
Very high | 1234 | 940 | 1200 | 902 | 1170 | 874 | 1112 | 820 | 1055 | 766 | |
High, small tree | Low | 900 | 712 | 879 | 689 | 860 | 671 | 823 | 636 | 786 | 603 |
Average | 955 | 753 | 936 | 731 | 918 | 714 | 881 | 680 | 844 | 646 | |
High | 996 | 795 | 967 | 763 | 943 | 740 | 896 | 696 | 850 | 652 | |
Very high | 1265 | 998 | 1223 | 952 | 1195 | 926 | 1134 | 869 | 1074 | 811 | |
High, tall tree | Low | 1100 | 926 | 1078 | 902 | 1054 | 879 | 1000 | 827 | 952 | 781 |
Average | 1171 | 982 | 1149 | 957 | 1119 | 929 | 1072 | 884 | 1017 | 832 | |
High | 1235 | 1041 | 1205 | 1009 | 1171 | 975 | 1107 | 914 | 1039 | 848 | |
Very high | 1562 | 1310 | 1517 | 1263 | 1475 | 1221 | 1396 | 1144 | 1309 | 1061 |
Plant-Density Scenarios | Climate- Demand Scenarios | ETc (mm) | Tc (mm) | MAD Irrigation Thresholds | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1.05 | 1.10 | 1.20 | 1.30 | ||||||||
ETc act | Tc act | ETc act | Tc act | ETc act | Tc act | ETc act | Tc act | ||||
Low | Low | 869 | 579 | 856 | 560 | 841 | 547 | 809 | 520 | 778 | 493 |
Average | 938 | 613 | 925 | 595 | 910 | 582 | 878 | 555 | 846 | 528 | |
High | 953 | 644 | 933 | 619 | 915 | 603 | 873 | 566 | 833 | 531 | |
Very high | 1227 | 812 | 1199 | 778 | 1175 | 757 | 1122 | 709 | 1072 | 663 | |
Med, small tree | Low | 826 | 619 | 811 | 601 | 795 | 586 | 763 | 558 | 733 | 531 |
Average | 878 | 655 | 863 | 637 | 850 | 625 | 819 | 597 | 789 | 570 | |
High | 898 | 679 | 877 | 655 | 858 | 636 | 818 | 600 | 779 | 564 | |
Very high | 1157 | 864 | 1126 | 829 | 1100 | 805 | 1050 | 758 | 997 | 709 | |
Med, tall tree | Low | 874 | 668 | 857 | 647 | 838 | 631 | 805 | 599 | 771 | 569 |
Average | 927 | 703 | 910 | 683 | 894 | 667 | 859 | 637 | 827 | 607 | |
High | 961 | 741 | 936 | 713 | 913 | 692 | 869 | 650 | 825 | 609 | |
Very high | 1235 | 940 | 1199 | 900 | 1171 | 875 | 1114 | 820 | 1057 | 767 | |
High, small tree | Low | 903 | 715 | 882 | 691 | 863 | 673 | 826 | 639 | 788 | 604 |
Average | 965 | 762 | 943 | 738 | 926 | 722 | 889 | 688 | 853 | 654 | |
High | 991 | 790 | 962 | 759 | 939 | 736 | 892 | 692 | 845 | 648 | |
Very high | 1278 | 1011 | 1233 | 963 | 1206 | 938 | 1145 | 878 | 1083 | 819 | |
High, tall tree | Low | 1103 | 928 | 1078 | 901 | 1057 | 882 | 1004 | 831 | 952 | 780 |
Average | 1170 | 981 | 1149 | 956 | 1119 | 928 | 1068 | 880 | 1017 | 831 | |
High | 1221 | 1027 | 1192 | 995 | 1157 | 961 | 1093 | 899 | 1027 | 836 | |
Very high | 1573 | 1322 | 1527 | 1272 | 1486 | 1233 | 1401 | 1152 | 1317 | 1069 |
Plant-Density Scenarios | Climate- Demand Scenarios | ETc (mm) | Tc (mm) | MAD Irrigation Thresholds | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1.05 | 1.10 | 1.20 | 1.30 | ||||||||
ETc act | Tc act | ETc act | Tc act | ETc act | Tc act | ETc act | Tc act | ||||
Low | Low | 867 | 576 | 854 | 558 | 838 | 545 | 807 | 518 | 776 | 491 |
Average | 938 | 613 | 926 | 595 | 910 | 581 | 880 | 555 | 846 | 527 | |
High | 956 | 646 | 937 | 622 | 917 | 603 | 876 | 568 | 836 | 532 | |
Very high | 1225 | 809 | 1198 | 777 | 1173 | 754 | 1122 | 707 | 1070 | 661 | |
Med, small tree | Low | 820 | 614 | 806 | 596 | 789 | 581 | 759 | 554 | 727 | 526 |
Average | 878 | 655 | 863 | 637 | 850 | 625 | 819 | 597 | 789 | 570 | |
High | 909 | 689 | 887 | 664 | 867 | 645 | 827 | 609 | 787 | 571 | |
Very high | 1147 | 855 | 1118 | 822 | 1094 | 799 | 1041 | 750 | 990 | 703 | |
Med, tall tree | Low | 871 | 666 | 854 | 644 | 836 | 628 | 802 | 597 | 767 | 566 |
Average | 927 | 703 | 909 | 682 | 893 | 667 | 859 | 636 | 827 | 607 | |
High | 962 | 741 | 936 | 713 | 915 | 693 | 870 | 651 | 826 | 610 | |
Very high | 1222 | 928 | 1187 | 889 | 1162 | 865 | 1104 | 811 | 1047 | 758 | |
High, small tree | Low | 899 | 711 | 878 | 687 | 859 | 670 | 822 | 635 | 786 | 602 |
Average | 965 | 762 | 943 | 738 | 926 | 722 | 889 | 688 | 853 | 654 | |
High | 1002 | 801 | 973 | 769 | 949 | 745 | 901 | 700 | 854 | 656 | |
Very high | 1264 | 997 | 1222 | 951 | 1194 | 925 | 1134 | 868 | 1073 | 810 | |
High, tall tree | Low | 1101 | 926 | 1078 | 900 | 1054 | 877 | 1003 | 829 | 951 | 779 |
Average | 1178 | 989 | 1155 | 963 | 1128 | 938 | 1074 | 886 | 1021 | 836 | |
High | 1231 | 1038 | 1199 | 1002 | 1164 | 969 | 1102 | 909 | 1035 | 845 | |
Very high | 1549 | 1294 | 1504 | 1247 | 1463 | 1207 | 1382 | 1128 | 1302 | 1051 |
Plant Density | Climatic Demand | Deficit-Irrigation Strategies | |||||||
---|---|---|---|---|---|---|---|---|---|
MAD = 1.05 | MAD = 1.10 | MAD = 1.20 | MAD = 1.30 | ||||||
WS (%) | YD (%) | WS (%) | YD (%) | WS (%) | YD (%) | WS (%) | YD (%) | ||
Low | Low | 14 | 7 | 18 | 12 | 28 | 26 | 37 | 42 |
Average | 14 | 6 | 19 | 11 | 28 | 24 | 38 | 38 | |
High | 12 | 7 | 17 | 14 | 26 | 29 | 35 | 47 | |
Very high | 11 | 8 | 15 | 15 | 24 | 30 | 31 | 50 | |
Med, small tree | Low | 13 | 6 | 18 | 12 | 28 | 25 | 37 | 42 |
Average | 14 | 6 | 19 | 11 | 29 | 22 | 38 | 35 | |
High | 12 | 7 | 17 | 14 | 25 | 28 | 35 | 46 | |
Very high | 11 | 8 | 16 | 15 | 24 | 30 | 33 | 49 | |
Med, tall tree | Low | 13 | 6 | 18 | 12 | 28 | 25 | 37 | 42 |
Average | 14 | 7 | 19 | 12 | 28 | 24 | 37 | 38 | |
High | 11 | 8 | 16 | 14 | 25 | 29 | 34 | 48 | |
Very high | 10 | 8 | 15 | 15 | 24 | 30 | 33 | 50 | |
High, small tree | Low | 12 | 7 | 18 | 12 | 27 | 26 | 36 | 42 |
Average | 13 | 7 | 18 | 12 | 27 | 25 | 37 | 40 | |
High | 12 | 8 | 16 | 14 | 25 | 29 | 34 | 48 | |
Very high | 11 | 9 | 15 | 15 | 24 | 30 | 33 | 50 | |
High, tall tree | Low | 8 | 5 | 13 | 10 | 22 | 23 | 31 | 38 |
Average | 9 | 5 | 14 | 12 | 23 | 25 | 33 | 43 | |
High | 9 | 6 | 12 | 12 | 22 | 25 | 30 | 44 | |
Very high | 8 | 7 | 13 | 13 | 21 | 27 | 31 | 45 |
Plant Density | Demand | Deficit-Irrigation Strategies | |||||||
---|---|---|---|---|---|---|---|---|---|
5% | 10% | 20% | 30% | ||||||
WS (%) | YD (%) | WS (%) | YD (%) | WS (%) | YD (%) | WS (%) | YD (%) | ||
Low | Low | 14 | 7 | 18 | 12 | 28 | 26 | 37 | 42 |
Average | 14 | 6 | 18 | 12 | 27 | 24 | 37 | 38 | |
High | 12 | 8 | 16 | 14 | 25 | 29 | 34 | 46 | |
Very high | 10 | 9 | 14 | 14 | 23 | 30 | 32 | 49 | |
Med, small tree | Low | 13 | 6 | 18 | 11 | 27 | 22 | 37 | 35 |
Average | 14 | 6 | 19 | 11 | 29 | 23 | 38 | 37 | |
High | 12 | 6 | 17 | 12 | 26 | 25 | 34 | 41 | |
Very high | 11 | 8 | 16 | 14 | 24 | 29 | 33 | 48 | |
Med, tall tree | Low | 13 | 6 | 18 | 11 | 27 | 22 | 36 | 36 |
Average | 14 | 6 | 19 | 12 | 29 | 25 | 37 | 40 | |
High | 11 | 7 | 16 | 12 | 25 | 25 | 34 | 42 | |
Very high | 10 | 8 | 14 | 14 | 23 | 29 | 33 | 48 | |
High, small tree | Low | 12 | 6 | 18 | 11 | 27 | 22 | 36 | 36 |
Average | 14 | 7 | 18 | 12 | 28 | 25 | 37 | 41 | |
High | 11 | 7 | 16 | 12 | 25 | 25 | 34 | 42 | |
Very high | 11 | 9 | 15 | 14 | 24 | 30 | 34 | 49 | |
High, tall tree | Low | 9 | 5 | 14 | 8 | 23 | 20 | 32 | 33 |
Average | 9 | 5 | 14 | 11 | 23 | 23 | 33 | 38 | |
High | 9 | 5 | 14 | 11 | 22 | 23 | 31 | 39 | |
Very high | 8 | 6 | 13 | 12 | 23 | 22 | 31 | 45 |
Plant Density | Demand | Deficit-Irrigation Strategies | |||||||
---|---|---|---|---|---|---|---|---|---|
5% | 10% | 20% | 30% | ||||||
WS (%) | YD (%) | WS (%) | YD (%) | WS (%) | YD (%) | WS (%) | YD (%) | ||
Low | Low | 14 | 6 | 18 | 11 | 28 | 23 | 37 | 39 |
Average | 13 | 5 | 18 | 10 | 27 | 19 | 37 | 30 | |
High | 13 | 7 | 17 | 12 | 25 | 24 | 34 | 40 | |
Very high | 11 | 6 | 15 | 12 | 23 | 24 | 32 | 38 | |
Med, small tree | Low | 13 | 6 | 18 | 11 | 28 | 23 | 37 | 38 |
Average | 14 | 5 | 19 | 9 | 29 | 18 | 38 | 28 | |
High | 12 | 7 | 17 | 12 | 25 | 24 | 35 | 39 | |
Very high | 11 | 6 | 15 | 11 | 24 | 23 | 33 | 37 | |
Med, tall tree | Low | 13 | 6 | 18 | 11 | 26 | 24 | 36 | 39 |
Average | 14 | 5 | 19 | 10 | 29 | 19 | 37 | 30 | |
High | 12 | 7 | 16 | 12 | 26 | 24 | 34 | 40 | |
Very high | 10 | 7 | 15 | 12 | 24 | 24 | 33 | 39 | |
High, small tree | Low | 12 | 6 | 18 | 11 | 27 | 24 | 36 | 40 |
Average | 14 | 6 | 18 | 10 | 28 | 20 | 37 | 32 | |
High | 11 | 7 | 16 | 12 | 25 | 24 | 34 | 41 | |
Very high | 11 | 8 | 15 | 12 | 24 | 25 | 33 | 40 | |
High, tall tree | Low | 9 | 5 | 14 | 9 | 23 | 21 | 32 | 36 |
Average | 9 | 5 | 14 | 10 | 23 | 21 | 34 | 35 | |
High | 9 | 5 | 13 | 11 | 22 | 22 | 32 | 37 | |
Very high | 8 | 6 | 13 | 11 | 24 | 22 | 30 | 37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darouich, H.; Karfoul, R.; Ramos, T.B.; Pereira, L.S. Setting Irrigation Thresholds for Building a Platform Aimed at the Improved Management of Citrus Orchards in Coastal Syria. Agronomy 2023, 13, 1794. https://doi.org/10.3390/agronomy13071794
Darouich H, Karfoul R, Ramos TB, Pereira LS. Setting Irrigation Thresholds for Building a Platform Aimed at the Improved Management of Citrus Orchards in Coastal Syria. Agronomy. 2023; 13(7):1794. https://doi.org/10.3390/agronomy13071794
Chicago/Turabian StyleDarouich, Hanaa, Razan Karfoul, Tiago B. Ramos, and Luís S. Pereira. 2023. "Setting Irrigation Thresholds for Building a Platform Aimed at the Improved Management of Citrus Orchards in Coastal Syria" Agronomy 13, no. 7: 1794. https://doi.org/10.3390/agronomy13071794
APA StyleDarouich, H., Karfoul, R., Ramos, T. B., & Pereira, L. S. (2023). Setting Irrigation Thresholds for Building a Platform Aimed at the Improved Management of Citrus Orchards in Coastal Syria. Agronomy, 13(7), 1794. https://doi.org/10.3390/agronomy13071794