Genome-Wide Identification and Expression Analysis of RCC1 Gene Family under Abiotic Stresses in Rice (Oryza sativa L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of RCC1s in Rice
2.2. Phylogenetic Analysis
2.3. Physicochemical Properties of OsRCC1s
2.4. Structural Analysis
2.5. CREs Prediction in Promoter Regions of OsRCC1s
2.6. Chromosome Distribution, Gene Duplication and Selective Pressure Analysis
2.7. miRNA Target Predictions in OsRCC1s
2.8. Expression Profile and GO Annotation Analysis
2.9. Plant Material, Stress Treatment, RNA Extraction and Quantitative RT-PCR Analysis
3. Results
3.1. Identification of RCC1s in Rice
3.2. Sequence Structure Analysis of OsRCC1s
3.3. CREs Analysis in Promoter of OsRCC1s
3.4. Chromosome Mapping and Gene Duplication Analysis of OsRCC1s
3.5. Putative miRNA Targeting OsRCC1s Prediction
3.6. Expression Profiles of OsRCC1s in Various Tissues/Organs
3.7. Expression Profiles of OsRCC1s under Abiotic Stresses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bischoff, F.R.; Ponstingl, H. Catalysis of guanine nucleotide exchange of Ran by RCC1 and stimulation of hydrolysis of Ran-bound GTP by Ran-GAP1. Methods Enzymol. 1995, 257, 135–144. [Google Scholar] [PubMed]
- Ren, X.; Jiang, K.; Zhang, F. The Multifaceted Roles of RCC1 in Tumorigenesis. Front. Mol. Biosci. 2020, 7, 225. [Google Scholar] [CrossRef] [PubMed]
- Hetzer, M.; Gruss, O.J.; Mattaj, I.W. The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly. Nat. Cell Biol. 2002, 4, E177–E184. [Google Scholar] [CrossRef] [PubMed]
- Cekan, P.; Hasegawa, K.; Pan, Y.; Tubman, E.; Odde, D.; Chen, J.Q.; Herrmann, M.A.; Kumar, S.; Kalab, P. RCC1-dependent activation of Ran accelerates cell cycle and DNA repair, inhibiting DNA damage-induced cell senescence. Mol. Biol. Cell 2016, 27, 1346–1357. [Google Scholar] [CrossRef]
- Rizzini, L.; Favory, J.J.; Cloix, C.; Faggionato, D.; O’Hara, A.; Kaiserli, E.; Baumeister, R.; Schäfer, E.; Nagy, F.; Jenkins, G.I.; et al. Perception of UV-B by the Arabidopsis UVR8 Protein. Science 2011, 332, 103–106. [Google Scholar] [CrossRef] [Green Version]
- Mao, K.; Wang, L.; Li, Y.Y.; Wu, R. Molecular Cloning and Functional Analysis of UV RESISTANCE LOCUS 8 (PeUVR8) from Populus Euphratica. PLoS ONE 2015, 10, e0132390. [Google Scholar] [CrossRef]
- Kühn, K.; Carrie, C.; Giraud, E.; Wang, Y.; Meyer, E.H.; Narsai, R.; des Francs-Small, C.C.; Zhang, B.; Murcha, M.W.; Whelan, J. The RCC1 family protein RUG3 is required for splicing of nad2 and complex I biogenesis in mitochondria of Arabidopsis thaliana. Plant J. 2011, 67, 1067–1080. [Google Scholar] [CrossRef]
- Su, C.; Zhao, H.; Zhao, Y.; Ji, H.; Wang, Y.; Zhi, L.; Li, X. UG3 and ATM synergistically regulate the alternative splicing of mitochondrial nad2 and the DNA damage response in Arabidopsis thaliana. Sci. Rep. 2017, 7, 43897. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.K.; Liu, R.; Sayyed, A.; Sun, F.; Song, R.; Wang, X.; Xiu, Z.; Li, X.; Tan, B.C. Regulator of Chromosome Condensation 1-Domain Protein DEK47 Functions on the Intron Splicing of Mitochondrial Nad2 and Seed Development in Maize. Front. Plant Sci. 2021, 12, 695249. [Google Scholar] [CrossRef]
- Ji, H.; Wang, Y.; Cloix, C.; Li, K.; Jenkins, G.I.; Wang, S.; Shang, Z.; Shi, Y.; Yang, S.; Li, X. The Arabidopsis RCC1 Family Protein TCF1 Regulates Freezing Tolerance and Cold Acclimation through Modulating Lignin Biosynthesis. PLoS Genet. 2015, 11, e1005471. [Google Scholar] [CrossRef]
- Ji, H.; Wang, S.; Cheng, C.; Li, R.; Wang, Z.; Jenkins, G.I.; Kong, F.; Li, X. The RCC1 family protein SAB1 negatively regulates ABI5 through multidimensional mechanisms during postgermination in Arabidopsis. New Phytol. 2019, 222, 907–922. [Google Scholar] [CrossRef]
- Furutani, M.; Hirano, Y.; Nishimura, T.; Nakamura, M.; Taniguchi, M.; Suzuki, K.; Oshida, R.; Kondo, C.; Sun, S.; Kato, K.; et al. Polar recruitment of RLD by LAZY1-like protein during gravity signaling in root branch angle control. Nat. Commun. 2020, 11, 76. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Zhou, S.; Lu, J.; Xu, A.; Huang, Y.; Bie, Z.; Cheng, F. CmRCC1 Gene From Pumpkin Confers Cold Tolerance in Tobacco by Modulating Root Architecture and Photosynthetic Activity. Front. Plant Sci. 2021, 12, 765302. [Google Scholar] [CrossRef] [PubMed]
- Duarte, G.T.; Pandey, P.K.; Vaid, N.; Alseekh, S.; Fernie, A.R.; Nikoloski, Z.; Laitinen, R.A.E. Plasticity of rosette size in response to nitrogen availability is controlled by an RCC1-family protein. Plant Cell Environ. 2021, 44, 3398–3411. [Google Scholar] [CrossRef] [PubMed]
- Brown, B.A.; Cloix, C.; Jiang, G.H.; Kaiserli, E.; Herzyk, P.; Kliebenstein, D.J.; Jenkins, G.I. A UV-B-specific signaling component orchestrates plant UV protection. Proc. Natl. Acad. Sci. USA 2005, 102, 18225–18230. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Li, D.; Gao, Z.; Gao, L.; Shang, L.; Wang, M.; Qiao, J.; Ding, S.; Li, C.; Geisler, M.; et al. OsRLR4 binds to the OsAUX1 promoter to negatively regulate primary root development in rice. J. Integr. Plant Biol. 2022, 64, 118–134. [Google Scholar] [CrossRef] [PubMed]
- Berardini, T.Z.; Reiser, L.; Li, D.; Mezheritsky, Y.; Muller, R.; Strait, E.; Huala, E. The Arabidopsis information resource: Making and mining the “gold standard” annotated reference plant genome. Genesis 2015, 53, 474–485. [Google Scholar] [CrossRef] [Green Version]
- Kersey, P.J.; Allen, J.E.; Allot, A.; Barba, M.; Boddu, S.; Bolt, B.J.; Carvalho-Silva, D.; Christensen, M.; Davis, P.; Grabmueller, C.; et al. Ensembl Genomes 2018: An integrated omics infrastructure for non-vertebrate species. Nucleic Acids Res. 2018, 46, D802–D808. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yuan, F.; Wen, Z.; Li, Y.; Wang, F.; Zhu, T.; Zhuo, W.; Jin, X.; Wang, Y.; Zhao, H.; et al. Genome-wide survey and expression analysis of the OSCA gene family in rice. BMC Plant Biol. 2015, 15, 261. [Google Scholar] [CrossRef] [Green Version]
- Kawahara, Y.; de la Bastide, M.; Hamilton, J.P.; Kanamori, H.; McCombie, W.R.; Ouyang, S.; Schwartz, D.C.; Tanaka, T.; Wu, J.; Zhou, S.; et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 2013, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- El-Gebali, S.; Mistry, J.; Bateman, A.; Eddy, S.R.; Luciani, A.; Potter, S.C.; Qureshi, M.; Richardson, L.J.; Salazar, G.A.; Smart, A.; et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019, 47, D427–D432. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Khedkar, S.; Bork, P. SMART: Recent updates, new developments and status in 2020. Nucleic Acids Res. 2021, 49, D458–D460. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2018, 46, D493–D496. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkins, M.R.; Gasteiger, E.; Bairoch, A.; Sanchez, J.C.; Williams, K.L.; Appel, R.D.; Hochstrasser, D.F. Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 1999, 112, 531–552. [Google Scholar]
- Chou, K.C.; Shen, H.B. Plant-mPLoc: A top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE 2010, 5, e11335. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2012, 40, D1178–D1186. [Google Scholar] [CrossRef]
- Dai, X.; Zhuang, Z.; Zhao, P.X. psRNATarget: A plant small RNA target analysis server (2017 release). Nucleic Acids Res. 2018, 46, W49–W54. [Google Scholar] [CrossRef] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Tian, T.; Liu, Y.; Yan, H.; You, Q.; Yi, X.; Du, Z.; Xu, W.; Su, Z. agriGO v2.0: A GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017, 45, W122–W129. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Pereira, A. Plant Abiotic Stress Challenges from the Changing Environment. Front. Plant Sci. 2016, 7, 1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannon, S.B.; Mitra, A.; Baumgarten, A.; Young, N.D.; May, G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004, 4, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holub, E.B. The arms race is ancient history in Arabidopsis, the wildflower. Nat. Rev. Genet. 2001, 2, 516–527. [Google Scholar] [CrossRef] [PubMed]
- Leister, D. Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance gene. Trends Genet. 2004, 20, 116–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandal, K.; Boro, P.; Chattopadhyay, S. Micro-RNA Based Gene Regulation: A Potential Way for Crop Improvements. Plant Gene 2021, 27, 100312. [Google Scholar] [CrossRef]
- Su, C.; Yuan, J.; Zhao, H.; Zhao, Y.; Ji, H.; Wang, Y.; Li, X. RUG3 is a negative regulator of plant responses to ABA in Arabidopsis thaliana. Plant Signal. Behav. 2017, 12, e1333217. [Google Scholar] [CrossRef] [Green Version]
- Duan, X.L.; Chen, H.Z.; Han, R. The Effects of Enhanced UV-B Radiation on the RCC1 in Wheat Somatic Cells. Russ. J. Plant Physiol. 2015, 62, 695–699. [Google Scholar] [CrossRef]
- Hopkins, J.; Pierre, O.; Kazmierczak, T.; Gruber, V.; Frugier, F.; Clement, M.; Frendo, P.; Herouart, D.; Boncompagni, E. MtZR1, a PRAF protein, is involved in the development of roots and symbiotic root nodules in Medicago truncatula. Plant Cell Environ. 2014, 37, 658–669. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wen, J.; Song, Y.; Yuan, H.; Sun, B.; Wang, R.; Xu, S. SaRCC1, a Regulator of Chromosome Condensation 1 (RCC1) Family Protein Gene from Spartina alterniflora, Negatively Regulates Salinity Stress Tolerance in Transgenic Arabidopsis. Int. J. Mol. Sci. 2022, 23, 8172. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.; Conery, J.S. The evolutionary fate and consequences of duplicate genes. Science 2000, 290, 1151–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nei, M.; Rooney, A.P. Concerted and birth-and-death evolution of multigene families. Annu. Rev. Genet. 2005, 39, 121–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Z.; Wang, H.; Li, X.; Ji, H. Enhancement of plant cold tolerance by soybean RCC1 family gene GmTCF1a. BMC Plant Biol. 2021, 21, 369. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wu, X.; Sun, C.; Rong, J. Identification and Expression Profiling of the Regulator of Chromosome Condensation 1 (RCC1) Gene Family in Gossypium Hirsutum L. under Abiotic Stress and Hormone Treatments. Int. J. Mol. Sci. 2019, 20, 1727. [Google Scholar] [CrossRef] [Green Version]
- Wywial, E.; Singh, S.M. Identification and structural characterization of FYVE domain-containing proteins of Arabidopsis thaliana. BMC Plant Biol. 2010, 10, 157. [Google Scholar] [CrossRef] [Green Version]
- Xiao, S.; Shao, M.; Wang, D.; Li, W.; Liu, F. Identification and Evolution of FYVE Domain-Containing Proteins and Their Expression Patterns in Response to Abiotic Stresses in Rice. Plant Mol. Biol. Rep. 2016, 34, 1064–1082. [Google Scholar] [CrossRef]
- Carranco, R.; Prieto-Dapena, P.; Almoguera, C.; Jordano, J. A seed-specific transcription factor, HSFA9, anticipates UV-B light responses by mimicking the activation of the UV-B receptor in tobacco. Plant J. 2022, 111, 1439–1452. [Google Scholar] [CrossRef]
- Podolec, R.; Lau, K.; Wagnon, T.B.; Hothorn, M.; Ulm, R. A constitutively monomeric UVR8 photoreceptor confers enhanced UV-B photomorphogenesis. Proc. Natl. Acad. Sci. USA 2021, 118, e2017284118. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Guan, Z.; Chang, H.; Ma, L.; Shen, C.; Qiu, L.; Yan, J.; Zhang, D.; Li, J.; et al. Structural insight into UV-B-activated UVR8 bound to COP1. Sci. Adv. 2022, 8, eabn3337. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Xu, H.; Su, C.; Wang, X.; Wang, L. Rice CIRCADIAN CLOCK ASSOCIATED 1 transcriptionally regulates ABA signaling to confer multiple abiotic stress tolerance. Plant Physiol. 2022, 190, 1057–1073. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Wu, H.; Ma, S.; Xiang, D.; Liu, R.; Xiong, L. OsJAZ1 Attenuates Drought Resistance by Regulating JA and ABA Signaling in Rice. Front. Plant Sci. 2017, 8, 2108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, D.; Mukherjee, P.; Dutta, S.; Meena, K.; Sarkar, S.K.; Mandal, A.B.; Dasgupta, T.; Mitra, J. Genomic insights into HSFs as candidate genes for high-temperature stress adaptation and gene editing with minimal off-target effects in flax. Sci. Rep. 2019, 9, 5581. [Google Scholar] [CrossRef] [Green Version]
- Flagel, L.E.; Wendel, J.F. Gene duplication and evolutionary novelty in plants. New Phytol. 2009, 183, 557–564. [Google Scholar] [CrossRef]
- Sun, W.; Xu, X.H.; Li, Y.; Xie, L.; He, Y.; Li, W.; Lu, X.; Sun, H.; Xie, X. OsmiR530 acts downstream of OsPIL15 to regulate grain yield in rice. New Phytol. 2020, 226, 823–837. [Google Scholar] [CrossRef]
- Sun, M.; Shen, Y.; Chen, Y.; Wang, Y.; Cai, X.; Yang, J.; Jia, B.; Dong, W.; Chen, X.; Sun, X. Osa-miR1320 targets the ERF transcription factor OsERF096 to regulate cold tolerance via JA-mediated signaling. Plant Physiol. 2022, 189, 2500–2516. [Google Scholar] [CrossRef]
- Yang, Z.; Hui, S.; Lv, Y.; Zhang, M.; Chen, D.; Tian, J.; Zhang, H.; Liu, H.; Cao, J.; Xie, W.; et al. miR395-regulated sulfate metabolism exploits pathogen sensitivity to sulfate to boost immunity in rice. Mol. Plant 2022, 15, 671–688. [Google Scholar] [CrossRef]
- Gai, Y.P.; Zhao, H.N.; Zhao, Y.N.; Zhu, B.S.; Yuan, S.S.; Li, S.; Guo, F.Y.; Ji, X.L. MiRNA-seq-based profiles of miRNAs in mulberry phloem sap provide insight into the pathogenic mechanisms of mulberry yellow dwarf disease. Sci. Rep. 2018, 8, 812. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhang, L.; Chen, P.; Liang, T.; Li, X.; Liu, H. UV-B photoreceptor UVR8 interacts with MYB73/MYB77 to regulate auxin responses and lateral root development. EMBO J. 2020, 39, e101928. [Google Scholar] [CrossRef]
Gene Name | Accession Number | Chromosome | Genomic Location | CDS Length (bp) | Protein | Subcellular Localization | ||||
---|---|---|---|---|---|---|---|---|---|---|
RAP-ID | MSU-ID | Size (aa) | MW (Da) | pI | GRAVY | |||||
OsRCC1-1 | Os01g0700200 | LOC_Os01g50470 | 1 | 28978119–28983868 | 3135 | 1044 | 115003.703 | 8.54 | −0.448 | Nucleus |
OsRCC1-2 | Os01g0725600 | LOC_Os01g52630 | 1 | 30251470–30254956 | 1674 | 557 | 60514.9883 | 5.05 | −0.201 | Nucleus |
OsRCC1-3 | Os01g0777800 | LOC_Os01g56990 | 1 | 32932792–32929037 | 1206 | 401 | 43105.9492 | 5.65 | −0.28 | Nucleus |
OsRCC1-4 | Os01g0846800 | LOC_Os01g62810 | 1 | 36379629–36385389 | 1533 | 510 | 52839.9297 | 5.37 | −0.232 | Cytoplasm. Nucleus |
OsRCC1-5 | Os01g0952300 | LOC_Os01g72320 | 1 | 41931602–41925595 | 3261 | 1086 | 117823.773 | 9.02 | −0.411 | Nucleus |
OsRCC1-6 | Os01g0964800 | LOC_Os01g73410 | 1 | 42541330–42547122 | 2733 | 910 | 98809.7266 | 8.76 | −0.462 | Nucleus |
OsRCC1-7 | Os02g0197500 | LOC_Os02g10380 | 2 | 5468118–5465521 | 1335 | 444 | 46689.4883 | 5.68 | −0.112 | Nucleus |
OsRCC1-8 | Os02g0554100 | LOC_Os02g34860 | 2 | 20913876–20919120 | 1362 | 453 | 48270.8086 | 5.4 | −0.305 | Nucleus |
OsRCC1-9 | Os02g0597000 | LOC_Os02g38350 | 2 | 23186473–23183102 | 1665 | 554 | 59750.3789 | 5.59 | −0.172 | Nucleus |
OsRCC1-10 | Os02g0684900 | LOC_Os02g45980 | 2 | 28014822–28020814 | 2883 | 960 | 106456.883 | 9.12 | −0.389 | Nucleus |
OsRCC1-11 | Os03g0599600 | LOC_Os03g40260 | 3 | 22372924–22380193 | 1440 | 479 | 51732.4609 | 5.73 | −0.186 | Nucleus |
OsRCC1-12 | Os04g0435700 | LOC_Os04g35570 | 4 | 21682409–21688306 | 1362 | 453 | 48172.6992 | 5.37 | −0.334 | Nucleus |
OsRCC1-13 | Os04g0583700 | LOC_Os04g49430 | 4 | 29493928–29498951 | 3126 | 1041 | 114384.438 | 9.03 | −0.359 | Nucleus |
OsRCC1-14 | Os04g0662800 | LOC_Os04g56720 | 4 | 33822411–33828795 | 1650 | 549 | 58408.1406 | 8.74 | −0.654 | Nucleus |
OsRCC1-15 | Os04g0686200 | LOC_Os04g58960 | 4 | 35074912–35067281 | 3174 | 1057 | 115534.227 | 8.51 | −0.543 | Nucleus |
OsRCC1-16 | Os05g0106700 | LOC_Os05g01610 | 5 | 362500–365961 | 2754 | 917 | 99334.1562 | 8.28 | −0.401 | Nucleus |
OsRCC1-17 | Os05g0384800 | LOC_Os05g31920 | 5 | 18595443–18586998 | 3261 | 1086 | 117482.078 | 8.98 | −0.462 | Nucleus |
OsRCC1-18 | Os05g0456925 | LOC_Os05g38270 | 5 | 22445332–22440563 | 1470 | 489 | 51368.3516 | 6.14 | −0.259 | Nucleus |
OsRCC1-19 | Os05g0545200 | LOC_Os05g46740 | 5 | 27063217–27057383 | 3102 | 1033 | 112886.477 | 8.64 | −0.448 | Nucleus |
OsRCC1-20 | Os07g0165200 | LOC_Os07g07080 | 7 | 3499332–3491976 | 3222 | 1073 | 116444.109 | 9.18 | −0.433 | Nucleus |
OsRCC1-21 | Os07g0459400 | LOC_Os07g27490 | 7 | 16029455–16033425 | 1455 | 484 | 51691.5195 | 7.25 | −0.067 | Nucleus |
OsRCC1-22 | Os08g0109800 | LOC_Os08g01830 | 8 | 496860–500021 | 2511 | 836 | 88439.2969 | 7.92 | −0.12 | Nucleus |
OsRCC1-23 | Os08g0430700 | LOC_Os08g33390 | 8 | 20824910–20820888 | 1188 | 395 | 41731.5312 | 5.38 | −0.341 | Nucleus |
OsRCC1-24 | Os09g0560450 | LOC_Os09g38755 | 9 | 22269102–22272680 | 1314 | 437 | 45397.1602 | 6.59 | −0.055 | Nucleus |
OsRCC1-25 | Os11g0545800 | LOC_Os11g34320 | 11 | 20125144–20119442 | 1218 | 405 | 43902.8906 | 7.2 | −0.129 | Nucleus |
OsRCC1-26 | Os12g0284000 | LOC_Os12g18650 | 12 | 10770978–10775430 | 1605 | 534 | 57538.0391 | 6.07 | −0.117 | Cell wall. Nucleus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cen, Q.; Kang, L.; Zhou, D.; Zhang, X.; Tian, Q.; Zhang, X.; Mou, W.; Dang, C.; Fang, Y.; Xue, D. Genome-Wide Identification and Expression Analysis of RCC1 Gene Family under Abiotic Stresses in Rice (Oryza sativa L.). Agronomy 2023, 13, 703. https://doi.org/10.3390/agronomy13030703
Cen Q, Kang L, Zhou D, Zhang X, Tian Q, Zhang X, Mou W, Dang C, Fang Y, Xue D. Genome-Wide Identification and Expression Analysis of RCC1 Gene Family under Abiotic Stresses in Rice (Oryza sativa L.). Agronomy. 2023; 13(3):703. https://doi.org/10.3390/agronomy13030703
Chicago/Turabian StyleCen, Qiwen, Lihua Kang, Danni Zhou, Xian Zhang, Quanxiang Tian, Xiaoqin Zhang, Wangshu Mou, Cong Dang, Yunxia Fang, and Dawei Xue. 2023. "Genome-Wide Identification and Expression Analysis of RCC1 Gene Family under Abiotic Stresses in Rice (Oryza sativa L.)" Agronomy 13, no. 3: 703. https://doi.org/10.3390/agronomy13030703
APA StyleCen, Q., Kang, L., Zhou, D., Zhang, X., Tian, Q., Zhang, X., Mou, W., Dang, C., Fang, Y., & Xue, D. (2023). Genome-Wide Identification and Expression Analysis of RCC1 Gene Family under Abiotic Stresses in Rice (Oryza sativa L.). Agronomy, 13(3), 703. https://doi.org/10.3390/agronomy13030703