Effects of Cropping Systems on Soil Physicochemical Properties and Abundances and Spatial Distributions of Nitrogen-Cycling Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Management and Experimental Setup
2.2. Soil Physicochemical Analysis
2.3. Quantification of Total Bacteria and N-Cycling Bacteria Genes in Soil Samples
2.4. Statistical Analysis, Geostatistical Modeling, and Spatial Mapping
3. Results
3.1. The Initial Soil Physicochemical Properties
3.2. Effect of Cropping Systems on Soil Physicochemical Properties
3.3. Effect of Cropping Systems on the Abundance of Total and Soil Nitrogen-Cycling Bacterial Marker Genes
3.4. Relationship between Total and Soil Nitrogen-Cycling Bacterial Gene Abundances and Soil Chemical Properties
3.5. Spatial Distribution of Total and N-Cycling Bacterial Genes and Soil Chemical Properties
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanford, G.R.; Jackson, R.D.; Booth, E.G.; Hedtcke, J.L.; Picasso, V. Perenniality and diversity drive output stability and resilience in a 26-year cropping systems experiment. Field Crops Res. 2021, 263, 108071. [Google Scholar] [CrossRef]
- Smith, P. Delivering food security without increasing pressure on land. Glob. Food Secur. 2013, 2, 18–23. [Google Scholar] [CrossRef]
- Lemaire, G.; Franzluebbers, A.; de Faccio Carvalho, P.C.; Dedieu, B. Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agric. Ecosyst. Environ. 2014, 190, 4–8. [Google Scholar] [CrossRef]
- Planisich, A.; Utsumi, S.; Larripa, M.; Galli, J. Grazing of cover crops in integrated crop-livestock systems. Animal 2021, 15, 100054. [Google Scholar] [CrossRef] [PubMed]
- Moomaw, R.S.; Powell, T.A. Multiple cropping systems in small grains in Northeast Nebraska. J. Prod. Agric. 1990, 3, 569–576. [Google Scholar] [CrossRef]
- Horn, F. Chemical composition of wheat pasture. In National Wheat Pasture Symposium Proceedings; Horn, G.W., Ed.; Oklahoma Agriciculture Experimental Station: Oklahoma City, OK, USA, 1984; pp. 47–54. [Google Scholar]
- Winterholler, S.; Lalman, D.; Hudson, M.; Ward, C.; Krehbiel, C.; Horn, G. Performance, carcass characteristics, and economic analysis of calf-fed and wheat pasture yearling systems in the southern Great Plains. Prof. Anim. Sci. 2008, 24, 232–238. [Google Scholar] [CrossRef]
- Netthisinghe, A.; Galloway, H.; DeGraves, F.; Agga, G.E.; Sistani, K. Grain yield and beef cow–calf growth performance in dual-purpose and conventional grain wheat production systems and stockpiled tall fescue pasturing. Agronomy 2020, 10, 1543. [Google Scholar] [CrossRef]
- Kourtev, P.; Ehrenfeld, J.; Häggblom, M. Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol. Biochem. 2003, 35, 895–905. [Google Scholar] [CrossRef]
- Stuedemann, J.A.; Hoveland, C.S. Fescue endophyte: History and impact on animal agriculture. J. Prod. Agric. 1988, 1, 39–44. [Google Scholar] [CrossRef]
- Hoveland, C.S. Origin and history. In Tall Fescue for the Twenty-First Century; Fribourg, H.A., Hannaway, D.B., West, C.P., Eds.; Agronomy Mnograph: Madison, WI, USA, 2009; Volume 53, pp. 1–10. [Google Scholar]
- Leuchtmann, A.; Clay, K. Isozyme variation in the Acremonium/Epichloë fungal endophyte complex. Phytopathology 1990, 80, 1133–1139. [Google Scholar] [CrossRef]
- Horvatic, J.; Peršić, V.; Kočić, A.; Čačić, L.; Has-Schoen, E. Water quality and nutrient limitation in an area of the Danube River and an adjoining oxbow lake (1299 r. km): Algal bioassay. Fresenius Environ. Bull. 2009, 18, 12–20. [Google Scholar]
- Tripathi, N.; Singh, R.S. Influence of different land uses on soil nitrogen transformations after conversion from an Indian dry tropical forest. Catena 2009, 77, 216–223. [Google Scholar] [CrossRef]
- Orwin, K.H.; Wardle, D.A. New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. Soil Biol. Biochem. 2004, 36, 1907–1912. [Google Scholar] [CrossRef]
- Lang, M.; Cai, Z.-C.; Mary, B.; Hao, X.; Chang, S.X. Land-use type and temperature affect gross nitrogen transformation rates in Chinese and Canadian soils. Plant Soil 2010, 334, 377–389. [Google Scholar] [CrossRef]
- Wakelin, S.A.; Gregg, A.L.; Simpson, R.J.; Li, G.D.; Riley, I.T.; McKay, A.C. Pasture management clearly affects soil microbial community structure and N-cycling bacteria. Pedobiologia 2009, 52, 237–251. [Google Scholar] [CrossRef]
- Hayatsu, M.; Tago, K.; Saito, M. Various players in the nitrogen cycle: Diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci. Plant Nutr. 2008, 54, 33–45. [Google Scholar] [CrossRef]
- Reddy, K.; Patrick, W.; Broadbent, F. Nitrogen transformations and loss in flooded soils and sediments. Crit. Rev. Environ. Sci. Technol. 1984, 13, 273–309. [Google Scholar] [CrossRef]
- Yokota, M.; Guan, Y.; Fan, Y.; Zhang, X.; Yang, W. Vertical and temporal variations of soil bacterial and archaeal communities in wheat-soybean rotation agroecosystem. PeerJ 2022, 10, e12868. [Google Scholar] [CrossRef]
- Bolan, N.S.; Saggar, S.; Luo, J.; Bhandral, R.; Singh, J. Gaseous emissions of nitrogen from grazed pastures: Processes, measurements and modeling, environmental implications, and mitigation. Adv. Agron. 2004, 84, 120. [Google Scholar]
- Lashof, D.A.; Ahuja, D.R. Relative contributions of greenhouse gas emissions to global warming. Nature 1990, 344, 529–531. [Google Scholar] [CrossRef]
- Rotthauwe, J.-H.; Witzel, K.-P.; Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 1997, 63, 4704–4712. [Google Scholar] [CrossRef] [PubMed]
- De Boer, W.; Kowalchuk, G.A. Nitrification in acid soils: Micro-organisms and mechanisms. Soil Biol. Biochem. 2001, 33, 853–866. [Google Scholar] [CrossRef]
- Zumft, W.G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 1997, 61, 533–616. [Google Scholar] [PubMed]
- Chèneby, D.; Hallet, S.; Mondon, M.; Martin-Laurent, F.; Germon, J.; Philippot, L. Genetic characterization of the nitrate reducing community based on narG nucleotide sequence analysis. Microb. Ecol. 2003, 46, 113–121. [Google Scholar] [CrossRef]
- Henry, S.; Bru, D.; Stres, B.; Hallet, S.; Philippot, L. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl. Environ. Microbiol. 2006, 72, 5181–5189. [Google Scholar] [CrossRef]
- López-Gutiérrez, J.C.; Henry, S.; Hallet, S.; Martin-Laurent, F.; Catroux, G.; Philippot, L. Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR. J. Microbiol. Methods 2004, 57, 399–407. [Google Scholar] [CrossRef]
- Colloff, M.; Wakelin, S.; Gomez, D.; Rogers, S. Detection of nitrogen cycle genes in soils for measuring the effects of changes in land use and management. Soil Biol. Biochem. 2008, 40, 1637–1645. [Google Scholar] [CrossRef]
- Nicol, G.W.; Leininger, S.; Schleper, C.; Prosser, J.I. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ. Microbiol. 2008, 10, 2966–2978. [Google Scholar] [CrossRef]
- Reynolds, H.L.; Packer, A.; Bever, J.D.; Clay, K. Grassroots ecology: Plant–microbe–soil interactions as drivers of plant community structure and dynamics. Ecology 2003, 84, 2281–2291. [Google Scholar] [CrossRef]
- Girvan, M.S.; Bullimore, J.; Pretty, J.N.; Osborn, A.M.; Ball, A.S. Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl. Environ. Microbiol. 2003, 69, 1800–1809. [Google Scholar] [CrossRef]
- Fierer, N.; Jackson, R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 2006, 103, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Frey, S.D.; Knorr, M.; Parrent, J.L.; Simpson, R.T. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. For. Ecol. Manag. 2004, 196, 159–171. [Google Scholar] [CrossRef]
- Hayden, H.L.; Drake, J.; Imhof, M.; Oxley, A.P.; Norng, S.; Mele, P.M. The abundance of nitrogen cycle genes amoA and nifH depends on land-uses and soil types in South-Eastern Australia. Soil Biol. Biochem. 2010, 42, 1774–1783. [Google Scholar] [CrossRef]
- Wallenstein, M.D.; Myrold, D.D.; Firestone, M.; Voytek, M. Environmental controls on denitrifying communities and denitrification rates: Insights from molecular methods. Ecol. Appl. 2006, 16, 2143–2152. [Google Scholar] [CrossRef] [PubMed]
- Bissett, A.; Brown, M.V.; Siciliano, S.D.; Thrall, P.H. Microbial community responses to anthropogenically induced environmental change: Towards a systems approach. Ecol. Lett. 2013, 16, 128–139. [Google Scholar] [CrossRef]
- Osborne, C.A.; Zwart, A.B.; Broadhurst, L.M.; Young, A.G.; Richardson, A.E. The influence of sampling strategies and spatial variation on the detected soil bacterial communities under three different land-use types. FEMS Microbiol. Ecol. 2011, 78, 70–79. [Google Scholar] [CrossRef]
- Lauber, C.L.; Strickland, M.S.; Bradford, M.A.; Fierer, N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 2008, 40, 2407–2415. [Google Scholar] [CrossRef]
- Franklin, R.B.; Mills, A.L. Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field. FEMS Microbiol. Ecol. 2003, 44, 335–346. [Google Scholar] [CrossRef]
- Nunan, N.; Wu, K.; Young, I.M.; Crawford, J.W.; Ritz, K. In situ spatial patterns of soil bacterial populations, mapped at multiple scales, in an arable soil. Microb. Ecol. 2002, 44, 296–305. [Google Scholar] [CrossRef]
- Ritz, K.; McNicol, J.; Nunan, N.; Grayston, S.; Millard, P.; Atkinson, D.; Gollotte, A.; Habeshaw, D.; Boag, B.; Clegg, C. Spatial structure in soil chemical and microbiological properties in an upland grassland. FEMS Microbiol. Ecol. 2004, 49, 191–205. [Google Scholar] [CrossRef]
- Gupta, V. Soil Biology in Pasture Systems: Knowledge and Opportunity Audit; Meat and Livestock Australia: Sydney, Australia, 2003. [Google Scholar]
- Hurlbert, S.H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 1984, 54, 187–211. [Google Scholar] [CrossRef]
- Wester, D.B. Replication, randomization, and statistics in range research. Rangel. Ecol. Manag./J. Range Manag. Arch. 1992, 45, 285–290. [Google Scholar] [CrossRef]
- Rowell, D. Laboratory methods for studying mineralization. In Soil Science: Methods and Applications; Longman Scientific and Technical, Longman Group UK Ltd.: London, UK, 1994. [Google Scholar]
- Nelson, D.A.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; Wiley: New York, NY, USA, 1983; Volume 9, pp. 539–579. [Google Scholar]
- Mulvaney, R.L. Nitrogen—Inorganic forms. In Methods of Soil Analysis: Part 3 Chemical Methods; Wiley: New York, NY, USA, 1996; Volume 5, pp. 1123–1184. [Google Scholar]
- Blake, G.; Hartge, K. Bulk density. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods; Wiley: New York, NY, USA, 1996; Volume 5, pp. 363–375. [Google Scholar]
- Cook, K.; Ritchey, E.; Loughrin, J.; Haley, M.; Sistani, K.; Bolster, C.H. Effect of turning frequency and season on composting materials from swine high-rise facilities. Waste Manag. 2015, 39, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Moran, P.A. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Isaaks, E.H.; Srivastava, R.M. Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989; Volume 561. [Google Scholar]
- Bhandral, R.; Saggar, S.; Bolan, N.; Hedley, M. Transformation of nitrogen and nitrous oxide emission from grassland soils as affected by compaction. Soil Tillage Res. 2007, 94, 482–492. [Google Scholar] [CrossRef]
- De Neve, S.; Hofman, G. Influence of soil compaction on carbon and nitrogen mineralization of soil organic matter and crop residues. Biol. Fertil. Soils 2000, 30, 544–549. [Google Scholar] [CrossRef]
- Greacen, E.L.; Sands, R. Compaction of forest soils. A review. Soil Res. 1980, 18, 163–189. [Google Scholar] [CrossRef]
- Murty, D.; Kirschbaum, M.U.; Mcmurtrie, R.E.; Mcgilvray, H. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob. Chang. Biol. 2002, 8, 105–123. [Google Scholar] [CrossRef]
- Post, W.M.; Mann, L. Changes in Soil Organic Carbon and Nitrogen as a Result of Cultivation; Environmental System Science Data Infrastructure for a Virtual Ecosystem; U.S. Department of Energy Office of Scientific and Technical Information: Washington, DC, USA, 2005. [Google Scholar]
- Sun, R.; Guo, X.; Wang, D.; Chu, H. Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. Appl. Soil Ecol. 2015, 95, 171–178. [Google Scholar] [CrossRef]
- Beyaert, R.; Paul Voroney, R. Estimation of decay constants for crop residues measured over 15 years in conventional and reduced tillage systems in a coarse-textured soil in southern Ontario. Can. J. Soil Sci. 2011, 91, 985–995. [Google Scholar] [CrossRef]
- Broder, M.; Wagner, G. Microbial colonization and decomposition of corn, wheat, and soybean residue. Soil Sci. Soc. Am. J. 1988, 52, 112–117. [Google Scholar] [CrossRef]
- McDaniel, M.; Grandy, A.; Tiemann, L.; Weintraub, M. Crop rotation complexity regulates the decomposition of high and low quality residues. Soil Biol. Biochem. 2014, 78, 243–254. [Google Scholar] [CrossRef]
- Williams, D.L.; Ineson, P.; Coward, P. Temporal variations in nitrous oxide fluxes from urine-affected grassland. Soil Biol. Biochem. 1999, 31, 779–788. [Google Scholar] [CrossRef]
- Rasiah, V.; Kay, B. Legume N mineralization: Effect of aeration and size distribution of water-filled pores. Soil Biol. Biochem. 1998, 30, 89–96. [Google Scholar] [CrossRef]
- Frijlink, M.J.; Abee, T.; Laanbroek, H.J.; de Boer, W.; Konings, W.N. The bioenergetics of ammonia and hydroxylamine oxidation in Nitrosomonas europaea at acid and alkaline pH. Arch. Microbiol. 1992, 157, 194–199. [Google Scholar] [CrossRef]
- Ashworth, A.; DeBruyn, J.; Allen, F.; Radosevich, M.; Owens, P. Microbial community structure is affected by cropping sequences and poultry litter under long-term no-tillage. Soil Biol. Biochem. 2017, 114, 210–219. [Google Scholar] [CrossRef]
- Lauber, C.L.; Ramirez, K.S.; Aanderud, Z.; Lennon, J.; Fierer, N. Temporal variability in soil microbial communities across land-use types. ISME J. 2013, 7, 1641–1650. [Google Scholar] [CrossRef]
- Bardgett, R.; Leemans, D.; Cook, R.; Hobbs, P.J. Seasonality of the soil biota of grazed and ungrazed hill grasslands. Soil Biol. Biochem. 1997, 29, 1285–1294. [Google Scholar] [CrossRef]
- Bruns, M.A.; Stephen, J.R.; Kowalchuk, G.A.; Prosser, J.I.; Paul, E.A. Comparative diversity of ammonia oxidizer 16S rRNA gene sequences in native, tilled, and successional soils. Appl. Environ. Microbiol. 1999, 65, 2994–3000. [Google Scholar] [CrossRef]
- Cruz-Martínez, K.; Suttle, K.B.; Brodie, E.L.; Power, M.E.; Andersen, G.L.; Banfield, J.F. Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland. ISME J. 2009, 3, 738–744. [Google Scholar] [CrossRef]
- Philippot, L.; Hallin, S.; Schloter, M. Ecology of denitrifying prokaryotes in agricultural soil. Adv. Agron. 2007, 96, 249–305. [Google Scholar]
- Bardgett, R.D.; Wardle, D.A. Herbivore-mediated linkages between aboveground and belowground communities. Ecology 2003, 84, 2258–2268. [Google Scholar] [CrossRef]
- Gaillard, V.; Chenu, C.; Recous, S.; Richard, G. Carbon, nitrogen and microbial gradients induced by plant residues decomposing in soil. Eur. J. Soil Sci. 1999, 50, 567–578. [Google Scholar] [CrossRef]
- Hermansson, A.; Lindgren, P.-E. Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR. Appl. Environ. Microbiol. 2001, 67, 972–976. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Yang, Q.; Li, Z.; Wei, D.; Cui, X.A.; Liang, Y. Impacts of organic and inorganic fertilizers on nitrification in a cold climate soil are linked to the bacterial ammonia oxidizer community. Microb. Ecol. 2011, 62, 982–990. [Google Scholar] [CrossRef]
- He, J.Z.; Shen, J.P.; Zhang, L.M.; Zhu, Y.G.; Zheng, Y.M.; Xu, M.G.; Di, H. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ. Microbiol. 2007, 9, 2364–2374. [Google Scholar] [CrossRef]
- McAndrew, D.; Malhi, S. Long-term N fertilization of a solonetzic soil: Effects on chemical and biological properties. Soil Biol. Biochem. 1992, 24, 619–623. [Google Scholar] [CrossRef]
- Miller, M.; Zebarth, B.; Dandie, C.; Burton, D.; Goyer, C.; Trevors, J. Crop residue influence on denitrification, N2O emissions and denitrifier community abundance in soil. Soil Biol. Biochem. 2008, 40, 2553–2562. [Google Scholar] [CrossRef]
- Jones, C.M.; Stres, B.; Rosenquist, M.; Hallin, S. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Mol. Biol. Evol. 2008, 25, 1955–1966. [Google Scholar] [CrossRef]
- Philippot, L. Denitrifying genes in bacterial and archaeal genomes. Biochim. Biophys. Acta (BBA)-Gene Struct. Expr. 2002, 1577, 355–376. [Google Scholar] [CrossRef]
- Bru, D.; Ramette, A.; Saby, N.; Dequiedt, S.; Ranjard, L.; Jolivet, C.; Arrouays, D.; Philippot, L. Determinants of the distribution of nitrogen-cycling microbial communities at the landscape scale. ISME J. 2011, 5, 532–542. [Google Scholar] [CrossRef] [PubMed]
- Wessén, E.; Söderström, M.; Stenberg, M.; Bru, D.; Hellman, M.; Welsh, A.; Thomsen, F.; Klemedtson, L.; Philippot, L.; Hallin, S. Spatial distribution of ammonia-oxidizing bacteria and archaea across a 44-hectare farm related to ecosystem functioning. ISME J. 2011, 5, 1213–1225. [Google Scholar] [CrossRef] [PubMed]
TF | WS | WGS | |
---|---|---|---|
n | 12 | 11 | 12 |
Soil properties | |||
Bulk density (g cm−3) | 1.29 ± 0.03 a | 1.38 ± 0.04 ab | 1.42 ± 0.02 b |
pH | 6.62 ± 0.16 a | 5.76 ± 0.29 a | 5.81 ± 0.25 a |
------------------------------- g kg−1 ------------------------------- | |||
OM | 27.4 ± 1.62 a | 24.9 ± 1.38 a | 24.55 ± 0.86 a |
TN | 2.85 ± 0.09 a | 2.96 ± 0.09 a | 2.72 ± 0.08 a |
------------------------------ mg kg−1 ------------------------------ | |||
NO3-N | 4.19 ± 0.51 a | 1.77 ± 0.24 b | 1.82 ± 0.29 b |
NH4-N | 27.35 ± 1.77 a | 22.6 ± 0.77 b | 21.78 ± 1.01 b |
Bacterial genes | ----------------------- log10 gene copies ----------------------- | ||
16S rRNA | 10.07 ± 0.04 a | 9.95 ± 0.04 a | 9.94 ± 0.04 a |
amoA | 7.13 ± 0.10 a | 6.64 ± 0.18 a | 6.64 ± 0.11 a |
narG | 7.57 ± 0.12 a | 7.13 ± 0.17 a | 7.23 ± 0.06 a |
nirK | 7.74 ± 0.05 a | 7.60 ± 0.08 a | 7.52 ± 0.02 a |
nosZ | 8.21 ± 0.05 a | 8.09 ± 0.09 a | 7.94 ± 0.05 a |
TF | WS | WGS | |
---|---|---|---|
n | 24 | 22 | 24 |
-------------------------------- g cm−3 -------------------------------- | |||
Bulk Density | 1.22 ± 0.02 a | 1.34 ± 0.02 b | 1.39 ± 0.02 b |
n | Spring 2017 | Fall 2017 | Spring 2018 | Fall 2018 | Mean | |
---|---|---|---|---|---|---|
pH | ||||||
TF | 12 | 6.33 ± 0.14 a | 6.37 ± 0.14 a | 6.28 ± 0.13 a | 6.51 ± 0.15 a | |
WS | 11 | 6.06 ± 0.13 a | 5.80 ± 0.14 b | 5.75 ± 0.13 b | 5.66 ± 0.16 b | |
WGS | 12 | 6.05 ± 0.14 a | 5.83 ± 0.14 b | 5.83 ± 0.13 b | 5.77 ± 0.15 b | |
------------------------------------ g kg−1 --------------------------------- | ||||||
OM | ||||||
TF | 12 | 26.40 ± 1.00 a | 24.78 ± 1.02 a | 32.13 ± 1.14 a | 33.47 ± 1.06 a | |
WS | 11 | 27.65 ± 1.03 a | 23.32 ± 1.07 ab | 31.54 ± 1.19 a | 30.30 ± 1.10 ab | |
WGS | 12 | 23.15 ± 0.99 b | 20.30 ± 1.03 b | 26.66 ± 1.14 b | 27.12 ± 1.06 b | |
TC | ||||||
TF | 12 | 20.50 ± 0.98 a | 36.50 ± 1.63 a | 33.80 ± 1.4 a | 28.68 ± 1.07 a | |
WS | 11 | 22.09 ± 1.02 a | 30.96 ± 1.70 ab | 31.99 ± 1.02 a | 27.17 ± 1.12 a | |
WGS | 12 | 17.60 ± 0.98 b | 28.32 ± 0.95 b | 29.95 ± 1.83 a | 25.24 ± 1.07 a | |
TN | ||||||
TF | 12 | 2.36 ± 0.09 a | 3.45 ± 0.14 a | 3.67 ± 0.19 b | 2.59 ± 0.07 a | |
WS | 11 | 2.34 ± 0.09 a | 2.92 ± 0.15 ab | 4.46 ± 0.20 a | 2.59 ± 0.07 a | |
WGS | 12 | 1.92 ± 0.09 b | 2.82 ± 0.15 b | 4.19 ± 0.19 ab | 2.22 ± 0.07 b | |
------------------------------------ mg kg−1 ------------------------------ | ||||||
NH4-N | ||||||
TF | 48 | - | - | - | - | 9.56 ± 0.94 a |
WS | 44 | - | - | - | - | 10.1 ± 1.05 a |
WGS | 48 | - | - | - | - | 9.54 ± 1.0 a |
NO3-N | ||||||
TF | 12 | 5.79 ± 1.13 a | 8.49 ± 1.1 a | 5.77 ± 0.94 b | 6.56 ± 0.45 a | |
WS | 11 | 3.33 ± 1.18 a | 9.47 ± 1.14 a | 11.51 ± 0.94 a | 4.72 ± 0.45 b | |
WGS | 12 | 4.06 ± 1.13 a | 8.74 ± 1.10 a | 10.35 ± 0.9 a | 4.17 ± 0.47 b |
TF | WS | WGS | |
---|---|---|---|
n | 12 | 11 | 12 |
16S rRNA | 9.87 ± 0.06 a | 9.78 ± 0.06 ab | 9.63 ± 0.06 b |
amoA | 7.01 ± 0.1 a | 6.49 ± 0.1 b | 6.42 ± 0.1 b |
narG | 7.25 ± 0.06 a | 7.17 ± 0.06 a | 6.88 ± 0.06 b |
nirK | 7.52 ± 0.04 a | 7.35 ± 0.04 b | 7.25 ± 0.04 b |
nosZ | 7.98 ± 0.05 a | 7.89 ± 0.05 a | 7.82 ± 0.05 a |
Cropping System/ Bacterial Gene | n | pH | OM | NO3-N | NH4-N |
---|---|---|---|---|---|
TF | 48 | ||||
16S rRNA | 0.20 | 0.34 ** | 0.18 | 0.31 * | |
amoA | 0.37 ** | 0.32 * | 0.39 ** | 0.14 | |
narG | 0.46 ** | 0.46 ** | 0.30 * | 0.17 | |
nirK | 0.18 | 0.37 ** | 0.18 | 0.53 ** | |
nosZ | 0.20 | 0.35 * | 0.13 | 0.52 ** | |
WS/WGS | 92 | ||||
16S rRNA | 0.25 * | 0.30 ** | 0.13 | 0.17 | |
amoA | 0.59 * | 0.25 * | 0.16 | 0.12 | |
narG | 0.46 ** | 0.32 ** | 0.14 | 0.18 | |
nirK | 0.50 ** | 0.12 | 0.03 | 0.42 ** | |
nosZ | 0.59 ** | 0.06 | 0.04 | 0.35 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Netthisinghe, A.M.; Galloway, H.O.; Agga, G.E.; Gunter, P.A.; Sistani, K.R. Effects of Cropping Systems on Soil Physicochemical Properties and Abundances and Spatial Distributions of Nitrogen-Cycling Bacteria. Agronomy 2023, 13, 1461. https://doi.org/10.3390/agronomy13061461
Netthisinghe AM, Galloway HO, Agga GE, Gunter PA, Sistani KR. Effects of Cropping Systems on Soil Physicochemical Properties and Abundances and Spatial Distributions of Nitrogen-Cycling Bacteria. Agronomy. 2023; 13(6):1461. https://doi.org/10.3390/agronomy13061461
Chicago/Turabian StyleNetthisinghe, Annesly M., Hunter O. Galloway, Getahun E. Agga, Phillip A. Gunter, and Karamat R. Sistani. 2023. "Effects of Cropping Systems on Soil Physicochemical Properties and Abundances and Spatial Distributions of Nitrogen-Cycling Bacteria" Agronomy 13, no. 6: 1461. https://doi.org/10.3390/agronomy13061461