Dual-Purpose Rye, Wheat, and Triticale Cover Crops Offer Increased Forage Production and Nutrient Management but Demonstrate Nitrogen Immobilization Dynamics
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site and Field Management
2.2. Experimental Design and Management
2.3. Laboratory Analysis
2.4. Statistical Analysis
3. Results
3.1. Total and Harvested DPCC Biomass/Yield and Captured N and P
3.2. Forage Quality of Harvested DPCCs
3.3. Characteristics of DPCC Stubble
3.4. Decomposition Trends of DPCC Stubble
3.5. Corn Silage Yield and Quality
4. Discussion
4.1. Total and Harvested DPCC Biomass/Yield and Captured N and P
4.2. Characteristics of DPCC Residue
4.3. DPCC Residue Decomposition Trends
4.4. Corn Silage Yield and Quality
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sadeghpour, A.; Adeyemi, O.; Reed, B.; Fry, J.; Keshavarz Afshar, R. Profitability of dual-purpose rye cover crop as influenced by harvesting date. Agron. J. 2022, 114, 627–640. [Google Scholar] [CrossRef]
- Ketterings, Q.M.; Ort, S.; Swink, S.N.; Godwin, G.; Kilcer, T.; Miller, J.; Verbeten, W. Winter cereals as double crops in corn rotations on New York dairy farms. J. Agric. Sci. 2015, 7, 18–25. [Google Scholar] [CrossRef][Green Version]
- West, J.R.; Ruark, M.D.; Shelley, K.B. Sustainable intensification of corn silage cropping systems with winter rye. Agron. Sustain. Dev. 2020, 40, 11. [Google Scholar] [CrossRef]
- Maulana, F.; Anderson, J.D.; Butler, T.J.; Ma, X.F. Improving dual-purpose winter wheat in the southern great plains of the United States. In Recent Advances in Grain Crops Research; Shah, F., Khan, Z., Iqbal, A., Tuan, M., Olgun, M., Eds.; IntechOpen: London, UK, 2019; pp. 75–81. [Google Scholar] [CrossRef][Green Version]
- Bonachela, S.; Orgaz, F.; Fereres, E. Winter cereals grown for grain and for the dual purpose of forage plus grain. I. Production. Field Crops Res. 1995, 44, 1–11. [Google Scholar] [CrossRef]
- Sulc, R.M.; Franzluebbers, A.J. Exploring integrated crop–livestock systems in different ecoregions of the United States. Eur. J. Agron. 2014, 57, 21–30. [Google Scholar] [CrossRef]
- Obour, A.K.; Holman, J.D.H.; Assefa, Y. Single and multispecies dual-purpose cover crop productivity, nutritive value, and profitability. Agrosyst. Geosci. Environ. 2022, 5, e20275. [Google Scholar] [CrossRef]
- Simon, L.M.; Obour, A.K.; Holman, J.D.; Johnson, S.K.; Roozeboom, K.L. Forage productivity and soil properties in dual-purpose cover crop systems. Agron. J. 2021, 113, 5569–5583. [Google Scholar] [CrossRef]
- Deen, W.; Janovicek, K.; Landry, E.; Lee, E.A. Annual cereal cover crops following winter wheat produce high quality fall forage. Agron. J. 2019, 111, 1634–1642. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J. Cover crop impacts on soil physical properties: A. review. Soil Sci. Soc. Am. J. 2020, 84, 1527–1576. [Google Scholar] [CrossRef]
- Haruna, S.I.; Nkongolo, N.V. Cover crop management effects on soil physical and biological properties. Procedia Environ. Sci. 2015, 29, 13–14. [Google Scholar] [CrossRef][Green Version]
- Binder, J.M.; Karsten, H.D.; Beegle, D.B.; Dell, C.J. Manure injection and rye double cropping increase nutrient recovery and forage production. Agron. J. 2020, 112, 2968–2977. [Google Scholar] [CrossRef]
- Haruna, S.I.; Nkongolo, N.V. Influence of cover crop, tillage, and crop rotation management on soil nutrients. Agriculture 2020, 10, 225. [Google Scholar] [CrossRef]
- Weyers, S.; Thom, M.; Forcella, F.; Eberle, C.; Matthees, H.; Gesch, R.; Ott, M.; Feyereisen, G.; Strock, J.; Wyse, D. Reduced potential for nitrogen loss in cover crop–soybean relay systems in a cold climate. J. Environ. Qual. 2019, 48, 660–669. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint Pollution of Surface Waters with Phosphorus and Nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Eghball, B.; Power, J.F. Phosphorus- and nitrogen-based manure and compost applications: Corn production and soil phosphorus. Soil Sci. Soc. Am. J. 1999, 63, 895–901. [Google Scholar] [CrossRef][Green Version]
- Jokela, W.E.; Coblentz, W.K.; Hoffman, P.C. Dairy Heifer Manure Management, Dietary Phosphorus, and Soil Test P Effects on Runoff Phosphorus. J. Environ. Qual. 2012, 4, 1600–1611. [Google Scholar] [CrossRef][Green Version]
- Brown, B.D. Winter cereal–corn double crop forage production and phosphorus removal. Soil Sci. Soc. Am. J. 2006, 70, 1951–1956. [Google Scholar] [CrossRef][Green Version]
- Hashemi, M.; Farsad, A.; Sadeghpour, A.; Weis, S.A.; Herbert, S.J. Cover-crop seeding-date influence on fall nitrogen recovery. J. Plant Nutr. Soil Sci. 2013, 176, 69–75. [Google Scholar] [CrossRef]
- Farsad, A.; Herbert, S.J.; Randhir, T.; Hashemi, M. Spatial modeling of critical planting date for winter rye cover crop to enhance nutrient recovery. Agron. J. 2011, 103, 1252–1257. [Google Scholar] [CrossRef]
- Wood, S.A.; Bowman, M. Large-scale farmer-led experiment demonstrates positive impact of cover crops on multiple soil health indicators. Nat. Food 2021, 2, 97–103. [Google Scholar] [CrossRef]
- Wegner, B.R.; Osborne, S.L.; Lehman, R.M.; Kumar, S. Seven-year impact of cover crops on soil health when corn residue is removed. Bio Energy Res. 2018, 11, 239–248. [Google Scholar] [CrossRef]
- Jahanzad, E.; Barker, A.; Hashemi, M.; Eaton, T.; Sadeghpour, A.; Weis, S. Nitrogen release dynamics and decomposition of buried and surface cover crop residues. Agron. J. 2016, 108, 1735–1741. [Google Scholar] [CrossRef]
- Jensen, H.L. On the influence of the carbon-nitrogen ratio of organic material on the mineralization of nitrogen. J. Agric. Sci. 1929, 19, 71–82. [Google Scholar] [CrossRef]
- Myrold, D.D.; Bottomley, P.J. Nitrogen mineralization and immobilization. Nitrogen Agric. Syst. 2008, 49, 157–172. [Google Scholar] [CrossRef]
- Mary, B.; Recous, S.; Darwis, D.; Robin, D. Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant Soil 1996, 181, 71–82. [Google Scholar] [CrossRef]
- Quemada, M.; Cabrera, M.L. Carbon and nitrogen mineralized from leaves and stems of four cover crops. Soil Sci. Soc. Am. J. 1995, 59, 471–477. [Google Scholar] [CrossRef]
- Almagro, M.; Ruiz-Navarro, A.; Díaz-Pereira, E.; Albaladejo, J.; Martínez-Mena, M. Plant residue chemical quality modulates the soil microbial response related to decomposition and soil organic carbon and nitrogen stabilization in a rainfed Mediterranean agroecosystem. Soil Biol. Biochem. 2021, 156, 108198. [Google Scholar] [CrossRef]
- Wei, J.; Reichel, R.; Islam, M.S.; Wissel, H.; Amelung, W.; Brüggemann, N. Chemical composition of high organic carbon soil amendments affects fertilizer-derived N2O emission and nitrogen immobilization in an oxic sandy loam. Front. Environ. Sci. 2020, 8, 15. [Google Scholar] [CrossRef][Green Version]
- Neely, C.L.; Beare, M.H.; Hargrove, W.L.; Coleman, D.C. Relationships between fungal and bacterial substrate-induced respiration, biomass and plant residue decomposition. Soil Biol. Biochem. 1991, 23, 947–954. [Google Scholar] [CrossRef]
- Snapp, S.; Surapur, S. Rye cover crop retains nitrogen and doesn’t reduce corn yields. Soil Tillage Res. 2018, 180, 107–115. [Google Scholar] [CrossRef]
- Pantoja, J.L.; Woli, K.P.; Sawyer, J.E.; Barker, D.W. Corn nitrogen fertilization requirement and corn–soybean productivity with a rye cover crop. Soil Sci. Soc. Am. J. 2015, 79, 1482–1495. [Google Scholar] [CrossRef][Green Version]
- Krueger, E.S.; Ochsner, T.E.; Baker, J.M.; Porter, P.M.; Reicosky, D.C. Rye–corn silage double-cropping reduces corn yield but improves environmental impacts. Agron. J. 2012, 104, 888–896. [Google Scholar] [CrossRef][Green Version]
- Hashemi, M.; Kersbergen, R.; Glaze-Corcoran, S.; Smychkovich, A. Pre-Sidedress Nitrate-Nitrogen Test (PSNT). University of Massachusetts Crops, Dairy, Livestock, and Equine Program. 2019, Factsheet no. 21-219. Available online: https://ag.umass.edu/sites/ag.umass.edu/files/fact-sheets/pdf/pre_sidedress_nitrate_n_test_psnt_21-2019_0.pdf (accessed on 18 April 2023).
- Ketterings, Q.M.; Swink, S.N.; Duiker, S.W.; Czymmek, K.J.; Beegle, D.B.; Cox, W.J. Integrating cover crops for nitrogen management in corn systems on northeastern U.S. dairies. Agron. J. 2015, 107, 1365–1376. [Google Scholar] [CrossRef][Green Version]
- Glaze-Corcoran, S.; Smychkovich, A.; Hashemi, M. Use of dual-purpose winter-grain cover crops as emergency forage and for management of high soil phosphorous in manured fields. Agronomy 2022, 12, 2334. [Google Scholar] [CrossRef]
- Finney, D.M.; White, C.M.; Kaye, J.P. Biomass Production and Carbon/Nitrogen Ratio Influence Ecosystem Services from Cover Crop Mixtures. Agron. J. 2016, 108, 39–52. [Google Scholar] [CrossRef][Green Version]
- Brennan, E.B.; Boyd, N.S. Winter cover crop seeding rate and variety affects during eight years of organic vegetables: I. Cover crop biomass production. Agron. J. 2012, 104, 684–698. [Google Scholar] [CrossRef][Green Version]
- Hay, R.K.M.; Al-Ani, M.A. The physiology of forage rye (Secale cereale). J. Agric. Sci. 1983, 101, 63–70. [Google Scholar] [CrossRef]
- Moore, K.J.; Lenssen, A.W.; Fales, S.L. Factors affecting forage quality. Forages Sci. Grassland Agric. 2020, 7, 701–717. [Google Scholar] [CrossRef]
- Oliveira, C.R.; Shaver, R.; Shelley, K.; Binversie, L.; Johnson, H.; Akins, M. High quality cereal rye silage as a forage alternative for lactating dairy cows. J. Natl. Assoc. Cty. Agric. Agents 2019, 12, 1–11. [Google Scholar]
- Austin, E.E.; Wickings, K.; McDaniel, M.D.; Robertson, G.P.; Grandy, A.S. Cover crop root contributions to soil carbon in a no-till corn bioenergy cropping system. GCB Bioenergy 2017, 9, 1252–1263. [Google Scholar] [CrossRef][Green Version]
- Nicolardot, B.; Recous, S.; Mary, B. Simulation of C and N mineralization during crop residue decomposition: A simple dynamic model based on the C:N ratio of the residues. Plant Soil 2001, 228, 83–103. [Google Scholar] [CrossRef]
- Paul, K. Temperature and moisture effects on decomposition. In Net Ecosystem Exchange; Cooperative Research Centre for Greenhouse Accounting: Canberra, Australia, 2001; pp. 95–102. Available online: http://www.kirschbaum.id.au/NEE_Workshop_Proceedings.pdf#page=98 (accessed on 18 April 2023).
- Henriksen, T.M.; Breland, T.A. Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil. Soil Biol. Biochem. 1999, 31, 1121–1134. [Google Scholar] [CrossRef]
- Hunt, C.W.; Kezar, W.; Vinande, R. Yield, chemical composition and ruminal fermentability of corn whole plant, ear, and stover as affected by maturity. J. Prod. Agric. 1989, 2, 357–361. [Google Scholar] [CrossRef]
Rye | Triticale | Wheat | Pr > F | |
---|---|---|---|---|
Total DPCC | ||||
Biomass production, Mg ha−1 | 8.8 | 7.3 | 6.7 | 0.182 |
N capture, kg ha−1 | 120 | 97 | 90 | 0.487 |
P capture, kg ha−1 | 39 | 35 | 32 | 0.229 |
Harvested DPCC | ||||
Yield, Mg ha−1 | 4.8 | 3.9 | 3.5 | 0.0857 |
N removed, kg ha−1 | 72 | 55 | 52 | 0.3242 |
P removed, kg ha−1 | 23 | 19 | 17 | 0.3017 |
Crude protein, % | 10.5 | 11 | 10.5 | 0.1419 |
Relative feed value | 109 b | 122 a | 120 a | 0.0001 |
Milk, kg Mg−1 | 946 b | 1057 a | 1019 a | 0.0027 |
Milk, kg ha−1 | 4250 | 4225 | 3485 | 0.3993 |
Milk, US dollar value ha−1 | 1800 | 1790 | 1475 | 0.3993 |
DPCC aboveground residue (not harvested) | ||||
Biomass, Mg ha−1 | 4 | 3.4 | 3.2 | 0.0593 |
Fresh weight, kg ha−1 | 13.9 a | 10.1 ab | 8.7 b | 0.0172 |
Percent moisture, % | 0.66 a | 0.65 a | 0.58 b | 0.0017 |
Water returned, liter ha−1 | 5445 a | 4300 ab | 3600 b | 0.0179 |
Percent N, % | 1.1 | 1.1 | 1 | 0.5304 |
Percent C, % | 40.7 b | 42.1 ab | 42.4 a | 0.0441 |
C:N | 40:1 | 40:1 | 46:1 | 0.0944 |
N returned, kg ha−1 | 48 | 42 | 38 | 0.1348 |
P returned, kg ha−1 | 16 | 16 | 15 | 0.0841 |
C returned, kg ha−1 | 1804 | 1555 | 1472 | 0.9906 |
None | Rye | Triticale | Wheat | Pr > F | |
---|---|---|---|---|---|
Population, plants ha−1 × 1000 | 69 | 68.4 | 65.1 | 66.2 | 0.9128 |
Corn silage yield (Mg ha−1) * | 65 | 75 | 61 | 61 | 0.2047 |
Contribution of ears to yield (%) | 56 ab ** | 57 a | 54 b | 59 a | 0.0054 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glaze-Corcoran, S.; Smychcovich, A.; Hashemi, M. Dual-Purpose Rye, Wheat, and Triticale Cover Crops Offer Increased Forage Production and Nutrient Management but Demonstrate Nitrogen Immobilization Dynamics. Agronomy 2023, 13, 1517. https://doi.org/10.3390/agronomy13061517
Glaze-Corcoran S, Smychcovich A, Hashemi M. Dual-Purpose Rye, Wheat, and Triticale Cover Crops Offer Increased Forage Production and Nutrient Management but Demonstrate Nitrogen Immobilization Dynamics. Agronomy. 2023; 13(6):1517. https://doi.org/10.3390/agronomy13061517
Chicago/Turabian StyleGlaze-Corcoran, Samantha, Alexandra Smychcovich, and Masoud Hashemi. 2023. "Dual-Purpose Rye, Wheat, and Triticale Cover Crops Offer Increased Forage Production and Nutrient Management but Demonstrate Nitrogen Immobilization Dynamics" Agronomy 13, no. 6: 1517. https://doi.org/10.3390/agronomy13061517
APA StyleGlaze-Corcoran, S., Smychcovich, A., & Hashemi, M. (2023). Dual-Purpose Rye, Wheat, and Triticale Cover Crops Offer Increased Forage Production and Nutrient Management but Demonstrate Nitrogen Immobilization Dynamics. Agronomy, 13(6), 1517. https://doi.org/10.3390/agronomy13061517