Widespread Occurrence of Glyphosate-Resistant Hairy Fleabane (Erigeron bonariensis L.) in Colombia and Weed Control Alternatives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Resistance Profile Test
2.3. Dose-Response Tests
2.4. Alternative Chemical Control Options for Glyphosate-Resistant Populations
2.5. Statistical Analyses
3. Results
3.1. Resistance Profile Test
3.1.1. Reference and Putative Susceptible Populations
3.1.2. Surveyed Populations
3.2. Dose-Response Test for Glyphosate to Control Hairy Fleabane
3.2.1. Models Fitted and Resistance Factors
3.2.2. Models for Biomass
3.2.3. Graphical Output
3.3. Alternative Herbicides Evaluation
4. Discussion
4.1. Resistance to Glyphosate in Hairy Fleabane Is Widespread
4.2. Levels of Susceptibility and Resistance to Glyphosate in Hairy Fleabane in Colombia
4.3. Hormesis Triggered by Glyphosate-Resistant Hairy Fleabane
4.4. Herbicidal Alternatives for Effective Control of Glyphosate-Resistant Hairy Fleabane
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Heap, I. Global perspective of herbicide-resistant weeds. Pest Manag. Sci. 2014, 70, 1306–1315. [Google Scholar] [CrossRef] [PubMed]
- Kaushansky, A.; Hedstrom, L.; Goldman, A.; Singh, J.; Yang, P.L.; Rathod, P.K.; Schiffer, C.A. A call to arms: Unifying the fight against resistance. Sci. Signal. 2018, 11, eaav0442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heap, I.; Duke, S.O. Overview of glyphosate-resistant weeds worldwide. Pest Manag. Sci. 2017. [CrossRef] [PubMed]
- Duke, S.O. The history and current status of glyphosate. Pest Manag. Sci. 2018, 74, 1027–1034. [Google Scholar] [CrossRef]
- Valbuena, D.; Cely-Santos, M.; Obregón, D. Agrochemical pesticide production, trade, and hazard: Narrowing the information gap in Colombia. J. Environ. Manag. 2021, 286. [Google Scholar] [CrossRef]
- Morell, H.; Clark, M.; Knowles, P.; Sprinson, D.B. The enzymic synthesis of chorismic and prephenic acids from 3-enolpyruvylshikimic acid 5-phosphate. J. Biol. Chem. 1967, 242, 82–90. [Google Scholar] [CrossRef]
- Cobb, A.H.; Reade, J.P.H. Herbicides and Plant Physiology, 2nd ed.; Wiley-Blackwell: Newport, UK, 2010; ISBN 978-1-4443-2780-9. [Google Scholar]
- Fuentes, C.; Eraso, E.; Sequeda, O.; Piedrahita, W. Flora Arvense del Altiplano Cundiboyacense de Colombia; Facultad de Agronomía Bayer CropScience; Universidad Nacional de Colombia: Bogota, Colombia, 2011. [Google Scholar]
- Wu, H.; Walker, S.; Robinson, G.; Coombes, N. Control of Flaxleaf Fleabane (Conyza bonariensis) in Wheat and Sorghum. Weed Technol. 2010, 24, 102–107. Available online: http://www.jstor.org/stable/40801088 (accessed on 1 February 2023). [CrossRef]
- Bajwa, A.A.; Sadia, S.; Ali, H.; Jabran, K.; Peerzada, A.; Chauhan, B.S. Biology and management of two important Conyza weeds: A global review. Environ. Sci. Pollut. Res. 2016, 23, 24694–24710. [Google Scholar] [CrossRef]
- Peterson, M.A.; Collavo, A.; Ovejero, R.; Shivrain, V.; Walsh, M.J. The challenge of herbicide resistance around the world: A current summary. Pest Manag. Sci. 2018, 74, 2246–2259. [Google Scholar] [CrossRef]
- Menza-Franco, H.D.; Salazar-Gutierrez, L.F. Estudios de resistencia al glifosato en tres arvenses de la zona cafetera colombiana y alternativas para su manejo. Av. Téc. Cenicafé 2006, 350, 1–12. Available online: http://biblioteca.cenicafe.org/handle/10778/344 (accessed on 1 February 2023).
- Quintero-Pértuz, I.; Carbonó-DelaHoz, E. Panorama del manejo de malezas en cultivos de banano en el departamento del Magdalena, Colombia. Rev. Colomb. Cienc. Hortíc. 2016, 9, 329. [Google Scholar] [CrossRef] [Green Version]
- Montealegre, F.A. Morfología de Plántulas de Malezas de Clima Cálido; Ed. Produmedios: Bogota, Colombia, 2011; ISBN 978-958-99277-4-8. [Google Scholar]
- Heap, I. The International Herbicide-Resistant Weed Database. Available online: www.weedscience.org (accessed on 11 April 2021).
- Quintero-Pertuz, I.; Hoyos, V.; Carbonó-Delahoz, E.; Plaza, G. Susceptibility of weed populations to glyphosate in banana plantations of the Department of Magdalena, Colombia. Chil. J. Agric. Res. 2021, 81, 172–181. [Google Scholar] [CrossRef]
- Amaro-Blanco, I.; Osuna, M.D.; Romano, Y.; Roldán-Gómez, R.; Palma-Bautista, C.; Portugal, J.; De Prado, R. Selection for glyphosate resistance in Conyza spp. Occurring in the railway network of Southern Spain. Can. J. Plant Sci. 2019, 99, 413–419. [Google Scholar] [CrossRef]
- Puricelli, E.; Faccini, D.; Metzler, M.; Torres, P. Differential Susceptibility of Conyza bonariensis Biotypes to Glyphosate and ALS-Inhibiting Herbicides in Argentina. Agric. Sci. 2015, 6, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Tahmasebi, B.K.; Alebrahim, M.T.; Roldán-Gómez, R.A.; da Silveira, H.M.; de Carvalho, L.B.; Alcántara-de la Cruz, R.; De Prado, R. Effectiveness of alternative herbicides on three Conyza species from Europe with and without glyphosate resistance. Crop Prot. 2018, 112, 350–355. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, J.; Bates, D. Package ‘nlme’. 2020. Available online: https://cran.r-project.org/web/packages/nlme/nlme.pdf (accessed on 1 February 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Viena, Austria, 2023; Available online: https://www.r-project.org/ (accessed on 1 February 2023).
- Zabala, D.; Carranza, N.; Darghan, A.; Plaza, G. Spatial distribution of multiple herbicide resistance in Echinochloa colona (L.) link. Chil. J. Agric. Res. 2019, 79, 576–585. [Google Scholar] [CrossRef] [Green Version]
- Aho, K.; Derryberry, D.; Peterson, T. Model selection for ecologists: The worldviews of AIC and BIC. Ecology 2014, 95, 631–636. [Google Scholar] [CrossRef]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [Green Version]
- Panozzo, S.; Scarabel, L.; Collavo, A.; Sattin, M. Protocols for Robust Herbicide Resistance Testing in Different Weed Species. J. Vis. Exp. 2015, 101, e52923. [Google Scholar] [CrossRef] [Green Version]
- Beres, Z.T.; Ernst, E.; Ackley, B.; Loux, M.; Owen, M.; Snow, A.A. High levels of glyphosate resistance in conyza canadensis from agricultural and non-agricultural sites in Ohio and Iowa. Sci. Rep. 2018, 8, 10483. [Google Scholar] [CrossRef] [Green Version]
- Knezevic, S.Z.; Streibig, J.; Ritz, C. Utilizing R Software Package for Dose-Response Studies: The Concept and Data Analysis. Weed Technol. 2007, 21, 840–848. [Google Scholar] [CrossRef]
- Ritz, C.; Baty, F.; Streibig, J.; Gerhard, D. Dose-Response Analysis Using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritz, C.; Strebig, J.C. Package ‘drc’: Analysis of Dose-Response Curves. R Proj. 2016, p. 149. Available online: https://cran.r-project.org/web/packages/drc/drc.pdf (accessed on 1 February 2023).
- Seefeldt, S.S.; Jensen, J.; Fuerst, E.P. Log-Logistic Analysis of Herbicide Dose-Response Relationships. Weed Technol. 1995, 9, 218–227. Available online: http://www.jstor.org/stable/3987736 (accessed on 1 February 2023). [CrossRef]
- Burgos, N.R.; Tranel, P.J.; Streibig, J.C.; Davis, V.M.; Shaner, D.; Norsworthy, J.K.; Ritz, C. Review: Confirmation of Resistance to Herbicides and Evaluation of Resistance Levels. Weed Sci. 2013, 61, 4–20. [Google Scholar] [CrossRef]
- Heap, I. Criteria for Confirmation of Herbicide-Resistant Weeds—With Specific Emphasis on Confirming Low Level Resistance. 2005. Available online: http://www.weedscience.org/Pages/ResistanceCriterion.pdf (accessed on 1 February 2023).
- Brain, P.; Cousens, R. An equation to describe dose responses where there is stimulation of growth at low doses. Weed Res. 1989, 29, 93–96. [Google Scholar] [CrossRef]
- de Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. 2022. Available online: https://cran.r-project.org/package=agricolae (accessed on 1 February 2023).
- Kendig, E.L.; Le, H.; Belcher, S.M. Defining hormesis: Evaluation of a complex concentration response phenomenon. Int. J. Toxicol. 2010, 29, 235–246. [Google Scholar] [CrossRef]
- Belz, R.; Duke, S.O. Herbicides and plant hormesis. Pest Manag. Sci. 2014, 70, 698–707. [Google Scholar] [CrossRef]
- Mendes, R.R.; Takano, H.K.; Gonçalves Netto, A.; Picoli Junior, G.J.; Cavenaghi, A.L.; Silva, V.F.; Ovejero, R.F.L. Monitoring glyphosate-and chlorimuron-resistant Conyza spp. Populations in Brazil. An. Acad. Bras. Cienc. 2021, 93. [Google Scholar] [CrossRef]
- Amaro-Blanco, I.; Fernández-Moreno, P.; Osuna-Ruiz, M.; Bastida, F.; De Prado, R. Mechanisms of glyphosate resistance and response to alternative herbicide-based management in populations of the three Conyza species introduced in southern Spain. Pest Manag. Sci. 2018, 74, 1925–1937. [Google Scholar] [CrossRef]
- Gomes, G.L. Caracterização Bioquímica e Morfofisiológica de Populações de Buva (Conyza spp.) Resistentes ao Glyphosate. Ph.D. Thesis, Universidade Estadual Paulista “Júlio De Mesquita Filho”, Sao Paulo, Brazil, 2014. Available online: https://repositorio.unesp.br/handle/11449/116041 (accessed on 1 February 2023).
- González-Torralva, F.; Cruz-Hipolito, H.; Bastida, F.; Mülleder, N.; Smeda, R.; De Prado, R. Differential susceptibility to glyphosate among the Conyza weed species in Spain. J. Agric. Food Chem. 2010, 58, 4361–4366. [Google Scholar] [CrossRef]
- Moretti, M.; Sosnoskie, L.M.; Shrestha, A.; Wright, S.D.; Hembree, K.J.; Jasieniuk, M.; Hanson, B.D. Distribution of Conyza sp. in Orchards of California and Response to Glyphosate and Paraquat. Weed Sci. 2016, 64, 339–347. [Google Scholar] [CrossRef]
- Moretti, M.L.; Hanson, B.D. Reduced translocation is involved in resistance to glyphosate and paraquat in Conyza bonariensis and Conyza canadensis from California. Weed Res. 2017, 57, 25–34. [Google Scholar] [CrossRef]
- Okumu, M.N.; Vorster, B.; Reinhardt, C.F. Growth-stage and temperature influence glyphosate resistance in Conyza bonariensis (L.) Cronquist. South Afr. J. Bot. 2019, 121, 248–256. [Google Scholar] [CrossRef]
- González-Torralva, F.; Rojano-Delgado, A.; de Castro, M.L.; Mülleder, N.; De Prado, R. Two non-target mechanisms are involved in glyphosate-resistant horseweed (Conyza canadensis L. Cronq.) biotypes. J. Plant Physiol. 2012, 169, 1673–1679. [Google Scholar] [CrossRef]
- Brito, I.P.F.S.; Tropaldi, L.; Carbonari, C.; Velini, E.D. Hormetic effects of glyphosate on plants. Pest Manag. Sci. 2018, 74, 1064–1070. [Google Scholar] [CrossRef]
- Davis, V.M.; Kruger, G.; Hallett, S.; Tranel, P.; Johnson, W.G. Heritability of Glyphosate Resistance in Indiana Horseweed (Conyza canadensis) Populations. Weed Sci. 2010, 58, 30–38. [Google Scholar] [CrossRef]
- Petersen, J.; Neser, J.-M.; Dresbach-Runkel, M. Resistant factors of target-site and metabolic resistant black-grass (Alopecurus myosuroides Huds.) biotypes against different ACC-ase-inhibitors. J. Plant Dis. Prot. 2008, 21, 25–29. Available online: https://www.researchgate.net/publication/288171834_Resistant_factors_of_target-site_and_metabolic_resistant_black-grass_Alopecurus_myosuroides_Huds_biotypes_against_different_ACC-ase-inhibitors (accessed on 1 February 2023).
- Moretti, M.; Bobadilla, L.; Hanson, B. Cross-resistance to diquat in glyphosate/paraquat-resistant hairy fleabane (Conyza bonariensis) and horseweed (Conyza canadensis) and confirmation of 2,4-D resistance in Conyza bonariensis. Weed Technol. 2021, 35, 554–559. [Google Scholar] [CrossRef]
- Palma-Bautista, C.; Vazquez-Garcia, J.G.; Domínguez-Valenzuela, J.A.; Ferreira Mendes, K.; Alcantara De la Cruz, R.; Torra, J.; De Prado, R. Non-Target-Site Resistance Mechanisms Endow Multiple Herbicide Resistance to Five Mechanisms of Action in Conyza bonariensis. J. Agric. Food Chem. 2021, 69, 14792–14801. [Google Scholar] [CrossRef]
- Håkansson, S. Weeds and Weed Management on Arable Land: An Ecological Approach; Department of Ecology and Crop Production Science Swedish University of Agricultural Sciences Uppsala, Sweden, Ed.; CABI Publishing: Oxfordshire, UK, 2003; Available online: https://www.cabidigitallibrary.org/doi/book/10.1079/9780851996516.0000 (accessed on 14 January 2023)ISBN ISBN 0-85199-651-5.
ID | Crop | Department (Province) | Glyphosate Use Pattern Dose/Sprays per Year/Years | Regional Context | Coordinates Latitude N/Longitude W | Altitude MASL 1 |
---|---|---|---|---|---|---|
P2 | Asparagus S | Cundinamarca | No use | H/CA | 4°40′28.3″/74°13′1.2″ | 2516 |
P3 | Rainforest S | Magdalena a | No use | U | 11°6′24.9″/75°4′13″ | 2019 |
P4 | Cassava | Meta | 1424 g ae ha−1/4 spray/8 | CA | 3° °30′28.1″/73°43′21.8″ | 371 |
P5 | Railway b | Cordoba, Spain | ND | Non-crop land | 37°47′4.48″/5°09′18.2″ | ND |
P6 | Railway b | Cordoba, Spain | ND | Non-crop land | 38°01′40.2″/4°04′41.1″ | ND |
P7 | Rainforest S | Cundinamarca | No use | U/near to CA | 4°17′20.7″/73°59′42″ | 2855 |
P8 | Rainforest S | Cundinamarca | No use | U/near to CA | 4°21′38.5″/73°59′6.14″ | 2778 |
P9 | Plantain | Meta | 1424 g ae ha−1/8 sprays/10 | CA | 4°1′26.0″/73°13′51.5″ | 221 |
P10 | Plantain | Antioquia | 1068 g ae ha−1/4 sprays/>10 | CA | 7°53′40.6″/76°37′17.5″ | 34 |
P12 | Red Beans | Cundinamarca | 1068 g ae ha−1/1–2 sprays/18 | CA | 4°13′42.6″/73°57′29.3″ | 2056 |
P13 | Urban area | Antioquia | ND | Non crop/near to CA | 7°51′59.6″/76°36′14.4″ | 51 |
P14 | Plantain | Meta | 1424 g ae ha−1/4 sprays/4 | CA | 3°30′23.9″/73°44′49.8″ | 321 |
P15 | Papaya | Meta | 1424 g ae ha−1/10 sprays/5 | CA | 3°11′16.2″/73°35′54.3″ | 342 |
P16 | Banana | Magdalena a | 1068 g ae ha−1/6 sprays/>20 | CA | 10°45′3.6″/74°7′10.5″ | 53 |
P17 | Shrubland S | Cundinamarca | No use | Sh | 4°13′38.4″/74°57′13.3″ | 2026 |
P18 | Plantain | Antioquia | 1068 g ae ha−1/6 sprays/>20 | CA | 7°51′59.6″/76°36′14.4″ | 56 |
P19 | Red Beans | Cundinamarca | 1068 g ae ha−1/1–2 sprays/18 | CA | 4°14′58.6″/73°58′41.2″ | 2316 |
P20 | Passionfruit | Santander | 1424 g ae ha−1/6 sprays/8 | CA | 7°4′35″/73°12′46.7″ | 1256 |
Herbicide | HRAC MoA | Dose (g ae-ai ha−1) | Concentration (g ae-ai L−1) | Formulation | Brand | Manufacturer (Country) |
---|---|---|---|---|---|---|
2,4-D dimethylamine salt | 4 | 720 | 720 | SL | Amina | Invesa (Colombia) |
Glufosinate ammonium | 10 | 225 | 150 | SC | Finale® | BASF (Germany) |
Mesotrione | 27 | 100 | 480 | SC | Callisto® | Syngenta (Switzerland) |
Paraquat dichloride | 22 | 600 | 200 | SL | Gramoxone® | Syngenta (Switzerland) |
Pyraflufen-ethyl | 14 | 8 | 26.5 | SL | Et-Herb® | Nihon Nohyaku (Japan) |
Category | Sub- Category | Survival a (%) | Visual Control c (%) | Relative Fresh Biomass (%) | Relative Dry Biomass (%) |
---|---|---|---|---|---|
Susceptible | S | <80% at 1X b | >80% at 1X | Less than 20% at 1X | Less than 50% at 1X |
Resistant | R1 | >80% at 1X | <80% at 1X | >20% at 1X but <20% at 2X | >50% at 1X but <50% at 2X |
R2 | >80% at 2X | <80% at 2X | >20% at 2X | >50% at 2X |
Variable | Fix Effect | Pop. | Pop. x Rep | Log-Likelihood | AIC a | BIC b | Lik. c Ratio | Df d | p-Value |
---|---|---|---|---|---|---|---|---|---|
PS | Dose | x | - | −38.80 | 85.61 | 97.91 | 30.90 | 4 | <0.0001 |
PVC | Dose | x | - | −74. 85 | 1495.70 | 1507.99 | 68.43 | 4 | <0.0001 |
FW | Dose | x | - | −338.85 | 685.71 | 698.02 | 42.71 | 4 | <0.0001 |
DW | Dose | x | - | −100.73 | 209.45 | 221.75 | 52.82 | 4 | <0.0001 |
Expected Behavior | Crop/Landscape | Code | PS | PVC | Rel-FW a | Rel-DW b | Overall Performance (Mode) c |
---|---|---|---|---|---|---|---|
Resistant | Railway [17] (Spain) | P5 | R2 | R2 | R2 | R2 | R2 |
P6 | R2 | R2 | R1 | R2 | R2 | ||
Banana [16] | P16 | R2 | R2 | R2 | R2 | R2 | |
Susceptible | Rainforest [16] | P3 | S | S | S | S | S |
Putative Susceptible | Asparagus | P2 | S | S | S | S | S |
Understory | P7 | S | S | S | S | S | |
P8 | R1 | S | S | S | S | ||
Shrubland | P17 | S | S | S | S | S |
Model Fitted a | Lack-of Fit p-Value b | Pop. | b | c | d | e c | f (p-Value) e | RF7 d | RF3 |
---|---|---|---|---|---|---|---|---|---|
Percent survival (PS) | |||||||||
LL4 | 0.995966 | P7 | 1.9 | 0 | 1 | 326.6 | - | ||
P3 | 7.8 | 0 | 1 | 651.3 | - | ||||
P5 | 0.8 | 0 | 1 | 45,454.90 | - | 139.2 | 69.8 | ||
P10 | 0.9 | 0 | 1 | 6857.90 | - | 20.3 | 10.2 | ||
P15 | 1.8 | 0 | 1 | 6638 | - | 21 | 10.5 | ||
Visual control (PVS) | |||||||||
LL4 | 0.506233 | P7 | −3.5 | 0 | 100 | 129.5 | - | ||
P3 | −2.2 | 0 | 100 | 152 | - | ||||
P5 | −1 | 0 | 100 | 1278.10 | - | 9.9 | 8.4 | ||
P10 | −9.9 | 0 | 100 | 1581.60 | - | 12.2 | 10.4 | ||
P15 | −6.3 | 0 | 100 | 4552.30 | - | 35.1 | 29.9 | ||
Dry biomass (DW) | |||||||||
LL4 | 0.961805 | P7 | 3.3 | 0.2 | 1.8 | 109.0 | - | ||
P3 | 2.5 | 0.2 | 2.1 | 165.7 | - | ||||
P5 | 1 | 0 | 1.8 | 1935.50 | - | 17.8 | 11.7 | ||
BC5 | 0.081436 | P7 | 3.2 | 0.2 | 1.8 | 92.1 | 0.0052 (0.9411) | ||
P10 | 13 | 0.3 | 0.9 | 763.1 | 0.0050 (7.51 × 10−7) | 8.7 | |||
P15 | 7.0 | 0.4 | 1.3 | 4490.40 | 0.0007 (5.05 × 10−8) | 73.7 | |||
Relative biomass (Rel-DW) | |||||||||
LL4 | 0.992759 | P7 | 3.3 | 9.4 | 100 | 108.9 | - | ||
P3 | 2.5 | 8.5 | 100 | 166 | - | ||||
P5 | 1 | −0.8 | 100 | 1950.30 | - | 17.9 | 11.7 | ||
BC4 | 0.143583 | P7 | 3.4 | 9.2 | 100 | 67.6 | 1.5803 (0.9364) | ||
P10 | 13 | 36,0 | 100 | 753 | 0.7549 (2.2 × 10−16) | 3.15 | |||
P15 | 8.7 | 33.7 | 100 | 4652.50 | 0.0641 (2.2 × 10−10) | 22.3 |
Dose | P10 | P15 | P20 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Herbicide a | g ai-ea ha−1 | 14 DAT b | 28 DAT | 14 DAT | 28 DAT | 14 DAT | 28 DAT | ||||||
2,4-D | 720 | 85.0 | a | 88.75 | a | 83.75 | a | 85.0 | a | 82.5 | a | 25.0 | b |
Glufosinate | 150 | 78.75 | ab | 47.5 | b | 81.25 | a | 56.25 | b | 56.65 | b | 25.0 | b |
Mesotrione | 100 | 66.25 | ab | 40.0 | b | 80.0 | a | 92.5 | a | 83.75 | a | 86.25 | a |
Paraquat | 600 | 52.5 | a | 20.0 | b | 60.0 | a | 50.0 | b | 20.0 | c | 30.0 | b |
Pyraflufen-ethyl | 8 | 80.0 | ab | 82.5 | a | 72.5 | a | 77.5 | ab | 80.0 | a | 90.0 | a |
Pr (>F) | - | 0.0176 | 7.27 × 10−5 | 0.0712 | 0.00113 | 1.77 × 10−7 | 1.01 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Granados, E.; Zelaya, I.; Plaza, G. Widespread Occurrence of Glyphosate-Resistant Hairy Fleabane (Erigeron bonariensis L.) in Colombia and Weed Control Alternatives. Agronomy 2023, 13, 683. https://doi.org/10.3390/agronomy13030683
Granados E, Zelaya I, Plaza G. Widespread Occurrence of Glyphosate-Resistant Hairy Fleabane (Erigeron bonariensis L.) in Colombia and Weed Control Alternatives. Agronomy. 2023; 13(3):683. https://doi.org/10.3390/agronomy13030683
Chicago/Turabian StyleGranados, Edwin, Ian Zelaya, and Guido Plaza. 2023. "Widespread Occurrence of Glyphosate-Resistant Hairy Fleabane (Erigeron bonariensis L.) in Colombia and Weed Control Alternatives" Agronomy 13, no. 3: 683. https://doi.org/10.3390/agronomy13030683
APA StyleGranados, E., Zelaya, I., & Plaza, G. (2023). Widespread Occurrence of Glyphosate-Resistant Hairy Fleabane (Erigeron bonariensis L.) in Colombia and Weed Control Alternatives. Agronomy, 13(3), 683. https://doi.org/10.3390/agronomy13030683