Long-Term Organic Manure Substitution Increases Yield and Phosphorus Use Efficiency in a Double-Rice System by Altering Soil Phosphorus Uptake and Apparent Balance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Rice Management
2.3. Crop Sampling and Analysis
2.4. Soil Sampling and Analysis
2.5. Calculation
2.6. Statistical Analysis
3. Results
3.1. Changes in Soil Properties and Grain Yield of Rice
3.2. Changes in P Uptake, Apparent P Balance and P Use Efficiency
3.3. Relationships among Soil Properties, Rice Yield, and Phosphorus Use Efficiency
4. Discussion
4.1. Effect of Different Fertilizations on Soil pH, SOC and Yield of Rice
4.2. Effect of Fertilizations on Soil P Availability
4.3. Effect of Fertilizations on P Uptake, Apparent P Balance and P Use Efficiency
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, H.; Wang, B.; Xu, M.; Fan, T. Crop yield and soil responses to long-term fertilization on a red soil in Southern China. Pedosphere 2009, 19, 199–207. [Google Scholar] [CrossRef]
- Food and Agricultural Organization. FAOSTAT Database; Food and Agricultural Organization: Rome, Italy, 2008. [Google Scholar]
- Yan, X.; Yang, W.; Chen, X.; Wang, M.; Wang, W.; Ye, D.; Wu, L. Soil phosphorus pools, bioavailability and environmental risk in response to the phosphorus supply in the red soil of southern China. Int. J. Environ. Res. Public Health 2020, 17, 7384. [Google Scholar] [CrossRef] [PubMed]
- Van Nguyen, N.; Ferrero, A. Meeting the challenges of global rice production. Paddy Water Environ. 2006, 4, 1–9. [Google Scholar] [CrossRef]
- Lan, Z.M.; Lin, X.J.; Wang, F.; Zhang, H.; Chen, C.R. Phosphorus availability and rice grain yield in a paddy soil in response to long-term fertilization. Biol. Fertil. Soils 2012, 48, 579–588. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2010. (In Chinese) [Google Scholar]
- Peng, S.; Huang, J.; Sheehy, J.E.; Laza, R.C.; Visperas, R.M.; Zhong, X.; Centeno, G.S.; Khush, G.S.; Cassman, K.G. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. USA 2004, 101, 9971–9975. [Google Scholar] [CrossRef] [PubMed]
- Dubinsky, E.A.; Silver, W.L.; Firestone, M.K. Tropical forest soil microbial communities couple iron and carbon biogeochemistry. Ecology 2010, 91, 2604–2612. [Google Scholar] [CrossRef]
- Dumas, M.; Frossard, E.; Scholz, R.W. Modeling biogeochemical processes of phosphorus for global food supply. Chemosphere 2011, 84, 798–805. [Google Scholar] [CrossRef]
- Hayatu, N.G.; Sharu, M.B. Properties and classification of some barren soils of Kalambaina ridge after 25 years of conversion from forest to arable cropland in Kuru-Kuru village, Kware, Sokoto. FUDMA J. Sci. 2020, 4, 430–438. [Google Scholar]
- Horta, C.; Roboredo, M.; Carneiro, J.P.; Canatário, A.; Torrent, J.; Sharpley, A. Organic amendments as a source of phosphorus: Agronomic and environmental impact of different animal manures applied to an acid soil. Arch. Agron. Soil Sci. 2018, 64, 257–271. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, G.; Mao, L.; Cheng, G.; Jiang, S.; Ma, X.; An, L.; Du, G.; Johnson, N.C.; Feng, H. Direct and indirect influences of 8 year of nitrogen and phosphorus fertilization on Glomeromycota in an Alpine Meadow ecosystem. New Phytol. 2012, 194, 523–535. [Google Scholar] [CrossRef]
- Lu, X.; Mahdi, A.K.; Han, X.; Chen, X.; Yan, J.; Biswas, A. Long-term application of fertilizer and manures affect P fractions in Mollisol. Sci. Rep. 2020, 10, 14793. [Google Scholar] [CrossRef] [PubMed]
- Ayaga, G.; Todd, A.; Brookes, P.C. Enhanced biological cycling of phosphorus increases its availability to crops in low-input sub-Saharan farming systems. Soil Biol. Biochem. 2006, 38, 81–90. [Google Scholar] [CrossRef]
- Moir, J.; Jordan, P.; Moot, D.; Lucas, R. Phosphorus response and optimum pH ranges of twelve pasture legumes grown in an acid upland New Zealand soil under glasshouse conditions. J. Soil Sci. Plant Nutr. 2016, 16, 438–460. [Google Scholar] [CrossRef]
- Qaswar, M.; Huang, J.; Ahmed, W.; Li, D.; Liu, S.; Zhang, L.; Cai, A.; Liu, L.; Xu, Y.; Gao, J.; et al. Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil. Soil Tillage Res. 2020, 198, 104569. [Google Scholar] [CrossRef]
- Waldrip, H.M.; He, Z.; Erich, M.S. Effects of poultry manure amendment on phosphorus uptake by ryegrass, soil phosphorus fractions and phosphatase activity. Biol. Fertil. Soils 2011, 47, 407–418. [Google Scholar] [CrossRef]
- Omara, P.; Macnack, N.; Aula, L.; Raun, B. Effect of long-term beef manure application on soil test phosphorus, organic carbon, and winter wheat yield. J. Plant Nutr. 2017, 40, 1143–1151. [Google Scholar] [CrossRef]
- Mohanty, S.; Kumar, N.; Rajan, A.R. Availability and uptake of phosphorus from organic manures in groundnut (Arachis hypogea L.)–corn (Zea mays L.) sequence using radio tracer technique. Geoderma 2006, 133, 225–230. [Google Scholar] [CrossRef]
- Ahmed, W.; Huang, J.; Liu, K.; Qaswar, M.; Khan, M.N.; Chen, J.; Sun, G.; Huang, Q.; Liu, Y.; Liu, G.; et al. Changes in phosphorus fractions associated with soil chemical properties under long-term organic and inorganic fertilization in paddy soils of southern China. PLoS ONE 2019, 14, e0216881. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Cui, Z.; Miao, Y.; Mi, G.; Zhang, H.; Fan, M.; Zhang, C.; Jiang, R.; Zhang, W.; Li, H.; et al. Transforming agriculture in China: From solely high yield to both high yield and high resource use efficiency. Glob. Food Sec. 2013, 2, 1–8. [Google Scholar] [CrossRef]
- El Sheikha, A.F. Mixing manure with chemical fertilizers, why? And what is after? Nutr. Food Technol. 2016, 2, 1–5. [Google Scholar] [CrossRef]
- Xin, X.L.; Qin, S.W.; Zhang, J.B.; Zhu, A.N.; Zhang, C.Z. Dynamics of phosphorus in Fluvo-aquic soil under long-term fertilization. J. Plant Nutr. Fertil. 2015, 21, 1514–1521. (In Chinese) [Google Scholar]
- Mitran, T.; Mani, P.K. Effect of organic amendments on rice yield trend, phosphorus use efficiency, uptake, and apparent balance in soil under long-term rice-wheat rotation. J. Plant Nutr. 2017, 40, 1312–1322. [Google Scholar] [CrossRef]
- Anthonio, C.K.; Huang, J.; Chen, J.; Khan, M.N.; Du, J.; Garba, H.N.; Li, D.; Liu, G.; Liu, S.; Liu, L.; et al. Impact of long-term fertilization on phosphorus fractions and manganese oxide with their interactions in paddy soil aggregates. J. Environ. Manag. 2023, 333, 117440. [Google Scholar] [CrossRef] [PubMed]
- Horta, C.; Carneiro, J.P. Phosphorus losses to surface runoff waters after application of digestate to a soil over fertilised with phosphorus. Water Air Soil Pollut. 2021, 232, 439. [Google Scholar] [CrossRef]
- Pizzeghello, D.; Berti, A.; Nardi, S.; Morari, F. Phosphorus forms and P-sorption properties in three alkaline soils after long-term mineral and manure applications in north-eastern Italy. Agric. Ecosyst. Environ. 2011, 141, 58–66. [Google Scholar] [CrossRef]
- Negassa, W.; Leinweber, P. How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: A review. J. Plant Nutr. Soil Sci. 2009, 172, 305–325. [Google Scholar] [CrossRef]
- Wang, F.; Sims, J.T.; Ma, L.; Ma, W.; Dou, Z.; Zhang, F. The phosphorus footprint of China’s food chain: Implications for food security, natural resource management, and environmental quality. J. Environ. Qual. 2011, 40, 1081–1089. [Google Scholar] [CrossRef]
- Xin, X.; Qin, S.; Zhang, J.; Zhu, A.; Yang, W.; Zhang, X. Yield, phosphorus use efficiency and balance response to substituting long-term chemical fertilizer use with organic manure in a wheat-maize system. Field Crops Res. 2017, 208, 27–33. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, L.; Liu, S.; Han, T.; Hayatu, N.G.; Li, D.; Zhang, S.; Wang, B.; Zhang, H. Vertical distribution of phosphorus fractions and the environmental critical phosphorus level in acidic red soil under long-term fertilizer and lime application in southern China. J. Plant Nutr. Soil Sci. 2021, 184, 585–595. [Google Scholar] [CrossRef]
- Nair, V.D. Soil phosphorus saturation ratio for risk assessment in land use systems. Front. Environ. Sci. 2014, 10, 2–6. [Google Scholar] [CrossRef]
- Smith, L.E.D.; Siciliano, G. A comprehensive review of constraints to improved management of fertilizers in China and mitigation of diffuse water pollution from agriculture. Agric. Ecosyst. Environ. 2015, 209, 15–25. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, S.; Zhu, P.; Huang, S.; Wang, B.; Zhao, L.; Xu, M. Characterizing differences in the phosphorus activation coefficient of three typical cropland soils and the influencing factors under long-term fertilization. PLoS ONE 2017, 12, e0176437. [Google Scholar] [CrossRef] [PubMed]
- Blake, L.; Mercik, S.; Koerschens, M.; Moskal, S.; Poulton, P.R.; Goulding, K.W.T.; Weigel, A.; Powlson, D.S. Phosphorus content in soil, uptake by plants and balance in three European long-term field experiments. Nutr. Cycl. Agroecosyst. 2000, 56, 263–275. [Google Scholar] [CrossRef]
- Zhao, B.Q.; Li, X.Y.; Li, X.P.; Shi, X.J.; Huang, S.M.; Wang, B.R.; Zhu, P.; Yang, X.Y.; Liu, H.; Chen, Y.; et al. Long-term fertilizer experiment network in China: Crop yields and soil nutrient trends. Agron. J. 2010, 102, 216–230. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). World Reference Base for Soil Resources 2014: International Soil Classification Systems for Naming Soils and Creating Legends for Soil Maps (Updated 2015); World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Murphy, J.A.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 2002, 27, 31–36. [Google Scholar] [CrossRef]
- Faithfull, N.T. Methods in Agricultural Chemical Analysis: A Practical Handbook; CABI Publishing: Wallingford, UK, 2002; pp. 57–104. [Google Scholar]
- DeForest, J.L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA. Soil Biol. Biochem. 2009, 41, 1180–1186. [Google Scholar] [CrossRef]
- Sparks, D.; Page, A.; Helmke, P.; Loeppert, R. Methods of Soil Analysis. Part 3. Chemical Methods; Soil Science Society of America: Madison, WI, USA, 1996. [Google Scholar]
- Lu, R.K. Analytical Methods for Soil and Agricultural Chemistry; China Agricultural Science and Technology Press: Beijing, China, 1999. (In Chinese) [Google Scholar]
- Qaswar, M.; Ahmed, W.; Huang, J.; Fan, H.; Shi, X.; Jiang, X.; Liu, K.; Xu, Y.; He, Z.; Asghar, W.; et al. Soil carbon (C), nitrogen (N) and phosphorus (P) stoichiometry drives phosphorus lability in paddy soil under long-term fertilization: A fractionation and path analysis study. PLoS ONE 2019, 14, e0218195. [Google Scholar] [CrossRef] [PubMed]
- Tiessen, H.; Moir, J. Characterization of Available P by Sequential Extraction. In Soil Sampling and Methods of Analysis; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 293–306. [Google Scholar]
- The Organization for Economic Cooperation and Development (OECD). OECD Multilingual Summaries OECD Compendium of Agri-Environmental Indicators; OECD: Paris, France, 2021; ISBN 978-92-64-186217. [Google Scholar]
- Ouyang, W.; Li, Z.; Liu, J.; Guo, J.; Fang, F.; Xiao, Y.; Lu, L. Inventory of apparent nitrogen and phosphorus balance and risk of potential pollution in typical sloping cropland of purple soil in China- A case study in the Three Gorges Reservoir region. J. Ecol. Eng. 2017, 106, 620–628. [Google Scholar] [CrossRef]
- Pavinato, P.S.; Rodrigues, M.; Solthangheisi, A.; Sartor, L.R.; John, P.; Withers, A. Effects of cover crops and phosphorus sources on maize yield, phosphorus uptake, and phosphorus use efficiency. Agron. J. 2017, 109, 1039–1047. [Google Scholar] [CrossRef]
- Duan, Y.; Xu, M.; He, X.; Li, S.; Sun, X. Long-term pig manure application reduces the requirement of chemical phosphorus and potassium in two rice–wheat sites in subtropical China. Soil Use Manag. 2011, 27, 427–436. [Google Scholar] [CrossRef]
- Smith, R.G.; Menalled, F.D.; Robertson, G.P. Temporal yield variability under conventional and alternative management systems. Agron. J. 2007, 69, 1629–1634. [Google Scholar] [CrossRef]
- Singh, P.R.; Rao, D.S.K.; Bhaskarrao, U.M.; Ready, M.N. Sustainability Index under Different Management: Annual Report; CRIDA Report; CRIDA: Hyderabad, India, 1990; 106p. [Google Scholar]
- Schroder, J.L.; Zhang, H.; Girma, K.; Raun, W.R.; Penn, C.J.; Payton, M.E. Soil acidification from long-term use of nitrogen fertilizers on winter wheat. Soil Sci. Soc. Am. J. 2011, 75, 957–964. [Google Scholar] [CrossRef]
- Qaswar, M.; Dongchu, L.; Huang, J.; Tianfu, H.; Ahmed, W.; Muhammad, A.; Zhang, L.; Du, J.; Khan, Z.H.; Sami, U.; et al. Interaction of liming and long-term fertilization increased crop yield and phosphorus use efficiency (PUE) through mediating exchangeable cations in acidic soil under wheat–maize cropping system. Sci. Rep. 2020, 10, 19828. [Google Scholar] [CrossRef] [PubMed]
- Bouwman, A.F.; van Vuuren, D.P.; Derwent, R.G.; Posch, M. A global analysis of acidification and eutrophication of terrestrial ecosystems. Water Air Soil Pollut. 2002, 141, 349–382. [Google Scholar] [CrossRef]
- Tang, C.; Conyers, M.K.; Nuruzzaman, M.; Poile, G.J.; De, L.L. Biological amelioration of subsoil acidity through managing nitrate uptake by wheat crops. Plant Soil 2011, 338, 383–397. [Google Scholar] [CrossRef]
- Foy, C.D. Physiological effects of hydrogen, aluminum, and manganese toxicities in acid soil. Soil Acidity Liming 2015, 12, 57–97. [Google Scholar] [CrossRef]
- Han, T.; Cai, A.; Liu, K.; Huang, J.; Wang, B.; Li, D.; Qaswar, M.; Feng, G.; Zhang, H. The links between potassium availability and soil exchangeable calcium, magnesium, and aluminum are mediated by lime in acidic soil. J. Soils Sediments 2019, 19, 1382–1392. [Google Scholar] [CrossRef]
- Chen, H.; Deng, A.; Zhang, W.; Li, W.; Qiao, Y.; Yang, T.; Zheng, C.; Cao, C.; Chen, F. Long-term inorganic plus organic fertilization increases yield and yield stability of winter wheat. Crop J. 2018, 6, 589–599. [Google Scholar] [CrossRef]
- Han, X.; Hu, C.; Chen, Y.; Qiao, Y.; Liu, D.; Fan, J.; Li, S. Crop yield stability and sustainability in a rice-wheat cropping system based on 34-year field experiment. Eur. J. Agron. 2020, 113, 125965. [Google Scholar] [CrossRef]
- Dawe, D.; Dobermann, A.; Ladha, J.K.; Yadav, R.L.; Bao, L.; Gupta, R.K.; Lal, P.; Panaullah, G.; Sariam, O.; Singh, Y.; et al. Do organic amendments improve yield trends and profitability in intensive rice systems? Field Crops Res. 2003, 83, 191–213. [Google Scholar] [CrossRef]
- Akhtar, K.; Wang, W.; Ren, G.; Khan, A.; Feng, Y.; Yang, G. Changes in soil enzymes, soil properties, and maize crop productivity under wheat straw mulching in Guanzhong, China. Soil Tillage Res. 2018, 182, 94–102. [Google Scholar] [CrossRef]
- Lu, Y.; Gao, Y.; Nie, J.; Liao, Y.; Zhu, Q. Substituting chemical P fertilizer with organic manure: Effects on double-rice yield, phosphorus use effeciency and balance in subtropical China. Sci. Rep. 2021, 11, 8629. [Google Scholar] [CrossRef] [PubMed]
- Macholdt, J.; Piepho, H.; Honermeier, B. Mineral NPK and manure fertilisation affecting the yield stability of winter wheat: Results from a long-term field experiment. Eur. J. Agron. 2019, 102, 14–22. [Google Scholar] [CrossRef]
- Garba, H.N.; Liu, Y.; Zhang, S.; Liu, K.; Huang, J.; Lv, Z.; Hou, H.; Lan, X.; Ji, J.; Han, T.; et al. Long-Term Effect of Fertilizations on Yield Sustainability, Soil Organic Carbon Sequestration and Apparent Phosphorus Balance in Acidic Paddy Soil. J. Soil Sci. Plant Nutr. 2022, 22, 4282–4298. [Google Scholar] [CrossRef]
- Song, C.; Han, X.Z.; Tang, C. Changes in phosphorus fractions, sorption and release in Udic Mollisols under different ecosystems. Biol. Fertil. Soils 2007, 44, 37–47. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, Z.; Zhan, Y. Effect of humic acid preloading on phosphate adsorption onto zirconium-modified zeolite. Environ. Sci. Pollut. Res. 2017, 24, 12195–12211. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.G.; Zhang, R.H.; Liu, C.; Zhang, R.Q.; Chen, F.; Liu, Y. Phosphorus spatial distribution and pollution risk assessment in agricultural soil around the Danjiangkou reservoir, China. Sci. Total Environ. 2020, 699, 134417. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yan, X.; Wang, M.; Cai, Y.; Weng, X.; Su, D.; Guo, J.; Wang, W.; Hou, Y.; Ye, D.; et al. Long-term excessive phosphorus fertilization alters soil phosphorus fractions in the acidic soil of pomelo orchards. Soil Tillage Res. 2022, 215, 105214. [Google Scholar] [CrossRef]
- Astiko, W.; Ernawati, N.M.L.; Silawibawa, I.P. Nutrient concentration of nitrogen and phosphorus on intercropping of several varieties maize and soybean in dryland North Lombok, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 824, 012001. [Google Scholar] [CrossRef]
- Huang, S.H.; Xu, H.B.; Shang, D.; Liu, J.Z.; Tang, Q.J.; Liu, R.X. Phosphorus fractions and release factors in surface sediments of a Tailwater River in Xinmi City, a case study. Sustainability 2021, 13, 5417. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Q.; Wu, Q.; Zhang, S.; Zhu, P.; Peng, C.; Huang, S.; Wang, B.; Zhang, H. The response of soil Olsen-P to the P budgets of three typical cropland soil types under long-term fertilization. PLoS ONE 2020, 15, e0230178. [Google Scholar] [CrossRef] [PubMed]
- Li, B.Z.; Gunian, A.N.; Zhran, M.; Davey, L.J.; Paul, W.H.; Hu, Y.J.; Tida, G.; Wu, J.S. Fate of low-molecular-weight organic phosphorus compounds in the P-rich and P-poor paddy soils. J. Integr. Agric. 2021, 20, 2526–2534. [Google Scholar] [CrossRef]
- Das, A.; Sharma, R.P.; Chattopadhyaya, N.; Rakshit, R. Yield trends and nutrient budgeting under a long-term (28 years) nutrient management in rice–wheat cropping system under subtropical climatic condition. Plant Soil Environ. 2014, 60, 351–357. [Google Scholar] [CrossRef]
Treatment | Early Rice (kg ha−1) | Late Rice (kg ha−1) | ||||
---|---|---|---|---|---|---|
Nitrogen | Phosphorus | Potassium | Nitrogen | Phosphorus | Potassium | |
CK | 0 | 0 | 0 | 0 | 0 | 0 |
PK | 0 | 60 | 150 | 0 | 60 | 150 |
NP | 150 | 60 | 0 | 180 | 60 | 0 |
NK | 150 | 0 | 150 | 180 | 0 | 150 |
NPK | 150 | 60 | 150 | 180 | 60 | 150 |
NPKM | 46 + 104 | 33 + 27 | 71 + 79 | 54 + 126 | 10 + 50 | 4 + 146 |
Year | Treatment | Soil pH | SOC (g kg−1) | TP (g kg−1) | AP (mg kg−1) | PAC (%) |
---|---|---|---|---|---|---|
Initial | 6.5 | 14.9 | 0.49 | 20.8 | 4.24 | |
1984–1995 | CK | 6.5 ± 0.53 a | 13.1 ± 0.85 c | 0.45 ± 0.05 b | 13.3 ± 3.16 c | 2.96 ± 0.71 d |
PK | 6.2 ± 0.24 c | 13.7 ± 1.11 c | 0.70 ± 0.11 a | 33.6 ± 6.34 b | 4.79 ± 0.76 b | |
NP | 6.2 ± 0.33 c | 15.4 ± 1.17 b | 0.75 ± 0.15 a | 34.3 ± 6.36 b | 4.57 ± 0.51 b | |
NK | 6.0 ± 0.38 d | 14.5 ± 1.22 bc | 0.40 ± 0.08 b | 15.0 ± 2.51 c | 3.75 ± 0.63 c | |
NPK | 6.4 ± 0.46 b | 15.6 ± 0.56 b | 0.70 ± 0.09 a | 32.9 ± 5.24 b | 4.69 ± 0.69 b | |
NPKM | 6.6 ± 0.38 a | 16.6 ± 1.18 a | 0.73 ± 0.12 a | 44.7 ± 12.81 a | 6.12 ± 1.64 a | |
1996–2007 | CK | 6.5 ± 0.20 a | 12.4 ± 0.63 cd | 0.43 ± 0.07 c | 11.8 ± 1.81 c | 2.73 ± 0.58 f |
PK | 5.5 ± 0.11 b | 13.2 ± 0.51 c | 0.77 ± 0.05 ab | 43.1 ± 5.21 b | 5.60 ± 0.60 c | |
NP | 5.4 ± 0.16 c | 15.1 ± 1.06 b | 0.83 ± 0.10 a | 43.9 ± 8.77 b | 5.29 ± 0.80 d | |
NK | 5.5 ± 0.21 c | 13.9 ± 1.11 c | 0.37 ± 0.09 c | 13.4 ± 1.19 c | 3.66 ± 1.42 e | |
NPK | 5.6 ± 0.18 b | 15.5 ± 0.69 b | 0.72 ± 0.06 b | 44.2 ± 4.38 b | 6.14 ± 0.43 b | |
NPKM | 6.7 ± 0.19 a | 18.0 ± 1.02 a | 0.86 ± 0.14 a | 68.6 ± 3.51 a | 7.98 ± 1.34 a | |
2008–2018 | CK | 6.5 ± 0.54 a | 12.6 ± 0.38 c | 0.42 ± 0.05 c | 10.3 ± 1.27 d | 2.46 ± 0.39 c |
PK | 5.4 ± 0.53 b | 14.1 ± 1.07 bc | 0.81 ± 0.03 bc | 53.3 ± 5.79 b | 6.58 ± 0.71 a | |
NP | 5.3 ± 0.50 b | 15.0 ± 0.91 b | 0.86 ± 0.07 b | 55.5 ± 5.16 b | 6.45 ± 0.54 a | |
NK | 5.3 ± 0.54 c | 14.1 ± 0.73 bc | 0.35 ± 0.04 c | 8.5 ± 1.30 d | 2.42 ± 0.94 c | |
NPK | 5.2 ± 0.51 c | 15.6 ± 0.79 b | 0.95 ± 0.14 b | 48.5 ± 4.42 bc | 5.11 ± 0.70 b | |
NPKM | 6.7 ± 0.54 a | 19.0 ± 0.81 a | 1.32 ± 0.14 a | 85.5 ± 7.34 a | 6.48 ± 0.84 a |
Year | Treatment | Grain Yield (t ha−1) | Yield Sustainability | |||
---|---|---|---|---|---|---|
σ | Ymax | SYI | CV (%) | |||
1984–1995 | CK | 5.98 ± 0.61 e | 1.02 | 7.16 | 0.69 e | 17.01 a |
PK | 7.13 ± 0.68 d | 0.68 | 8.31 | 0.78 c | 9.50 c | |
NP | 9.27 ± 0.74 c | 0.86 | 10.70 | 0.79 c | 9.23 c | |
NK | 10.62 ± 0.98 c | 1.12 | 12.45 | 0.76 d | 10.51 b | |
NPK | 11.07 ± 1.08 b | 0.80 | 12.62 | 0.81 b | 7.24 d | |
NPKM | 12.17 ± 1.02 a | 0.76 | 13.24 | 0.86 a | 6.28 e | |
1996–2007 | CK | 8.04 ± 1.02 d | 1.45 | 11.77 | 0.56 e | 18.01 a |
PK | 9.23 ± 0.94 c | 1.18 | 12.06 | 0.67 c | 12.74 c | |
NP | 9.76 ± 1.54 c | 1.54 | 12.52 | 0.66 c | 15.81 b | |
NK | 10.08 ± 1.52 c | 1.51 | 13.30 | 0.64 d | 14.95 b | |
NPK | 11.38 ± 1.28 b | 1.18 | 13.60 | 0.75 b | 10.38 d | |
NPKM | 13.23 ± 1.22 a | 0.89 | 14.66 | 0.84 a | 6.72 e | |
2008–2018 | CK | 6.6 ± 1.25 e | 1.25 | 9.50 | 0.56 e | 18.99 a |
PK | 8.4 ± 1.03 d | 1.03 | 10.75 | 0.68 c | 12.36 c | |
NP | 9.2 ± 1.31 c | 1.31 | 11.85 | 0.67 c | 14.23 b | |
NK | 9.7 ± 1.39 c | 1.39 | 13.30 | 0.62 d | 14.38 b | |
NPK | 11.6 ± 1.32 b | 1.32 | 14.50 | 0.71 b | 11.33 d | |
NPKM | 12.8 ± 1.65 a | 1.13 | 16.45 | 0.82 a | 7.71 e | |
Treatment | * | - | - | * | * | |
Year | ns | - | - | ns | ns | |
Treatment × Year | ns | - | - | ns | ns |
Treatment | PFPp (kg kg−1) | REp (%) | IEp (kg kg−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
1984–1995 | 1996–2007 | 2008–2018 | 1984–1995 | 1996–2007 | 2008–2018 | 1984–1995 | 1996–2007 | 2008–2018 | |
PK | 38 ± 0.23 d | 74 ± 1.13 d | 114 ± 1.43 d | 10 ± 0.01 c | 12 ± 0.01 d | 21 ± 0.03 d | 114 ± 1.11 b | 152 ± 1.13 c | 190 ± 1.01 c |
NP | 48 ± 0.32 c | 92 ± 1.23 c | 130 ± 1.47 c | 22 ± 0.02 b | 26 ± 0.03 c | 32 ± 0.04 c | 117 ± 1.25 b | 156 ± 1.32 b | 196 ± 1.32 b |
NPK | 59 ± 0.44 b | 114 ± 1.33 b | 144 ± 1.56 b | 31 ± 0.04 b | 38 ± 0.04 b | 43 ± 0.06 b | 117 ± 1.25 b | 158 ± 1.32 b | 195 ± 1.31 b |
NPKM | 64 ± 0.48 a | 124 ± 1.36 a | 174 ± 1.62 a | 39 ± 0.04 a | 47 ± 0.06 a | 54 ± 0.08 a | 123 ± 1.29 a | 164 ± 1.38 a | 205 ± 1.42 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayatu, N.G.; Liu, Y.; Zhang, S.; Huang, J.; Han, T.; Khan, M.N.; Daba, N.A.; Noma, S.S.; Lv, Z.; Hou, H.; et al. Long-Term Organic Manure Substitution Increases Yield and Phosphorus Use Efficiency in a Double-Rice System by Altering Soil Phosphorus Uptake and Apparent Balance. Agronomy 2023, 13, 1440. https://doi.org/10.3390/agronomy13061440
Hayatu NG, Liu Y, Zhang S, Huang J, Han T, Khan MN, Daba NA, Noma SS, Lv Z, Hou H, et al. Long-Term Organic Manure Substitution Increases Yield and Phosphorus Use Efficiency in a Double-Rice System by Altering Soil Phosphorus Uptake and Apparent Balance. Agronomy. 2023; 13(6):1440. https://doi.org/10.3390/agronomy13061440
Chicago/Turabian StyleHayatu, Nafiu Garba, Yiren Liu, Shuxiang Zhang, Jing Huang, Tianfu Han, Muhammad Numan Khan, Nano Alemu Daba, Samaila Sani Noma, Zhenzhen Lv, Hongqian Hou, and et al. 2023. "Long-Term Organic Manure Substitution Increases Yield and Phosphorus Use Efficiency in a Double-Rice System by Altering Soil Phosphorus Uptake and Apparent Balance" Agronomy 13, no. 6: 1440. https://doi.org/10.3390/agronomy13061440
APA StyleHayatu, N. G., Liu, Y., Zhang, S., Huang, J., Han, T., Khan, M. N., Daba, N. A., Noma, S. S., Lv, Z., Hou, H., Lan, X., Ji, J., & Zhang, H. (2023). Long-Term Organic Manure Substitution Increases Yield and Phosphorus Use Efficiency in a Double-Rice System by Altering Soil Phosphorus Uptake and Apparent Balance. Agronomy, 13(6), 1440. https://doi.org/10.3390/agronomy13061440