Impacts of Different Long-Term Fertilizer Management Regimes on Soil Nitrogen Mineralization and Its Enzyme Activities under a Double-Cropping Rice System in Southern China
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.2. Experimental Design
2.3. Soil Sampling
2.4. Soil Laboratory Analysis
2.4.1. Chemical Characteristics and Acid-Hydrolysable N Fractions in Soil
2.4.2. Soil N Mineralization Rate
2.4.3. Extracellular Enzyme Activities in Soil
2.4.4. Rice Yield
2.5. Statistical Analysis
3. Results
3.1. Soil Acid-Hydrolysable N Fractions
3.2. Soil Chemical Property and Soil Nitrogen Mineralization
3.3. Soil Extracellular Enzyme Activities
3.4. Correlation between Soil Extracellular Enzyme Activities and Soil Properties
3.5. Correlation among Soil N Mineralization and Soil Extracellular Enzyme Activities, Soil Acid-Hydrolysable N Fractions
3.6. Rice Yield
4. Discussion
4.1. Effects of Fertilization on Soil Acid-Hydrolysable N Fractions and N Mineralization
4.2. Effects of Fertilization on Extracellular Enzyme Activities in Soil
4.3. Correlation between Soil N Mineralization Rate and Soil Extracellular Enzyme Activities, Acid-Hydrolysable N Fractions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spiertz, J.H.J. Nitrogen, sustainable agriculture and food security. A review. Agron. Sustain. Dev. 2010, 30, 43–55. [Google Scholar] [CrossRef]
- Yuan, L.; Wang, J.L.; Zhong, Z.Q.; Li, J.Q.; Deng, H. Immobilization of antimony in soil and groundwater using ferro-magnesium bimetallic organic frameworks. J. Environ. Sci. 2023, 125, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Sekhon, K.S.; Singh, J.P.; Mehla, D.S. Long-term effect of manure and mineral fertilizer application on the distribution of organic nitrogen fractions in soil under a rice–wheat cropping system. Arch. Agron. Soil Sci. 2011, 57, 705–714. [Google Scholar] [CrossRef]
- Kim, K.; Daly, E.J.; Gorzelak, M.; Hernandez-Ramirez, G. Soil organic matter pools response to perennial grain cropping and nitrogen fertilizer. Soil Till. Res. 2022, 209, 105376. [Google Scholar] [CrossRef]
- Ekambaram, S.P.; Aruldhas, J.; Srinivasan, A.; Erusappan, T. Modulation of NF-κB and MAPK signalling pathways by hydrolysable tannin fraction from Terminalia chebula fruits contributes to its anti-inflammatory action in RAW 264.7 cells. J. Pharm. Pharmacol. 2022, 74, 718–729. [Google Scholar] [CrossRef]
- Wang, L.; Sun, J.; Kang, J.; Zhang, Z.; Shangguan, Z.; Wang, C. Influence of nitrogen addition on the changes in nitrogen and carbon fractions in soil profiles of wheat fields. Land Degrad. Dev. 2021, 32, 2540–2553. [Google Scholar] [CrossRef]
- Xiang, Y.; Cheng, M.; Wen, Y.L.; Darboux, F. Soil organic carbon sequestration under long-term chemical and manure fertilization in a cinnamon soil, Northern China. Sustainability 2022, 14, 5109. [Google Scholar] [CrossRef]
- Wander, M.M.; Yun, W.; Goldstein, W.A.; Aref, S.; Khan, S.A. Organic N and particulate organic matter fractions in organic and conventional farming systems with a history of manure application. Plant Soil 2007, 291, 311–321. [Google Scholar] [CrossRef]
- Zhu, S.; Gao, T.; Liu, Z.; Ning, T. Rotary and subsoiling tillage rotations influence soil carbon and nitrogen sequestration and crop yield. Plant Soil Environ. 2022, 68, 89–97. [Google Scholar] [CrossRef]
- Xu, Y.C.; Shen, Q.R.; Ran, W. Content and distribution of forms of organic N in soil and particle size fractions after long-term fertilization. Chemosphere 2003, 50, 739–745. [Google Scholar] [CrossRef]
- Du, E.; Xia, N.; Tang, Y.; Guo, Z.; Guo, Y.; Wang, Y.; Vries, W.D. Anthropogenic and climatic shaping of soil nitrogen properties across urban-rural-natural forests in the Beijing metropolitan region. Geoderma 2022, 382, 115524. [Google Scholar] [CrossRef]
- Kader, M.A.; Sleutel, S.; Begum, S.A.; Moslehuddin, A.Z.M.; De Neve, S. Nitrogen mineralization in sub-tropical paddy soils in relation to soil mineralogy, management, pH, carbon, nitrogen and iron contents. Eur. J. Soil Sci. 2013, 64, 47–57. [Google Scholar] [CrossRef]
- Sleutel, S.; Kader, M.A.; Demeestere, K.; Walgraeve, C.; Dewulf, J.; De Neve, S. Subcritical water extraction to isolate kinetically different soil nitrogen fractions. Biogeosciences 2013, 10, 7435–7447. [Google Scholar] [CrossRef]
- Kader, M.A.; Yeasmin, S.; Solaiman, Z.M.; De, N.S.; Sleutel, S. Response of hydrolytic enzyme activities and nitrogen mineralization to fertilizer and organic matter application in subtropical paddy soils. Eur. J. Soil Biol. 2017, 80, 27–34. [Google Scholar] [CrossRef]
- Li, X.F.; Hou, L.J.; Liu, M.; Lin, X.B.; Li, Y.; Li, S.W. Primary effects of extracellular enzyme activity and microbial community on carbon and nitrogen mineralization in estuarine and tidal wetlands. Appl. Microbiol. Biotechnol. 2015, 99, 2895–2909. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Ekenler, M.; Senwo, Z.N. Significance of enzyme activities in soil nitrogen mineralization. Commun. Soil Sci. Plant Anal. 2010, 41, 595–605. [Google Scholar] [CrossRef]
- Yadav, R.; Tripathi, P.; Singh, R.P.; Khare, P. Assessment of soil enzymatic resilience in chlorpyrifos contaminated soils by biochar aided Pelargonium graveolens L. plantation. Environ. Sci. Pollut. Res. Int. 2023, 30, 7040–7055. [Google Scholar] [CrossRef]
- Muruganandam, S.; Israel, D.W.; Robarge, W.P. Activities of nitrogenmineralization enzymes associated with soil aggregate size fractions of three tillage systems. Soil Sci. Soc. Am. J. 2009, 73, 751–759. [Google Scholar] [CrossRef]
- Kumar, R.; Mishra, J.S.; Naik, S.K.; Mondal, S.; Meena, R.S.; Kumar, S.; Dubey, A.K.; Makarana, G.; Jha, B.K.; Mali, S.S. Impact of crop establishment and residue management on soil properties and productivity in rice-fallow ecosystems in India. Land Degrad. Dev. 2022, 33, 798–812. [Google Scholar] [CrossRef]
- Khorsandi, N.; Nourbakhsh, F. Prediction of potentially mineralizable N from amidohydrolase activities in a manure-applied, corn residue-amended soil. Eur. J. Soil Biol. 2008, 44, 341–346. [Google Scholar] [CrossRef]
- Yang, X.Y.; Ren, W.D.; Sun, B.H.; Zhang, S.L. Effects of contrasting soil management regimes on total and labile soil organic carbon fractions in a loess soil in China. Geoderma 2012, 177–178, 49–56. [Google Scholar] [CrossRef]
- Tang, H.M.; Li, C.; Xiao, X.P.; Pan, X.C.; Cheng, K.K.; Shi, L.H. Effects of long-term fertiliser regime on soil organic carbon and its labile fractions under double cropping rice system of southern China. Acta Agric. Scand. Sect. B Soil Plant Sci. 2020, 70, 409–418. [Google Scholar] [CrossRef]
- Tang, H.M.; Xiao, X.P.; Tang, W.G.; Li, C.; Wang, K.; Li, W.Y. Long-term effects of NPK fertilizers and organic manures on soil organic carbon and carbon management index under a double-cropping rice system in Southern China. Commun. Soil Sci. Plant Anal. 2018, 49, 1976–1989. [Google Scholar] [CrossRef]
- Zhang, Q.; Liang, G.; Zhou, W.; Sun, J.; Wang, X.; He, P. Fatty-acid profiles and enzyme activities in soil particle-size fractions under long-term fertilization. Soil Sci. Soc. Am. J. 2016, 80, 97–111. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, R.; Xue, C.; Xun, W.; Sun, L.; Xu, Y. Pyrosequencing reveals contrasting soil bacterial diversity and community structure of two main winter wheat cropping systems in China. Microb. Ecol. 2014, 67, 443–453. [Google Scholar] [CrossRef]
- Berthrong, S.T.; Buckley, D.H.; Drinkwater, L.E. Agricultural management and labile carbon additions affect soil microbial community structure and interact with carbon and nitrogen cycling. Microb. Ecol. 2013, 66, 158–170. [Google Scholar] [CrossRef]
- SAS. SAS Software of the SAS System for Windows, 3rd ed.; SAS Institute Inc.: Cary, NC, USA, 2008. [Google Scholar]
- Gonzalez-Prieto, S.J.; Jocteur-Monrozier, L.; Hetier, J.M.; Carballad, T. Changes in the soil organic N fractions of tropical alfisol fertilized with 15N-urea and cropped to maize or pasture. Plant Soil 1997, 195, 151–160. [Google Scholar] [CrossRef]
- Santhy, P.; Jaysreesankar, S.; Muthuvel, P.; Selvi, D. Long term fertilizers experiments status of N, P and K fractions in soil. J. Indian Soc. Soil Sci. 1998, 46, 395–398. [Google Scholar]
- Mohanty, M.; Reddy, S.K.; Probert, M.E.; Dalal, R.C.; Rao, S.A.; Menzies, N.W. Modelling N mineralization from green manure and farmyard manure from a laboratory incubation study. Ecol. Model. 2011, 222, 719–726. [Google Scholar] [CrossRef]
- Hartz, T.K.; Mitchell, J.P.; Giannini, C. Nitrogen and carbon mineralization dynamics of manures and composts. Hortic. Sci. 2000, 35, 209–212. [Google Scholar] [CrossRef]
- Li, D.; Sun, S.; Zhou, T.; Du, Z.; Wang, J.; Li, B.; Wang, J.; Zhu, L. Effects of pyroxsulam on soil enzyme activity, nitrogen and carbon cycle-related gene expression, and bacterial community structure. J. Clean. Prod. 2022, 355, 131821. [Google Scholar] [CrossRef]
- Li, S.Y.; Xie, D.; Ge, X.G.; Dong, W.; Luan, J.W. Altered diversity and functioning of soil and root-associated microbiomes by an invasive native plant. Plant Soil 2022, 473, 235–249. [Google Scholar] [CrossRef]
- Burns, R.G.; DeForest, J.L.; Marxsen, J.; Sinsabaugh, R.L.; Stromberger, M.E.; Wallenstein, M.D. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biol. Biochem. 2013, 58, 216–234. [Google Scholar] [CrossRef]
- Pandey, D.; Agrawal, M.; Bohra, J.S. Effects of conventional tillage and no tillage permutations on extracellular enzyme activities and microbial biomass under rice cultivation. Soil Till. Res. 2014, 136, 51–60. [Google Scholar] [CrossRef]
- Nannipieri, P.; Sequi, P.; Fusi, P. Humus and enzyme activity. In Humic Substances in Terrestrial Ecosystems; Piccolo, A., Ed.; Elsevier: Amsterdam, The Netherlands, 1996; pp. 293–327. [Google Scholar]
- Lehmann, J.; Pereira da Silva, J.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Gong, X.Q.; Jarvie, S.; Zhang, Q.; Liu, Q.F.; Yan, Y.Z.; Su, N.; Han, P.; Li, F.S. Community assembly of plant, soil bacteria, and fungi vary during the restoration of an ecosystem threatened by desertification. J. Soil Sediment. 2023, 23, 459–472. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Hill, B.H.; Follstad, J.J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 2009, 462, 795–799. [Google Scholar] [CrossRef]
SOC (g kg−1) | Total N (g kg−1) | Available N (mg kg−1) | Total P (g kg−1) | Available P (mg kg−1) | Total K (g kg−1) | Available K (mg kg−1) |
---|---|---|---|---|---|---|
29.4 | 2.0 | 144.1 | 0.59 | 12.87 | 20.6 | 33.0 |
Treatments | ASN | AAN | AN | HUN | TAHN |
---|---|---|---|---|---|
MF | 55.67 ± 1.79 b | 446.81 ± 15.93 c | 582.63 ± 21.21 b | 698.54 ± 19.14 b | 1783.65 ± 62.12 b |
RF | 57.24 ± 1.65 ab | 653.17 ± 12.89 a | 696.05 ± 20.09 a | 663.07 ± 23.16 c | 2069.53 ± 59.74 a |
OM | 62.35 ± 1.61 a | 552.04 ± 18.85 b | 734.92 ± 16.81 a | 802.62 ± 20.16 a | 2151.93 ± 51.48 a |
CK | 51.02 ± 1.47 c | 401.36 ± 11.58 c | 533.14 ± 15.39 b | 628.43 ± 18.14 d | 1613.95 ± 46.59 c |
Treatments | pH | Total P (g kg−1) | NO3−-N (g kg−1) | NH4+-N (g kg−1) |
---|---|---|---|---|
MF | 6.29 ± 0.17 ab | 0.87 ± 0.07 c | 0.16 ± 0.01 c | 0.14 ± 0.01 c |
RF | 6.68 ± 0.17 a | 1.07 ± 0.09 b | 0.21 ± 0.01 b | 0.19 ± 0.01 b |
OM | 6.77 ± 0.18 a | 1.61 ± 0.09 a | 0.25 ± 0.01 a | 0.22 ± 0.01 a |
CK | 6.19 ± 0.16 b | 0.55 ± 0.02 d | 0.12 ± 0.01 d | 0.11 ± 0.01 d |
Treatments | Total N (g kg−1) | SOC (g kg−1) | C:N | N Mineralization Rates (mg N kg−1 day−1) | |
---|---|---|---|---|---|
Aerobic | Anaerobic | ||||
MF | 2.02 ± 0.09 c | 20.35 ± 0.82 c | 10.07 ± 0.29 a | 0.48 ± 0.02 c | 1.04 ± 0.04 b |
RF | 2.31 ± 0.07 b | 23.74 ± 0.76 b | 10.28 ± 0.29 a | 0.54 ± 0.02 b | 1.15 ± 0.03 a |
OM | 3.05 ± 0.06 a | 29.56 ± 0.67 a | 9.69 ± 0.26 a | 0.59 ± 0.02 a | 1.23 ± 0.03 a |
CK | 1.88 ± 0.05 c | 19.31 ± 0.53 d | 10.27 ± 0.28 a | 0.27 ± 0.01 d | 0.86 ± 0.02 c |
Treatments | β-Glucosaminidase (μg PNP g−1 Dry Soil h−1) | β-Glucosidase (μg PNP g−1 Dry Soil h−1) | L-Glutaminase (mg N g−1 Dry Soil h−1) | Urease (μg NH4+-N g−1 Dry Soil h−1) | Arylamidase (μg β-Napthylamine g−1 Dry Soil h−1) |
---|---|---|---|---|---|
MF | 41.63 ± 1.77 b | 23.07 ± 0.91 b | 3.24 ± 0.16 c | 27.17 ± 1.09 b | 20.06 ± 0.84 c |
RF | 57.25 ± 1.65 a | 29.64 ± 0.85 a | 4.38 ± 0.12 b | 40.36 ± 0.78 a | 23.17 ± 0.66 b |
OM | 61.36 ± 1.20 a | 31.65 ± 0.66 a | 5.62 ± 0.09 a | 37.82 ± 1.16 a | 29.32 ± 0.57 a |
CK | 30.81 ± 0.88 c | 16.35 ± 0.47 c | 1.66 ± 0.06 d | 20.15 ± 0.58 c | 16.85 ± 0.48 d |
Soil Enzyme Activities | Soil N | SOC | C:N | pH |
---|---|---|---|---|
β-glucosaminidase | 0.81 ** | 0.84 ** | 0.21 | −0.26 |
β-glucosidase | 0.41 | 0.75 ** | 0.63 * | −0.15 |
L-glutaminase | −0.20 | −0.31 | −0.22 | 0.08 |
Urease | −0.06 | −0.23 | −0.17 | 0.27 |
Arylamidase | 0.31 | 0.36 | −0.16 | −0.60 * |
Investigate Items | Soil N Mineralization Rates (mg N kg−1 d−1) | |
---|---|---|
Aerobic | Anaerobic | |
Soil β-glucosaminidase | −0.65 * | −0.61 * |
Soil β-glucosidase | −0.59 * | −0.14 |
Soil L-glutaminase | 0.82 ** | 0.63 * |
Soil urease | −0.47 | −0.65 * |
Soil arylamidase | 0.51 | 0.36 |
ASN | 0.73 * | 0.70 * |
AAN | 0.85 ** | 0.82 ** |
AN | 0.58 | 0.53 |
HUN | 0.56 | 0.50 |
TAHN | 0.93 ** | 0.87 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.; Cheng, K.; Shi, L.; Wen, L.; Li, C.; Li, W.; Xiao, X. Impacts of Different Long-Term Fertilizer Management Regimes on Soil Nitrogen Mineralization and Its Enzyme Activities under a Double-Cropping Rice System in Southern China. Agronomy 2023, 13, 1702. https://doi.org/10.3390/agronomy13071702
Tang H, Cheng K, Shi L, Wen L, Li C, Li W, Xiao X. Impacts of Different Long-Term Fertilizer Management Regimes on Soil Nitrogen Mineralization and Its Enzyme Activities under a Double-Cropping Rice System in Southern China. Agronomy. 2023; 13(7):1702. https://doi.org/10.3390/agronomy13071702
Chicago/Turabian StyleTang, Haiming, Kaikai Cheng, Lihong Shi, Li Wen, Chao Li, Weiyan Li, and Xiaoping Xiao. 2023. "Impacts of Different Long-Term Fertilizer Management Regimes on Soil Nitrogen Mineralization and Its Enzyme Activities under a Double-Cropping Rice System in Southern China" Agronomy 13, no. 7: 1702. https://doi.org/10.3390/agronomy13071702
APA StyleTang, H., Cheng, K., Shi, L., Wen, L., Li, C., Li, W., & Xiao, X. (2023). Impacts of Different Long-Term Fertilizer Management Regimes on Soil Nitrogen Mineralization and Its Enzyme Activities under a Double-Cropping Rice System in Southern China. Agronomy, 13(7), 1702. https://doi.org/10.3390/agronomy13071702