Ameliorative Effects of Vermicompost Application on Yield, Fertilizer Utilization, and Economic Benefits of Continuous Cropping Pepper in Karst Areas of Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Material
2.3. Experimental Design
2.4. Soil Sampling and Analysis
2.5. Plant Sampling and Analysis
2.6. Yield of Pod Pepper
2.7. Calculations and Statistical Analysis [32]
2.7.1. Nutrient Accumulation
2.7.2. Fertilizer Utilization
2.7.3. Economic Benefits
2.8. Statistical Analysis
3. Results
3.1. Effects of Vermicompost Application on Yield of Pod Pepper
3.2. Effects of Vermicompost Application on Fruit Quality of Fresh Pod Pepper
3.3. Effects of Vermicompost Application on Nutrients Accumulation of Pod Pepper
3.4. Effects of Vermicompost Application on Fertilizer Utilization of Pod Pepper
3.5. Effects of Vermicompost Application on Economic Benefits of Pod Pepper
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). World Food and Agriculture–Statistical Yearbook 2020; FAO: Rome, Italy, 2020; pp. 150–216. [Google Scholar]
- Wang, F.; Wang, X.; Song, N. Biochar and vermicompost improve the soil properties and the yield and quality of cucumber (Cucumis sativus L.) grown in plastic shed soil continuously cropped for different years. Agric. Ecosyst. Environ. 2021, 315, 107425. [Google Scholar] [CrossRef]
- Zhu, X.; Ros, G.H.; Xu, M.; Cai, Z.; Sun, N.; Duan, Y.; de Vrie, W. Long-term impacts of mineral and organic fertilizer inputs on nitrogen use efficiency for different cropping systems and site conditions in Southern China. Eur. J. Agron. 2023, 146, 126797. [Google Scholar] [CrossRef]
- Bai, X.; Gao, J.; Wang, S.; Cai, H.; Chen, Z.; Zhou, J. Excessive nutrient balance surpluses in newly built solar greenhouses over five years leads to high nutrient accumulations in soil. Agric. Ecosyst. Environ. 2020, 288, 106717. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Q.; Song, J.; Zhang, Z.; Chen, S.; Long, Z.; Wang, M.; Yu, Y.; Fang, H. Tracking resistomes, virulence genes, and bacterial pathogens in long-term manure-amended greenhouse soils. J. Hazard. Mater. 2020, 122618. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, J.; Liu, X.; Chang, T.; Wang, Q.; Shaghaleh, H.; Hamoud, Y.A. Effects of biochar and vermicompost on microorganisms and enzymatic activities in greenhouse soil. Front. Environ. Sci. 2022, 10, 1060277. [Google Scholar] [CrossRef]
- Ji, C.; Ye, R.; Yin, Y.; Sun, X.; Ma, H.; Gao, R. Reductive soil disinfestation with biochar amendment modifified microbial community composition in soils under plastic greenhouse vegetable production. Soil Tillage Res. 2022, 218, 105323. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, W.; Luan, H.; Tang, J.; Li, R.; Li, M.; Zhang, H.; Huang, S. Effects of a decade of organic fertilizer substitution on vegetable yield and soil phosphorus pools, phosphatase activities, and the microbial community in a greenhouse vegetable production system. J. Integr. Agric. 2022, 21, 2119–2133. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, H.; Zhang, X.; Sun, J.; Dong, L.; Han, H.; Chen, Z. Bama pig manure organic fertilizer Regulates the Watermelon Rhizosphere Bacterial Community to Inhibit the Occurrence of Fusarium Wilt Under Continuous Cropping Conditions. Curr. Microbiol. 2022, 79, 364. [Google Scholar] [CrossRef]
- Su, Y.; Zi, H.; Wei, X.; Hu, B.; Deng, X.; Chen, Y.; Jiang, Y. Application of manure rather than plant-origin organic fertilizers alters the fungal community in continuous cropping tobacco soil. Front. Microbiol. 2022, 13, 818956. [Google Scholar] [CrossRef]
- Guerrero, R.D. Vermicompost production and its use for crop production in the Philippines. Int. J. Glob. Environ. Issues 2010, 10, 378. [Google Scholar] [CrossRef]
- Xiao, Z.; Liu, M.; Jiang, L.; Chen, X.; Griffiths, B.S.; Li, H.; Hu, F. Vermicompost increases defense against root-knot nematode (Meloidogyne incognita) in tomato plants. Appl. Soil Ecol. 2016, 105, 177–186. [Google Scholar] [CrossRef]
- Zucco, M.A.; Walters, S.A.; Chong, S.-K.; Klubek, B.P.; Masabni, J.G. Effect of soil type and vermicompost applications on tomato growth. Int. J. Recycl. Org. Waste Agric. 2015, 4, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Szczech, M.; Rondomański, W.; Brzeski, M.W.; Smolińska, U.; Kotowski, J.F. Suppressive effect of a commercial earthworm compost on some root infecting pathogens of cabbage and tomato. Biol. Agric. Hortic. 1993, 10, 47–52. [Google Scholar] [CrossRef]
- Haribhushan, A.; Shabir, H.W.; Indira, S.; Anando, S.N. Effects of vermicompost and boron on tomato (Solanum lycopersicum cv. Pusa ruby) flowering, fruit ripening, yield and soil fertility in acid soils. Int. J. Agric. Environ. Biotechnol. 2016, 9, 847–853. [Google Scholar] [CrossRef]
- Shen, Z.; Yu, Z.; Xu, L.; Zhao, Y.; Yi, S.; Shen, C.; Wang, Y.; Li, Y.; Zuo, W.; Gu, C.; et al. Effects of vermicompost application on growth and heavy metal uptake of barley grown in mudflat salt-affected Soils. Agronomy 2022, 12, 1007. [Google Scholar] [CrossRef]
- Khan, M.B.; Cui, X.; Jilani, G.; Lazzat, U.; Zehra, A.; Hamid, Y.; Hussain, B.; Tang, L.; Yang, X.; He, Z. Eisenia fetida and biochar synergistically alleviate the heavy metals content during valorization of biosolids via enhancing vermicompost quality. Sci. Total Environ. 2019, 684, 597–609. [Google Scholar] [CrossRef]
- Benazzouk, S.; Dobrev, P.I.; Djazouli, Z.E.; Motyka, V.; Lutts, S. Positive impact of vermicompost leachate on salt stress resistance in tomato (Solanum lycopersicum L.) at the seedling stage: A phytohormonal approach. Plant Soil 2020, 446, 145–162. [Google Scholar] [CrossRef]
- Zhao, H.T.; Li, T.P.; Zhang, Y.; Hu, J.; Bai, Y.C.; Shan, Y.H.; Ke, F. Effects of vermicompost amendment as a basal fertilizer on soil properties and cucumber yield and quality under continuous cropping conditions in a greenhouse. J. Soils Sediments 2017, 17(12), 2718–2730. [Google Scholar] [CrossRef]
- Blouin, M.; Barrere, J.; Meyer, N.; Lartigue, S.; Barot, S.; Mathieu, J. Vermicompost significantly affects plant growth: A meta-analysis. Agron. Sustain. Dev. 2019, 39, 34. [Google Scholar] [CrossRef]
- Pramani, P.; Ghosh, G.K.; Ghosal, P.K.; Banik, P. Changes in organic—C, N, P and K and enzyme activities in vermicompost of biodegradable organic wastes under liming and microbial inoculants. Bioresour. Technol. 2007, 98, 2485–2494. [Google Scholar] [CrossRef]
- Mendoza-Hernández, D.; Fornes, F.; Belda, R.M. Compost and vermicompost of horticultural waste as substrates for cutting rooting and growth of rosemary. Sci. Hortic. 2014, 178, 192–202. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, T.; Liu, K.; Wang, L.; Wang, K.; Zhou, Y. Effects of different amendments for the reclamation of coastal saline soil on soil nutrient dynamics and electrical conductivity responses. Agric. Water Manag. 2015, 159, 115–122. [Google Scholar] [CrossRef]
- Yatoo, A.M.; Ali, M.N.; Baba, Z.A.; Hassan, B. Sustainable management of diseases and pests in crops by vermicompost and vermicompost tea: A review. Agron. Sustain. Dev. 2021, 41, 7. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, Y.; Li, Z.; Shi, J.; Zhang, G.; Zhang, H.; Yang, L. Vermicompost improves microbial functions of soil with continuous tomato cropping in a greenhouse. J. Soils Sediments 2020, 20, 380–391. [Google Scholar] [CrossRef]
- Zhang, X.; Sa, R.; Gao, J.; Wang, C.; Liu, D.; Zhang, Y. Preventive effect of vermicompost against cucumber Fusarium wilt and improvement of cucumber growth and soil properties. Int. J. Agric. Biol. 2020, 23, 515–521. [Google Scholar] [CrossRef]
- Huang, M.; Zhou, X.; Xie, X.; Zhao, C.; Chen, J.; Cao, F.; Zou, Y. Rice yield and the fate of fertilizer nitrogen as affected by addition of earthworm casts collected from oilseed rape fields: A pot experiment. PLoS ONE 2016, 11, e0167152. [Google Scholar] [CrossRef] [Green Version]
- Tikoria, R.; Kaur, A.; Ohri, P. Modulation of various phytoconstituents in tomato seedling growth and Meloidogyne incognita-induced stress alleviation by vermicompost application. Front. Environ. Sci. 2022, 10, 891195. [Google Scholar] [CrossRef]
- Zou, Z.; Zou, X. Geographical and ecological differences in pepper cultivation and consumption in China. Front. Nutr. 2021, 8, 718517. [Google Scholar] [CrossRef]
- Zhang, M.; Gou, J.; Wei, Q.; Liu, Y.; Qin, S. Effects of different biochar-based fertilizers on the biological properties and economic benefits of pod pepper (Capsicum annuum var. frutescens L.). Appl. Ecol. Environ. Res. 2021, 19, 2829–2841. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Wei, Q.; Liu, L.; Gou, J. Biochar-based fertiliser improved the yield, quality and fertiliser utilisation of open field tomato in karst mountainous area. Plant Soil Environ. 2022, 68, 163–172. [Google Scholar] [CrossRef]
- Ning, C.; Liu, R.; Kuang, X.; Chen, H.; Tian, J.; Cai, K. Nitrogen fertilizer reduction combined with biochar application maintain the yield and nitrogen supply of rice but improve the nitrogen use efficiency. Agronomy 2022, 12, 3039. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Wei, Q.; Liu, L.; Gu, X.; Gou, J. Biochar-based fertilizer enhances the production capacity and economic benefit of open-field eggplant in the karst region of southwest China. Agriculture 2022, 12, 1388. [Google Scholar] [CrossRef]
- Mahmud, M.; Abdullah, R.; Yaacob, J.S. Effect of vermicompost on growth, plant nutrient uptake and bioactivity of ex vitro pineapple (Ananas comosus var. MD2). Agronomy 2020, 10, 1333. [Google Scholar] [CrossRef]
- Song, X.; Liu, M.; Wu, D.; Griffiths, B.S.; Jiao, J.; Li, H.; Hu, F. Interaction matters: Synergy between vermicompost and PGPR agents improves soil quality, crop quality and crop yield in the field. Appl. Soil Ecol. 2015, 89, 25–34. [Google Scholar] [CrossRef]
- Tascı, F.G.; Kuzucu, C.O. The effects of vermicompost and green manure use on yield and economic factors in broccoli. Horticulturae 2023, 9, 406. [Google Scholar] [CrossRef]
- Goswami, L.; Nath, A.; Sutradhar, S.; Bhattacharya, S.S.; Kalamdhad, A.; Vellingiri, K.; Kim, K.H. Application of drum compost and vermicompost to improve soil health, growth, and yield parameters for tomato and cabbage plants. J. Environ. Manag. 2017, 200, 243–252. [Google Scholar] [CrossRef]
- Santana, N.A.; Jacques, R.J.S.; Antoniolli, Z.I.; Martínez-Cordeiro, H.; Domínguez, J. Changes in the chemical and biological characteristics of grape marc vermicompost during a two-year production period. Appl. Soil Ecol. 2020, 154, 103587. [Google Scholar] [CrossRef]
- Nurhidayati, N.; Ansari, A.S.; Sholihah, A.; Chiangmai, P.N. Vermicompost and rice husk biochar interaction ameliorates nutrient uptake and yield of green lettuce under soilless culture. J. Hortic. Res. 2022, 30, 55–66. [Google Scholar] [CrossRef]
- Vinothini, V.; Anuradha, R.; Senthilkumar, R. Vermicompost production and nutrient analysis using Eudrillus eugine. World J. Pharm. Res. 2016, 5, 1250–1257. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Wang, Q.; Chang, T.; Shaghaleh, H.; Hamoud, Y.A. Improvement of photosynthesis by biochar and vermicompost to enhance tomato (Solanum lycopersicum L.) yield under greenhouse conditions. Plants 2022, 11, 3214. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Zhang, J.; Zhao, R.; Dai, H.; Zhang, Z. Application of vermicompost improves strawberry growth and quality through increased photosynthesis rate, free radical scavenging and soil enzymatic activity. Sci. Hortic. 2018, 233, 132–140. [Google Scholar] [CrossRef]
- Arancon, N.; Edwards, C.; Webster, K.; Buckerfield, J. The potential of vermicomposts as plant growth media for greenhouse crop production. Vermiculture Technol. 2010, 103–128. [Google Scholar] [CrossRef]
- Zaller, J.G. Vermicompost as a substitute for peat in potting media: Effects on germination, biomass allocation, yields and fruit quality of three tomato varieties. Sci. Hortic. 2007, 112, 191–199. [Google Scholar] [CrossRef]
- Atiyeh, R.M.; Arancon, N.Q.; Edwards, C.A.; Metzger, J.D. The influence of earthworm-processed pig manure on the growth and productivity of marigolds. Bioresour. Technol. 2002, 81, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Miceli, F.A.; Santiago-Borraz, J.; Montes, M.J.A.; Nafate, C.C.; Abud-Archila, M.; Oliva, L.M.A.; Rincón-Rosales, R.; Dendooven, L. Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum). Bioresour. Technol. 2007, 98, 2781–2786. [Google Scholar] [CrossRef]
- Peyvast, G.; Olfati, J.A.; Madeni, S.; Forghani, A.; Samizadeh, H. Vermicompost as a soil supplement to improve growth and yield of parsley. Int. J. Veg. Sci. 2008, 14, 82–92. [Google Scholar] [CrossRef]
- Scaglia, B.; Nunes, R.R.; Rezende, M.O.O.; Tambone, F.; Adani, F. Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost. Sci. Total Environ. 2016, 562, 289–295. [Google Scholar] [CrossRef]
- Wang, D.; Shi, Q.; Wang, X.; Wei, M.; Hu, J.; Liu, J.; Yang, F. Influence of cow manure vermicompost on the growth, metabolite contents, and antioxidant activities of Chinese cabbage (Brassica campestris ssp. chinensis). Biol. Fertil. Soils 2010, 46, 689–696. [Google Scholar] [CrossRef]
- Singh, R.P.; Varshney, G. Effects of carbofuran on availability of macronutrients and growth of tomato plants in natural soils and soils amended with inorganic fertilizers and vermicompost. Commun. Soil Sci. Plant Anal. 2013, 44, 2571–2586. [Google Scholar] [CrossRef]
- Márquez-Quiroz, C.; López-Espinosa, S.T.; Sánchez-Chávez, E.; García-Bañuelos, M.L.; De la Cruz-Lázaro, E.; Reyes-Carrillo, J.L. Effect of vermicompost tea on yield and nitrate reductase enzyme activity in saladette tomato. J. Soil Sci. Plant Nutr. 2014, 14, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Doan, T.T.; Henry-des-Tureaux, T.; Rumpel, C.; Janeau, J.L.; Jouquet, P. Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: A three year mesocosm experiment. Sci. Total Environ. 2015, 514, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Mengistu, T.; Gebrekidan, H.; Kibret, K.; Woldetsadik, K.; Shimelis, B.; Yadav, H. The integrated use of excreta-based vermicompost and inorganic NP fertilizer on tomato (Solanum lycopersicum L.) fruit yield, quality and soil fertility. Int. J. Recycl. Org. Waste Agric. 2017, 6, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Sharma, R.R.; Kumar, S.; Gupta, R.K.; Patil, R.T. Vermicompost substitution influences growth, physiological disorders, fruit yield and quality of strawberry (Fragaria x ananassa Duch.). Bioresour. Technol. 2008, 99, 8507–8511. [Google Scholar] [CrossRef] [PubMed]
- Kashem, M.A.; Sarker, A.; Hossain, I.; Islam, M.S. Comparison of the effect of vermicompost and inorganic fertilizers on vegetative growth and fruit production of tomato (Solanum lycopersicum L.). Open J. Soil Sci. 2015, 5, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Kalika-Singh, S.; Ansari, A.; Maharaj, G. Vegetable crop cultivation using vermicompost in comparison to chemical fertilizers: A review. Agric. Rev. 2022, 43, 480–484. [Google Scholar] [CrossRef]
- Namazi, E.; Lack, S.; Nejad, E.F. Effect of vermicompost and chemical nitrogen fertilizer application on the various functioning of maize seeds. J. Exp. Biol. Agric. Sci. 2015, 3, 261–268. [Google Scholar] [CrossRef]
- Tomati, U.; Grappelli, A.; Galli, E. The hormone-like effect of earthworm casts on plant growth. Biol. Fertil. Soils 1988, 5, 288–294. [Google Scholar] [CrossRef]
- Maji, D.; Misra, P.; Singh, S.; Kalra, A. Humic acid rich vermicompost promotes plant growth by improving microbial community structure of soil as well as root nodulation and mycorrhizal colonization in the roots of Pisum sativum. Appl. Soil Ecol. 2017, 110, 97–108. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, Y.; Dijkstra, F.A.; Li, Z.; Zhang, Y.; Zhang, T.; Lu, Y.; Shi, J.; Yang, L. Effects of amendments on phosphorous status in soils with different phosphorous levels. Catena 2019, 172, 97–103. [Google Scholar] [CrossRef]
- Gebisa, B.; Fikadu, T.; Gezu, D.; Jafar, M. Integrated effects of vermicompost and nitrogen on yield and yield components of tomato (Lycopersicum esculentum L.) in lowlands of eastern Harerghe. Plant 2021, 9, 81–87. [Google Scholar] [CrossRef]
pH | SOM (g·kg−1) | OC (g·kg−1) | TN (g·kg−1) | AP (mg·kg−1) | AK (mg·kg−1) | |
---|---|---|---|---|---|---|
Soil | 6.19 | 20.48 | — | 1.36 | 27.11 | 156.83 |
Vermicompost | 8.31 | — | 307.59 | 21.57 | 485.36 | 2243.54 |
Year | Treatments | Free Amino Acid (g·kg−1) | Reducing Sugar (mg·kg−1) | VC (g·kg−1) | Nitrate (mg·kg−1) |
---|---|---|---|---|---|
2021 | CK | 3.79 ± 0.20 a | 23.78 ± 0.73 d | 1.37 ± 0.09 d | 79.73 ± 0.72 b |
FP | 3.82 ± 0.21 a | 31.43 ± 0.62 c | 1.62 ± 0.16 cd | 83.10 ± 2.30 a | |
FPV1 | 3.87 ± 0.22 a | 36.54 ± 1.25 b | 1.72 ± 0.15 bc | 70.52 ± 1.40 c | |
FPV2 | 3.85 ± 0.19 a | 38.15 ± 1.21 b | 1.73 ± 0.16 bc | 67.95 ± 1.45 cd | |
FPV3 | 3.89 ± 0.19 a | 41.04 ± 1.52 a | 1.89 ± 0.15 ab | 66.35 ± 1.40 d | |
FPV4 | 3.91 ± 0.23 a | 42.52 ± 2.01 a | 2.05 ± 0.16 a | 66.00 ± 1.46 d | |
2022 | CK | 3.93 ± 0.20 a | 22.08 ± 1.74 e | 0.96 ± 0.17 d | 77.92 ± 0.85 b |
FP | 3.95 ± 0.21 a | 31.73 ± 1.12 d | 1.55 ± 0.11 c | 84.36 ± 2.03 a | |
FPV1 | 3.95 ± 0.20 a | 41.54 ± 1.06 c | 1.74 ± 0.02 b | 68.40 ± 1.86 c | |
FPV2 | 3.99 ± 0.21 a | 43.54 ± 2.20 bc | 1.75 ± 0.07 b | 57.55 ± 1.47 d | |
FPV3 | 4.09 ± 0.21 a | 47.71 ± 2.34 a | 1.90 ± 0.10 b | 44.05 ± 1.76 e | |
FPV4 | 4.04 ± 0.22 a | 46.16 ± 2.10 ab | 2.49 ± 0.09 a | 37.34 ± 3.37 f |
Year | Treatments | AE (kg·kg−1) | RE (%) | ||||
---|---|---|---|---|---|---|---|
AEN | AEP | AEK | REN | REP | REK | ||
2021 | CK | — | — | — | — | — | — |
FP | 3.57 ± 1.02 d | 13.48 ± 3.84 d | 4.17 ± 1.19 d | 16.14 ± 1.52 e | 8.67 ± 0.24 c | 22.29 ± 3.59 e | |
FPV1 | 5.11 ± 0.24 c | 19.31 ± 0.91 c | 5.98 ± 0.28 c | 21.99 ± 2.33 d | 10.83 ± 1.48 c | 29.26 ± 2.58 d | |
FPV2 | 5.71 ± 0.74 bc | 21.59 ± 2.79 bc | 6.68 ± 0.86 bc | 29.16 ± 1.52 c | 15.07 ± 2.75 b | 35.20 ± 1.60 c | |
FPV3 | 6.33 ± 0.55 ab | 23.91 ± 2.07 ab | 7.40 ± 0.64 ab | 32.25 ± 1.63 b | 19.15 ± 0.34 a | 40.48 ± 2.80 b | |
FPV4 | 6.76 ± 0.35 a | 25.55 ± 1.33 a | 7.91 ± 0.41 a | 36.10 ± 0.75 a | 20.12 ± 2.42 a | 47.58 ± 3.21 a | |
2022 | CK | — | — | — | — | — | — |
FP | 3.39 ± 1.08 d | 12.81 ± 4.07 d | 3.96 ± 1.26 d | 20.21 ± 1.25 e | 7.00 ± 0.76 d | 24.40 ± 2.74 c | |
FPV1 | 6.17 ± 0.70 c | 23.32 ± 2.64 c | 7.22 ± 0.82 c | 23.74 ± 1.31 d | 11.09 ± 1.50 c | 34.39 ± 3.85 b | |
FPV2 | 6.84 ± 0.94 bc | 25.86 ± 3.57 bc | 8.00 ± 1.10 bc | 30.07 ± 2.69 c | 15.27 ± 2.24 b | 41.26 ± 3.08 b | |
FPV3 | 7.95 ± 0.77 ab | 30.05 ± 2.91 ab | 9.30 ± 0.90 ab | 33.21 ± 1.61 b | 20.00 ± 2.58 a | 49.44 ± 4.95 a | |
FPV4 | 8.44 ± 0.73 a | 31.89 ± 2.77 a | 9.87 ± 0.86 a | 38.41 ± 1.14 a | 20.64 ± 1.83 a | 55.10 ± 4.63 a |
Year | Treatments | Output Value (yuan·ha−1) | Fertilizer Input (yuan·ha−1) | Net Income (yuan·ha−1) |
---|---|---|---|---|
2021 | CK | 32,761 ± 4033 e | — | 32,761 ± 4033 e |
FP | 53,952 ± 2047 d | 6165 | 47,788 ± 2047 d | |
FPV1 | 63,107 ± 2651 c | 7665 | 55,442 ± 2651 c | |
FPV2 | 66,700 ± 1802 bc | 8415 | 58,285 ± 1802 bc | |
FPV3 | 70,337 ± 1346 ab | 9165 | 61,172 ± 1346 ab | |
FPV4 | 72,914 ± 2447 a | 9915 | 62,999 ± 2447 a | |
2022 | CK | 30,528 ± 2882 d | — | 30,528 ± 2882 d |
FP | 52,677 ± 4250 c | 6165 | 46,512 ± 4250 c | |
FPV1 | 70,842 ± 2542 b | 7665 | 63,177 ± 2542 b | |
FPV2 | 75,239 ± 4116 b | 8415 | 66,824 ± 4116 b | |
FPV3 | 82,491 ± 2195 a | 9165 | 73,326 ± 2195 a | |
FPV4 | 85,659 ± 2393 a | 9915 | 75,744 ± 2393 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Liu, Y.; Wei, Q.; Liu, L.; Gu, X.; Gou, J.; Wang, M. Ameliorative Effects of Vermicompost Application on Yield, Fertilizer Utilization, and Economic Benefits of Continuous Cropping Pepper in Karst Areas of Southwest China. Agronomy 2023, 13, 1591. https://doi.org/10.3390/agronomy13061591
Zhang M, Liu Y, Wei Q, Liu L, Gu X, Gou J, Wang M. Ameliorative Effects of Vermicompost Application on Yield, Fertilizer Utilization, and Economic Benefits of Continuous Cropping Pepper in Karst Areas of Southwest China. Agronomy. 2023; 13(6):1591. https://doi.org/10.3390/agronomy13061591
Chicago/Turabian StyleZhang, Meng, Yanling Liu, Quanquan Wei, Lingling Liu, Xiaofeng Gu, Jiulan Gou, and Ming Wang. 2023. "Ameliorative Effects of Vermicompost Application on Yield, Fertilizer Utilization, and Economic Benefits of Continuous Cropping Pepper in Karst Areas of Southwest China" Agronomy 13, no. 6: 1591. https://doi.org/10.3390/agronomy13061591
APA StyleZhang, M., Liu, Y., Wei, Q., Liu, L., Gu, X., Gou, J., & Wang, M. (2023). Ameliorative Effects of Vermicompost Application on Yield, Fertilizer Utilization, and Economic Benefits of Continuous Cropping Pepper in Karst Areas of Southwest China. Agronomy, 13(6), 1591. https://doi.org/10.3390/agronomy13061591