Chemical Characteristics Analysis and Quality Assessment of Reed-Based Spent Mushroom Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. SMS Collection of P. australis Substrate
2.3. Chemical Analysis of SMS
2.3.1. Determination Parameters for Feed Nutrient
2.3.2. Determination Parameters for Fertilizer Nutrients
2.3.3. Microelement and Heavy Metal Characteristics
2.4. Statistical Analysis
3. Results
3.1. Organic Compounds of SMS
3.2. Chemical Characteristics of SMSp
3.3. Microelements and Heavy Metals in SMS
3.4. Principal Component Analysis of SMS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grimm, D.; Wösten, H.A.B. Mushroom cultivation in the circular economy. Appl. Microbiol. Biotechnol. 2018, 102, 7795–7803. [Google Scholar] [CrossRef] [Green Version]
- Mohd Hanafi, F.H.; Rezania, S.; Mat Taib, S.; Md Din, M.F.; Yamauchi, M.; Sakamoto, M.; Hara, H.; Park, J.; Ebrahimi, S.S. Environmentally sustainable applications of agro-based spent mushroom substrate (SMS): An overview. J. Mater. Cycles Waste Manag. 2018, 20, 1383–1396. [Google Scholar] [CrossRef]
- Royse, D.J.; Rhodes, T.W.; Ohga, S.; Sanchez, J.E. Yield, mushroom size and time to production of Pleurotus cornucopiae (oyster mushroom) grown on switch grass substrate spawned and supplemented at various rates. Bioresour. Technol. 2004, 91, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y.H.; Jeong, C.S. Feeding value of spent mushroom (Pleurotus eryngii) substrate. J. Mushroom 2012, 10, 236–243. [Google Scholar] [CrossRef]
- Finney, K.N.; Ryu, C.; Sharifi, V.N.; Swithenbank, J. The reuse of spent mushroom compost and coal tailings for energy recovery: Comparison of thermal treatment technologies. Bioresour. Technol. 2009, 100, 310–315. [Google Scholar] [CrossRef]
- Carrasco, J.; Zied, D.C.; Pardo, J.E.; Preston, G.M.; Pardo-Giménez, A. Supplementation in mushroom crops and its impact on yield and quality. AMB Express 2018, 8, 146. [Google Scholar] [CrossRef] [Green Version]
- Oanh, N.T.K.; Permadi, D.A.; Hopke, P.K.; Smith, K.R.; Dong, N.P.; Dang, A.N. Annual emissions of air toxics emitted from crop residue open burning in Southeast Asia over the period of 2010–2015. Atmos. Environ. 2018, 187, 163–173. [Google Scholar] [CrossRef]
- Rahi, D.K.; Rahi, S.; Pandey, A.K.; Rajak, R.C. Enzymes from mushrooms and their industrial application. In Advances in Fungal Biotechnology; Rai, M., Ed.; IK International Publishing House Pvt. Ltd.: New Dehli, India, 2009; pp. 136–184. [Google Scholar]
- Li, F.; Kong, Q.; Zhang, Q.; Wang, H.; Wang, L.; Luo, T. Spent mushroom substrates affect soil humus composition, microbial biomass and functional diversity in paddy fields. Appl. Soil Ecol. 2020, 149, 103489. [Google Scholar] [CrossRef]
- Phan, C.W.; Sabaratnam, V. Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes. Appl. Microbiol. Biotechnol. 2012, 96, 863–873. [Google Scholar] [CrossRef] [PubMed]
- Tran, H. Vermicomposting of Spent Mushroom Compost Using Perionyxexkavatus and Artificial Nutrient Compound. Int. J. Environ. Agric. Res. 2016, 2, 101–109. [Google Scholar]
- Gobbi, V.; Nicoletto, C.; Zanin, G.; Sambo, P. Specific humus systems from mushrooms culture. Appl. Soil Ecol. 2018, 123, 709–713. [Google Scholar] [CrossRef]
- Oguri, E.; Takimura, O.; Matsushika, A.; Inoue, H.; Sawayama, S. Bioethanol Production by Pichia stipitis from Enzymatic Hydrolysates of Corncob-based Spent Mushroom Substrate. Food Sci. Technol. Res. 2011, 17, 267–272. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.J.; Sun, G.Q.; Guo, J.F.; Wang, H.Y.; Pang, J.; Xie, Y.J. Latest research progress and utilization on spent mushroom substrate. Edible Fungi China 2017, 35, 1–4, (Chinese with English Abstract). [Google Scholar] [CrossRef]
- Medina, E.; Paredes, C.; Bustamante, M.; Moral, R.; Moreno-Caselles, J. Relationships between soil physico-chemical, chemical and biological properties in a soil amended with spent mushroom substrate. Geoderma 2012, 173–174, 152–161. [Google Scholar] [CrossRef]
- Fazaeli, H.; Shafyee-Varzeneh, H.; Farahpoor, A.; Moayyer, A. Recycling of mushroom compost wheat straw in the diet of feedlot calves with two physical forms. Int. J. Recycl. Org. Waste Agric. 2014, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Paripuranam, T.D.; Divya, V.V.; Ulaganathan, P.; Balamurugan, V.; Umamaheswari, S. Replacing fish meal with earthworm and mushroom meals in practival diets of Labeo rohita and Hemigrammus caudovittatus fingerlings. Indian J. Anim. Res. 2011, 45, 115–119. [Google Scholar]
- Vega, F.E.; Blackwell, M. Insect-Fungal Associations: Ecology and Evolution; Oxford University Press: New York, NY, USA, 2005; ISBN 9780195166521. [Google Scholar]
- Cline, A.R.; Leschen, R.A.B. Coleoptera associated with the oyster mushroom, Pleurotus ostreatus Fries, in North America. Southeast. Nat. 2005, 4, 409–420. [Google Scholar] [CrossRef]
- Devi, J.; Deb, U.; Barman, S.; Das, S.; Bhattacharya, S.S.; Tsang, Y.F.; Lee, J.-H.; Kim, K.-H. Appraisal of lignocellusoic biomass degrading potential of three earthworm species using vermireactor mediated with spent mushroom substrate: Compost quality, crystallinity, and microbial community structural analysis. Sci. Total Environ. 2020, 716, 135215. [Google Scholar] [CrossRef]
- Chukwurah, N.F.; Eze, S.C.; Chiejina, N.V.; Onyeonagu, C.C.; Ugwuoke, K.I.; Ugwu, F.S.O.; Nkwonta, C.G.; Akobueze, E.U.; Aruah, C.B.; Onwuelughasi, C.U. Performance of oyster mushroom (Pleurotus ostreatus) in different local agricultural waste materials. Afr. J. Biotechnol. 2012, 11, 8979–8985. [Google Scholar] [CrossRef]
- Liang, Z.C.; Wu, C.Y.; Shieh, Z.L.; Cheng, S.L. Utilization of grass plants for cultivation of Pleurotus citrinopileatus. Int. Biodeterior. Biodegrad. 2009, 63, 509–514. [Google Scholar] [CrossRef]
- Moonmoon, M.; Uddin, N.; Ahmed, S.; Shelly, N.J.; Khan, A. Cultivation of different strains of king oyster mushroom (Pleurotus eryngii) on saw dust and rice straw in Bangiadesh. Saudi J. Biol. Sci. 2012, 17, 341–345. [Google Scholar] [CrossRef] [Green Version]
- Elbagory, M.; El-Nahrawy, S.; Omara, A.E.-D.; Eid, E.M.; Bachheti, A.; Kumar, P.; Fayssal, S.A.; Adelodun, B.; Bachheti, R.K.; Kumar, P.; et al. Sustainable Bioconversion of Wetland Plant Biomass for Pleurotus ostreatus var. florida Cultivation: Studies on Proximate and Biochemical Characterization. Agriculture 2022, 12, 2095. [Google Scholar] [CrossRef]
- Hultberg, M.; Prade, T.; Bodin, H.; Vidakovic, A.; Asp, H. Adding benefit to wetlands-Valorization of harvested common reed through mushroom production. Sci. Total Environ. 2018, 637, 1395–1399. [Google Scholar] [CrossRef]
- de Ita, M.V.; Antonio, M.D.C.; Lara, M.H.; Arenas, O.R. Wild reed (Arundo donax) as an alternative substrate in the production of Pleurotus ostreatus. Sci. Fungorum 2018, 48, 15–22. [Google Scholar] [CrossRef]
- Li, X.Y.; Liu, X.T.; Li, X.J.; Jiang, M.; Yang, F.Y.; Wen, B.L. Sample of saline-alkaline wetland agriculture in western Songnen Plain: Reed-Fish-Crab-Mushroom mode. Wetland Sci. 2021, 19, 106–109, (Chinese with English Abstract). [Google Scholar] [CrossRef]
- Li, X.Y.; Chen, G.S.; Li, X.J.; Yao, F. Three Pleurotus mushroom species cultivated in a mixed Phragmites australis substrate differ in nutrient utilization capacity. J. Food Compos. Anal. 2023, 115, 104924. [Google Scholar] [CrossRef]
- Yang, Y.L.; Mou, X.J.; Wen, B.L.; Liu, X. Soil Carbon, Nitrogen and Phosphorus Concentrations and Stoichiometries Across a Chronosequence of Restored Inland Soda Saline-Alkali Wetlands, Western Songnen Plain, Northeast China. Chin. Geogr. Sci. 2020, 30, 934–946. [Google Scholar] [CrossRef]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications); Agriculture Handbook No. 379; Agriculture Research Service, USDA: Washington, DC, USA, 1970; pp. 387–598. [Google Scholar]
- Koutrotsios, G.; Mountzouris, K.C.; Chatzipavlidis, I.; Zervakis, G.I. Bioconversion of lignocellulosic residues by Agrocybe cylindracea and Pleurotus ostreatus mushroom fungi-Assessment of their effect on the final product and spent substrate properties. Food Chem. 2014, 161, 127–135. [Google Scholar] [CrossRef]
- Llames, C.; Fontaine, J. Determination of amino acids in feeds: Collaborative study. J. AOAC Int. 1994, 77, 1362–1402. [Google Scholar] [CrossRef]
- Menandro, L.M.S.; Cantarella, H.; Franco, H.C.J.; Kölln, O.T.; Pimenta, M.T.B.; Sanches, G.M.; Rabelo, S.C.; Carvalho, J.L.N. Comprehensive assessment of sugarcane straw: Implications for biomass and bioenergy production. Biofuels Bioprod. Biorefining 2017, 11, 488–504. [Google Scholar] [CrossRef]
- Lou, Z.-M.; Wang, Z.-X.; Zhou, X.-X.; Fu, R.-Q.; Liu, Y.; Xu, X.-H. Compositional variation of spent mushroom substrate during cyclic utilization and its environmental impact. Environ. Sci. 2016, 37, 397–402. [Google Scholar] [CrossRef]
- Preeyaporn, S.; Anon, T.; Sutticha, N.R.T. Evaluation of spent mushroom substrate after cultivation of Pleurotus ostreatus as a new raw material for xylooligosaccharides production using crude xylanases from Aspergillus favus KUB2. 3 Biotech 2021, 11, 176. [Google Scholar] [CrossRef]
- Kim, Y.I.; Lee, Y.H.; Kim, K.H.; Oh, Y.K.; Moon, Y.H.; Kwak, W.S. Effects of Supplementing Microbially-fermented Spent Mushroom Substrates on Growth Performance and Carcass Characteristics of Hanwoo Steers (a Field Study). Asian-Aust. J. Anim. Sci. 2012, 25, 1575–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, X.; Hu, H.; Shi, X.; Zhang, L.; He, J. Effects of different agricultural wastes on the dissipation of PAHs and the PAH-degrading genes in a PAH contaminated soil. Chemosphere 2017, 172, 286–293. [Google Scholar] [CrossRef]
- Lou, Z.; Sun, Y.; Bian, S.; Baig, S.A.; Hu, B.; Xu, X. Nutrient conservation during spent mushroom compost application using spent mushroom substrate derived biochar. Chemosphere 2017, 169, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.X. Screening of New Matrix and Nutritional Physiology; Jilin Agricultural University: Changchun, China, 2014. [Google Scholar]
- González Matute, R.; Figlas, D.; Curvetto, N. Agaricus blazei production on non-composted substrates based on sunflower seed hulls and spent oyster mushroom substrate. World J. Microbiol. Biotechnol. 2011, 27, 1331–1339. [Google Scholar] [CrossRef]
- Cheng, Z.Q.; Liu, J.H.; Kang, L.J.; Zhang, H.M.; Ma, Q. Characteristics and environmental impact of the waste materials cultured Auricularia auricular. Environ. Pollut. Prev. 2017, 34, 45–54, (Chinese with English Abstract). [Google Scholar] [CrossRef]
- Deng, B.L.; Shi, Y.Z.; Zhang, L. Effects of spent mushroom substrate-derived biochar on soil CO2 and N2O emissions depend on pyrolysis temperature. Chemosphere 2020, 246, 125608. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, R.; Li, D.; Qi, C.; Han, L.; Chen, M.; Fu, F.; Yuan, J.; Li, G. Effects of calcium magnesium phosphate fertilizer, biochar and spent mushroom substrate on compost maturity and gaseous emissions during pig manure composting. J. Environ. Manag. 2020, 267, 110649. [Google Scholar] [CrossRef]
- Li, S.; Li, D.; Li, J.; Li, Y.; Li, G.; Zang, B.; Li, Y. Effects of spent mushroom substrate as a bulking agent on gaseous emissions and compost quality during pig manure composting. Environ. Sci. Pollut. Res. Int. 2018, 25, 12398–12406. [Google Scholar] [CrossRef]
Categories | Parameters | Methods | References |
---|---|---|---|
Feed nutrient | NDF | Van-soest washing methods | [22] |
ADF | |||
Ash | |||
Crude protein | Macro Kjeldahl method | [23] | |
Amino acids | Ion exchange chromatography | [24] | |
Total sugar | Determination Standard | GB/T 15672-2009 | |
Crude polysaccharide | Determination Standard | NY/T 1676-2008 | |
Crude lipid | Determination standard | GB/T6433-2006 | |
Fertilizer nutrient | pH | PHS-3 | |
Total carbon | H2SO4-K2Cr2O7 oxidation method | ||
Total nitrogen | SAN++ continuous flow chemical analyzer | ||
Total phosphorus | |||
Total potassium | atomic absorption spectrometry | ||
Ca | |||
Microelements | Cu | atomic absorption spectrometry | GB/T13885-2017; GB/T13080-2018 |
Fe | |||
Zn | |||
Mn | |||
Se | Method of heavy metals in feed | ||
Heavy metals | Cd | atomic absorption spectrometry | GB/T13885-2017; GB/T13080-2018 |
Cr | |||
Hg | |||
Pb | |||
As | Method of heavy metals in feed | ||
Ni |
DW | |||||
---|---|---|---|---|---|
Zn (mg/kg) | Fe (g/kg) | Mn (mg/kg) | Cu (mg/kg) | Se (mg/kg) | |
S | 24.51 ± 1.35 a | 1.24 ± 0.13 a | 68.64 ± 7.20 c | 4.36 ± 0.24 b | 0.000 ± 0.000 b |
SMS-P.C | 2.92 ± 0.60 c | 1.32 ± 0.14 a | 97.25 ± 3.17 b | 10.91 ± 2.01 a | 0.003 ± 0.001 b |
SMS-P.O | 3.51 ± 0.25 c | 0.84 ± 0.08 cb | 56.38 ± 4.06 c | 5.49 ± 2.33 b | 0.013 ± 0.004 a |
SMS-P.E | 11.09 ± 0.36 b | 0.76 ± 0.02 b | 120.29 ± 1.46 a | 11.11 ± 0.94 a | 0.006 ± 0.003 ab |
mg/kg DW | ||||||
---|---|---|---|---|---|---|
Pb | Cd | Hg | Cr | As | Ni | |
S | 2.40 ± 0.36 b | 0.07 ± 0.01 a | 0.009 ± 0.000 a | 90.87 ± 23.75 a | 7.37 ± 0.25 a | 8.81 ± 0.23 c |
SMS-P.C | 11.45 ± 1.96 a | 0.11 ± 0.02 a | 0.002 ± 0.000 b | 61.16 ± 8.55 ab | 0.62 ± 0.01 b | 18.90 ± 1.35 a |
SMS-P.O | 10.39 ± 1.16 a | 0.10 ± 0.00 a | 0.002 ± 0.000 b | 41.69 ± 7.30 b | 0.41 ± 0.02 b | 14.88 ± 1.78 b |
SMS-P.E | 9.25 ± 1.16 a | 0.11 ± 0.01 a | 0.002 ± 0.000 b | 53.82 ± 2.54 ab | 0.66 ± 0.10 b | 14.17 ± 0.97 b |
Substrate | Mushroom | Utilization Of SMS | pH | C | N | C/N | P | K | NDF | ANF | Crude Protein | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
% | ||||||||||||
-- | A. bisporus | Fertilizer | - | 39.85 | 1.88 | 21.20 | 0.46 | 0.64 | - | - | - | Li et al., 2020 [9] |
Some wood | Auricularia auricular | - | 5.14 | - | 1.07 | - | 0.21 | 0.26 | - | - | - | Cheng et al., 2017 [41] |
Bamboo | Lentinus edodes | Biochar | 4.33 | 38.96 | 1.46 | 26.69 | - | - | - | - | - | Deng et al., 2020 [42] |
Agro-waste | - | Compost fertilizer | 7.29 | 42.79 | 0.93 | 46.01 | - | - | - | - | - | Liu et al., 2020 [43] |
- | P. ostreatus | Vemicomposting | 6.27 | 2.73 | 0.66 | 0.01 | - | - | - | - | Devi et al., 2020 [20] | |
- | P. ostreatus | Organic fertilizer | - | 32.1 | 1.7 | 18.4 | 0.26 | 0.47 | - | - | - | Lou et al., 2016 [34] |
Phragmites | P. ostreatus | - | - | 41.60 | 1.60 | 26.0 | 0.13 | - | 43.3 | - | 10.0 | Hultberg et al., 2018 [25] |
wood sawdust | P. ostreatus | Xylooligosaccharides | - | - | - | - | - | - | 46.09 | - | - | Preeyaporn et al., 2021 [35] |
Phragmites | P. ostreatus | - | 5.51 | 41.90 | 0.96 | 43.85 | 0.04 | 0.39 | 46.05 | 30.26 | 5.87 | This study |
Agro-waste | P. eryngii | Second cultivation | 5.80 | 37.1 | 2.6 | 14.6 | 0.16 | 0.42 | - | - | - | Lou et al., 2016 [34] |
Sawdust | P. eryngii | Feed for Steers | - | - | - | - | - | - | 37.6 | 20.9 | 14.9 | Kim et al., 2012 [36] |
Phragmites | P. eryngii | - | 5.30 | 42.70 | 0.95 | 44.97 | 0.06 | 0.61 | 47.73 | 29.19 | 5.79 | This study |
Phragmites | P. citrinopileatus, | - | 5.26 | 40.50 | 0.71 | 57.48 | 0.02 | 0.37 | 44.59 | 27.59 | 4.87 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wang, M. Chemical Characteristics Analysis and Quality Assessment of Reed-Based Spent Mushroom Substrate. Agronomy 2023, 13, 898. https://doi.org/10.3390/agronomy13030898
Li X, Wang M. Chemical Characteristics Analysis and Quality Assessment of Reed-Based Spent Mushroom Substrate. Agronomy. 2023; 13(3):898. https://doi.org/10.3390/agronomy13030898
Chicago/Turabian StyleLi, Xiaoyu, and Miao Wang. 2023. "Chemical Characteristics Analysis and Quality Assessment of Reed-Based Spent Mushroom Substrate" Agronomy 13, no. 3: 898. https://doi.org/10.3390/agronomy13030898
APA StyleLi, X., & Wang, M. (2023). Chemical Characteristics Analysis and Quality Assessment of Reed-Based Spent Mushroom Substrate. Agronomy, 13(3), 898. https://doi.org/10.3390/agronomy13030898