Combining a Mutant Allele of FAD2-1A with HD Improves the ω-6/ω-3 Ratio in Soybeans
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Environment
2.2. FA Analysis and Genomic DNA Extraction
2.3. Development of the HD Genotyping Assay
2.4. FAD2-1AW293STOP Genotyping Assay
2.5. FAD2-1ADEL Genotyping Assay
2.6. FAD2-1AS117N Genotyping Assay
2.7. FAD2-1B Genotyping Assay
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hymowitz, T.; Shurtleff, W.R. Debunking soybean myths and legends in the historical and popular literature. Crop Sci. 2005, 45, 473–476. [Google Scholar] [CrossRef]
- Burr, G.O.; Burr, M.M. A new deficiency disease produced by the rigid exclusion of fat from the diet. J. Biol. Chem. 1929, 82, 345–367. [Google Scholar] [CrossRef]
- Semplicini, A.; Valle, R. Fish oils and their possible role in the treatment of cardiovascular diseases treatment of cardiovascular diseases. Pharmacol. Ther. 1994, 61, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Din, J.N.; Newby, D.E.; Flapan, A.D. Omega 3 fatty acids and cardiovascular disease—Fishing for a natural treatment. Br. Med. J. 2004, 328, 30–35. [Google Scholar] [CrossRef]
- De Lorgeril, M.; Salen, P. New insights into the health effects of dietary saturated and omega-6 and omega-3 polyunsaturated fatty acids. BMC Med. 2012, 10, 50. [Google Scholar] [CrossRef]
- Innes, J.K.; Calder, P.C. Omega-6 fatty acids and inflammation. Prostaglandins, Leukotrienes Essent. Fatty Acids 2018, 132, 41–48. [Google Scholar] [CrossRef]
- Innis, S.M. Dietary omega 3 fatty acids and the developing brain. Brain Res. 2008, 1237, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.X. The Importance of Omega-6/Omega-3 Fatty Acid Ratio in Cell Function. In Omega-6/Omega-3 Essential Fatty Acid Ratio: The Scientific Evidence; Simopoulos, A.P., Cleland, L.G., Eds.; Karger: Basel, Switzerland, 2003; Volume 92, pp. 23–36. [Google Scholar] [CrossRef]
- Leaf, A.; Kang, J.X.; Xiao, Y.F.; Billman, G.E. Clinical prevention of sudden cardiac death by n-3 polyunsaturated fatty acids and mechanism of prevention of arrhythmias by n-3 fish oils. Circulation 2003, 107, 2646–2652. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Importance of the Omega-6/Omega-3 Balance in Health and Disease: Evolutionary Aspects of Diet. In Healthy Agriculture Healthy Nutrition Healthy People; Simopouulos, A.P., Koletzko, B., Eds.; Karger: Basel, Switzerland, 2011; pp. 10–21. [Google Scholar] [CrossRef]
- Harris, W.S.; Assaad, B.; Poston, W.C. Tissue omega-6/omega-3 fatty acid ratio and risk for coronary artery disease. Am. J. Cardiol. 2006, 98, 19–26. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Omega-6/omega-3 essential fatty acid ratio and chronic diseases. Food Rev. Int. 2004, 20, 77–90. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef]
- Chaves, H.; Singh, R.B.; Khan, S.; Wilczynska, A.; Takahashi, T. High omega-6/omega-3 fatty acid ratio diets and risk of noncommunicable diseases: Is the tissue, the main issue? In The Role of Functional Food Security in Global Health; Singh, R.B., Watson, R.R., Takahashi, T., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 217–259. [Google Scholar] [CrossRef]
- Fabian, C.J.; Kimler, B.F.; Hursting, S.D. Omega-3 fatty acids for breast cancer prevention and survivorship. Breast Cancer Res. 2015, 17, 62. [Google Scholar] [CrossRef]
- Dierking, E.C.; Bilyeu, K.D. New sources of soybean seed meal and oil composition traits identified through TILLING. BMC Plant Biol. 2009, 9, 89. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.; Woo, C.; Norah, N.; Song, J.T.; Lee, J.D. Novel allele of FAD2-1A from an EMS-Induced mutant soybean line (PE529) produces elevated levels of oleic acid in soybean oil. Agronomy 2022, 12, 2115. [Google Scholar] [CrossRef]
- Pham, A.T.; Lee, J.D.; Shannon, J.G.; Bilyeu, K.D. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait. BMC Plant Biol. 2010, 10, 195. [Google Scholar] [CrossRef]
- Pham, A.T.; Lee, J.D.; Shannon, J.G.; Bilyeu, K.D. A novel FAD2-1A allele in a soybean plant introduction offers an alternate means to produce soybean seed oil with 85% oleic acid content. Theor. Appl. Genet. 2011, 123, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Pham, A.T.; Shannon, J.G.; Bilyeu, K.D. Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil. Theor. Appl. Genet. 2012, 125, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Takagi, Y.; Rahman, S.M. Inheritance of high oleic acid content in the seed oil of soybean mutant M23. Theor. Appl. Genet. 1996, 92, 179–182. [Google Scholar] [CrossRef]
- Jo, H.; Kim, M.; Cho, H.; Ha, B.K.; Kang, S.; Song, J.T.; Lee, J.D. Identification of a potential gene for elevating ω-3 concentration and its efficiency for improving the ω-6/ω-3 ratio in soybean. J. Agric. Food Chem. 2021, 69, 3836–3847. [Google Scholar] [CrossRef] [PubMed]
- Asekova, S.; Chae, J.H.; Ha, B.K.; Dhakal, K.H.; Chung, G.; Shannon, J.G.; Lee, J.D. Stability of elevated αlinolenic acid derived from wild soybean (Glycine soja Sieb. & Zucc.) across environments. Euphytica 2014, 195, 409–418. [Google Scholar] [CrossRef]
- Dhakal, K.H.; Lee, J.D.; Jeong, Y.S.; Kim, H.S.; Shannon, J.G.; Hwang, Y.H. Stability of linolenic acid in seed oil of soybean accessions with elevated linolenic acid concentration. J. Food Agric. Environ. 2013, 11, 80–85. [Google Scholar]
- Chae, J.H.; Ha, B.K.; Chung, G.; Park, J.E.; Park, E.; Ko, J.M.; Shannon, J.G.; Song, J.T.; Lee, J.D. Identification of environmentally stable wild soybean genotypes with high alpha-linolenic acid concentration. Crop Sci. 2015, 55, 1629–1636. [Google Scholar] [CrossRef]
- Ha, B.K.; Kim, H.J.; Velusamy, V.; Vuong, T.D.; Nguyen, H.T.; Shannon, J.G.; Lee, J.D. Identification of quantitative trait loci controlling linolenic acid concentration in PI483463 (Glycine soja). Theor. Appl. Genet. 2014, 127, 1501–1512. [Google Scholar] [CrossRef]
- Kulkarni, K.P.; Kim, M.; Song, J.T.; Bilyeu, K.D.; Lee, J.D. Genetic improvement of the fatty acid biosynthesis system to alter the ω-6/ω-3 ratio in the soybean seed. J. Am. Oil Chem. Soc. 2017, 94, 1403–1410. [Google Scholar] [CrossRef]
- Shibata, M.; Takayama, K.; Ujiie, A.; Yamada, T.; Abe, J.; Kitamura, K. Genetic relationship between lipid content and linolenic acid concentration in soybean seeds. Breed. Sci. 2008, 58, 361–366. [Google Scholar] [CrossRef][Green Version]
- Yao, Y.; You, Q.; Duan, G.; Ren, J.; Chu, S.; Zhao, J.; Li, X.; Zhou, X.; Jiao, Y. Quantitative trait loci analysis of seed oil content and composition of wild and cultivated soybean. BMC Plant Biol. 2020, 20, 51. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, T.; Takagi, Y.; Anai, T. Novel GmFAD2-1b mutant alleles created by reverse genetics induce marked elevation of oleic acid content in soybean seeds in combination with GmFAD2-1a. Breed. Sci. 2010, 60, 419–425. [Google Scholar] [CrossRef]
- Lee, J.D.; Kim, M.; Kulkarni, K.P.; Song, J.T. Agronomic traits and fatty acid composition of high–oleic acid cultivar Hosim. Plant Breed. Biotechnol. 2018, 6, 44–50. [Google Scholar] [CrossRef][Green Version]
- Serhan, C.N.; Chiang, N.; Van Dyke, T.E. Resolving inflammation: Dual anti-inflammatory and proresolution lipid mediators. Nat. Rev. Immunol. 2008, 8, 349–361. [Google Scholar] [CrossRef]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef]
- Pantalone, V.R.; Rebetzke, G.J.; Burton, J.W.; Wilson, R.F. Genetic regulation of linolenic acid concentration in wild soybean Glycine soja accessions. J. Am. Oil Chem. Soc. 1997, 74, 159–163. [Google Scholar] [CrossRef]
- Dornbos, D.L.; Mullen, R.E. Soybean seed protein and oil concentrations and fatty acid composition adjustments by drought and temperature. J. Am. Oil Chem. Soc. 1992, 69, 228–231. [Google Scholar] [CrossRef]
- Hou, G.; Ablett, G.R.; Pauls, K.P.; Rajcan, I. Environmental effects on fatty acid levels in soybean seed oil. J. Am. Oil Chem. Soc. 2006, 83, 759–763. [Google Scholar] [CrossRef]
- Howell, R.W.; Collins, F.I. Factors Affecting Linolenic and Linoleic Acid Concentration of Soybean Oil1. Agron. J. 1957, 49, 593–597. [Google Scholar] [CrossRef]
- Rennie, B.D.; Tanner, J.W. Fatty acid composition of oil from soybean seeds grown at extreme temperatures. J. Am. Oil Chem. Soc. 1989, 66, 1622–1624. [Google Scholar] [CrossRef]
- Wilson, R.F. Seed Composition. In Soybeans: Improvement, Production, and Uses, 3rd ed.; Shibles, R.M., Harper, J.E., Wilson, R.F., Shoemaker, R.C., Eds.; American Society of Agronomy, Inc.: Madison, WI, USA, 2004; Volume 16, pp. 621–677. [Google Scholar]
- Wolf, R.B.; Cavins, J.F.; Kleiman, R.; Black, L.T. Effect of temperature on soybean seed constituents: Oil, protein, moisture, fatty acids, amino acids and sugars. J. Am. Oil Chem. Soc. 1982, 59, 230–232. [Google Scholar] [CrossRef]
- Combs, R.; Bilyeu, K. Novel alleles of FAD2-1A induce high levels of oleic acid in soybean oil. Mol. Breed. 2019, 39, 79. [Google Scholar] [CrossRef]
- Bilyeu, K.; Škrabišová, M.; Allen, D.; Rajcan, I.; Palmquist, D.E.; Gillen, A.; Mian, R.; Jo, H. The interaction of the soybean seed high oleic acid oil trait with other fatty acid modifications. J. Am. Oil Chem. Soc. 2018, 95, 39–49. [Google Scholar] [CrossRef]
- Thapa, R.; Carrero-Colon, M.; Crowe, M.; Gaskin, E.; Hudson, K. Novel FAD2–1A alleles confer an elevated oleic acid phenotype in soybean seeds. Crop Sci. 2016, 56, 226–231. [Google Scholar] [CrossRef]
- Nan, H.; Lu, S.; Fang, C.; Hou, Z.; Yang, C.; Zhang, Q.; Liu, B.; Kong, F. Molecular breeding of a high oleic acid soybean line by integrating natural variations. Mol. Breed. 2020, 40, 87. [Google Scholar] [CrossRef]
Name | Genotype | Fatty Acid Profile | Note | Reference | ||
---|---|---|---|---|---|---|
FAD2-1A (Glyma.10g278000) | FAD2-1B (Glyma.20g111000) | HD (Glyma.05g221500) | ||||
PE529 | fad2-1aW293STOP | FAD2-1B | HD | Elevated oleic acid | Parent 1 (P1) | Jo et al. [18] |
S08-14719 | fad2-1aDEL | fad2-1b | HD | High oleic acid | Parent 2 (P2) | Pham et al. [19] |
Hosim | fad2-1aS117N | fad2-1b | HD | High oleic acid | Parent 3 (P3) | Lee et al. [32] |
JD17-20-2-39 | FAD2-1A | FAD2-1B | Hd | Elevated ω-3 | Parent 4 (P4) | Jo et al. [23] |
Population 1 | FAD2-1A/fad2-1aW293WTOP | HD/hd | P1 × P4 | |||
Population 2 | FAD2-1A/fad2-1aDEL | HD/hd | P2 × P4 | |||
Population 3 | FAD2-1A/fad2-1aS117N | HD/hd | P3 × P4 |
ID | Genotypic Groups | Fatty Acid Concentration (%) | |||||
---|---|---|---|---|---|---|---|
Palmitic Acid | Stearic Acid | Oleic Acid | Linoleic Acid (ω-6) | α-Linolenic Acid (ω-3) | ω-6/ω-3 | ||
Pungsannamul | AAHH (n = 13) | 11.8 ± 0.4 f | 2.9 ± 0.3 a | 19.7 ± 2.3 cd | 55.6 ± 1.9 efg | 10.0 ± 0.8 abc | 5.6 ± 0.5 ef |
PE529 | aaHH (n = 13) | 9.0 ± 0.8 a | 4.1 ± 0.6 bc | 42.2 ± 4.9 h | 33.7 ± 4.2 a | 11.0 ± 0.6 c | 3.0 ± 0.3 a |
JD17-20-2-39 | AAhh (n = 13) | 11.2 ± 0.4 e | 2.4 ± 0.2 a | 11.6 ± 1.0 a | 58.2 ± 0.8 gh | 16.6 ± 1.2 f | 3.5 ± 0.3 b |
F2 seed | AAHH (n = 8) | 10.6 ± 1.2 d | 5.0 ± 0.8 d | 20.0 ± 2.9 cd | 55.0 ± 1.8 ef | 9.3 ± 0.8 a | 5.9 ± 0.5 f |
AAHh (n = 7) | 10.5 ± 0.4 cd | 4.0 ± 0.8 bc | 19.1 ± 1.2 c | 55.9 ± 1.4 fg | 10.4 ± 1.0 bc | 5.4 ± 0.6 de | |
Aahh (n = 7) | 9.9 ± 0.4 bc | 2.8 ± 0.2 a | 14.2 ± 0.6 ab | 59.3 ± 0.9 h | 13.8 ± 0.6 d | 4.3 ± 0.3 c | |
AaHH (n = 9) | 10.5 ± 0.9 cd | 4.5 ± 0.5 cd | 23.2 ± 3.2 e | 52.0 ± 2.3 d | 9.7 ± 0.7 ab | 5.4 ± 0.3 de | |
AaHh (n = 27) | 9.9 ± 0.6 bc | 4.0 ± 0.6 bc | 22.4 ± 1.8 de | 53.2 ± 1.7 de | 10.5 ± 0.9 bc | 5.1 ± 0.4 d | |
Aahh (n = 11) | 9.5 ± 0.4 ab | 2.8 ± 0.4 a | 15.3 ± 2.6 b | 57.6 ± 1.5 fgh | 14.8 ± 1.8 e | 3.9 ± 0.5 bc | |
aaHH (n = 5) | 9.4 ± 0.4 ab | 4.3 ± 0.3 c | 39.6 ± 4.6 gh | 37.3 ± 4.5 b | 9.3 ± 0.5 a | 4.0 ± 0.5 c | |
aaHh (n = 18) | 9.1 ± 0.4 a | 3.7 ± 0.4 b | 38.5 ± 3.9 g | 38.0 ± 3.6 b | 10.6 ± 0.8 bc | 3.6 ± 0.4 b | |
aahh (n = 4) | 9.1 ± 0.3 a | 2.8 ± 0.3 a | 32.5 ± 5.8 f | 42.1 ± 5.6 c | 13.6 ± 0.2 d | 3.1 ± 0.4 a |
ID | Genotypic Groups | Fatty Acid Concentration (%) | |||||
---|---|---|---|---|---|---|---|
Palmitic Acid | Stearic Acid | Oleic Acid | Linoleic Acid (ω-6) | α-Linolenic Acid (ω-3) | ω-6/ω-3 | ||
Pungsannamul | A1A1BBHH (n = 13) | 11.8 ± 0.4 f | 2.9 ± 0.3 a | 19.7 ± 2.3 cd | 55.6 ± 1.9 efg | 10.0 ± 0.8 abc | 5.6 ± 0.5 ef |
S08-14719 | a1a1bbHH (n = 13) | 7.9 ± 0.3 a | 3.1 ± 0.3 cd | 80.4 ± 1.2 e | 2.4 ± 0.9 a | 6.3 ± 0.9 a | 0.4 ± 0.1 a |
PI283327 | A1A1bbHH (n = 13) | 11.0 ± 0.3 b | 4.5 ± 0.2 e | 27.1 ± 2.6 d | 47.0 ± 2.0 c | 10.4 ± 0.6 c | 4.5 ± 0.2 e |
JD17-20-2-39 | A1A1BBhh (n = 13) | 11.2 ± 0.4 e | 2.4 ± 0.2 a | 11.6 ± 1.0 a | 58.2 ± 0.8 gh | 16.6 ± 1.2 f | 3.5 ± 0.3 b |
F2 seed | A1A1BBHH (n = 4) | 12.7 ± 0.8 d | 3.0 ± 1.1 cd | 20.2 ± 3.5 c | 52.7 ± 4.1 d | 11.3 ± 0.7 c | 4.7 ± 0.6 e |
A1A1BBhh (n = 2) | 13.4 ± 2.3 d | 2.0 ± 0.8 a | 12.2 ± 2.3 a | 57.5 ± 2.4 ef | 15.0 ± 1.6 d | 3.9 ± 0.6 d | |
A1A1bbHH (n = 7) | 11.9 ± 0.5 c | 3.5 ± 0.4 d | 26.8 ± 3.9 d | 47.0 ± 3.3 c | 10.7 ± 1.1 c | 4.4 ± 0.6 e | |
A1A1bbhh (n = 11) | 11.7 ± 1.0 bc | 2.3 ± 0.5 ab | 16.5 ± 2.5 b | 53.0 ± 2.5 d | 16.3 ± 1.5 e | 3.3 ± 0.4 c | |
a1a1BBhh (n = 6) | 11.0 ± 1.2 b | 2.9 ± 0.9 bc | 26.1 ± 3.7 d | 40.8 ± 3.3 b | 18.6 ± 2.3 f | 2.2 ± 0.3 b | |
a1a1bbHH (n = 8) | 8.2 ± 0.5 a | 3.3 ± 0.5 cd | 80.6 ± 1.4 e | 2.2 ± 0.4 a | 5.6 ± 0.3 a | 0.4 ± 0.1 a | |
a1a1bbhh (n = 5) | 8.2 ± 0.3 a | 1.8 ± 0.7 a | 78.6 ± 1.5 e | 2.4 ± 0.4 a | 8.4 ± 0.9 b | 0.3 ± 0.1 a |
ID | Genotypic Groups | Fatty Acid Concentration (%) | |||||
---|---|---|---|---|---|---|---|
Palmitic Acid | Stearic Acid | Oleic Acid | Linoleic Acid (ω-6) | α-Linolenic Acid (ω-3) | ω-6/ω-3 | ||
Pungsannamul | A2A2BBHH (n = 13) | 11.8 ± 0.4 f | 2.9 ± 0.3 a | 19.7 ± 2.3 cd | 55.6 ± 1.9 efg | 10.0 ± 0.8 abc | 5.6 ± 0.5 ef |
Hosim | a2a2bbHH (n = 13) | 7.7 ± 0.1 ab | 2.8 ± 0.1 bc | 79.5 ± 0.7 h | 3.6 ± 0.4 a | 6.4 ± 0.4 a | 0.6 ± 0.1 a |
PI283327 | A2A2bbHH (n = 13) | 11.0 ± 0.3 ef | 4.5 ± 0.2 f | 27.1 ± 2.6 d | 47.0 ± 2.0 c | 10.4 ± 0.6 c | 4.5 ± 0.2 e |
JD17-20-2-39 | A2A2BBhh (n = 13) | 11.2 ± 0.4 e | 2.4 ± 0.2 a | 11.6 ± 1.0 a | 58.2 ± 0.8 gh | 16.6 ± 1.2 f | 3.5 ± 0.3 b |
F2 seed | A2A2BBHH (n = 1) | 10.6 ± 0.0 | 4.1 ± 0.0 | 25.0 ± 0.0 | 50.8 ± 0.0 | 9.4 ± 0.0 | 5.4 ± 0.0 |
A2A2BBhh (n = 8) | 10.2 ± 1.3 de | 2.7 ± 0.4 bc | 16.4 ± 3.7 b | 55.4 ± 1.4 de | 15.2 ± 2.4 e | 3.7 ± 0.5 cd | |
A2A2bbHH (n = 4) | 10.2 ± 1.9 de | 4.0 ± 0.6 e | 32.8 ± 8.9 e | 45.0 ± 7.4 c | 8.0 ± 0.8 b | 5.6 ± 0.6 f | |
A2A2bbhh (n = 8) | 9.6 ± 0.6 cd | 2.8 ± 0.2 bc | 21.4 ± 2.3 c | 53.0 ± 2.2 d | 13.3 ± 1.0 d | 4.0 ± 0.3 d | |
a2a2BBHH (n = 6) | 10.1 ± 2.4 de | 3.6 ± 0.9 de | 40.3 ± 12.7 f | 36.6 ± 10.3 b | 9.2 ± 1.2 bc | 4.0 ± 1.0 cd | |
a2a2BBhh (n = 3) | 8.7 ± 0.7 bc | 2.8 ± 0.6 bc | 35.5 ± 2.2 e | 39.8 ± 0.3 b | 13.3 ± 2.5 d | 3.1 ± 0.7 b | |
a2a2bbHH (n = 6) | 8.4 ± 1.9 ab | 3.5 ± 0.7 d | 77.3 ± 3.6 gh | 4.3 ± 1.6 a | 6.5 ± 0.9 a | 0.7 ± 0.2 a | |
a2a2bbhh (n = 9) | 7.6 ± 0.8 a | 1.8 ± 0.4 a | 74.8 ± 2.4 g | 6.4 ± 2.2 a | 9.3 ± 1.2 bc | 0.7 ± 0.2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Jo, H.; Lee, J.-D. Combining a Mutant Allele of FAD2-1A with HD Improves the ω-6/ω-3 Ratio in Soybeans. Agronomy 2023, 13, 913. https://doi.org/10.3390/agronomy13030913
Kim H, Jo H, Lee J-D. Combining a Mutant Allele of FAD2-1A with HD Improves the ω-6/ω-3 Ratio in Soybeans. Agronomy. 2023; 13(3):913. https://doi.org/10.3390/agronomy13030913
Chicago/Turabian StyleKim, Hwayeop, Hyun Jo, and Jeong-Dong Lee. 2023. "Combining a Mutant Allele of FAD2-1A with HD Improves the ω-6/ω-3 Ratio in Soybeans" Agronomy 13, no. 3: 913. https://doi.org/10.3390/agronomy13030913
APA StyleKim, H., Jo, H., & Lee, J.-D. (2023). Combining a Mutant Allele of FAD2-1A with HD Improves the ω-6/ω-3 Ratio in Soybeans. Agronomy, 13(3), 913. https://doi.org/10.3390/agronomy13030913