Soil Carbon, Nitrogen and Phosphorus Fractions and Response to Microorganisms and Mineral Elements in Zanthoxylum planispinum ‘Dintanensis’ Plantations at Different Altitudes
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Experimental Design
2.3. Indicators and Measurement Methods
2.3.1. Soil Element Determination
2.3.2. Determination of Soil C, N, and P Fractions
2.3.3. Microbial Soil Concentration and Biomass Determination
2.4. Data Processing and Statistical Analysis
3. Results
3.1. Characteristics of Soil C, N, and P Fractions at Different Altitudes
3.2. Soil Microbial Concentration and Biomass at Different Altitudes
3.3. Characteristics of Soil Mineral Elements at Different Altitudes
3.4. Relationship between Soil C, N, and P Fractions and Microbial Concentration and Mineral Element Concentrations
3.4.1. Principal Component Analysis of Mineral Element and Microbial Concentrations
3.4.2. Correlation Analysis among Soil C, N, and P Fractions with Mineral Element and Microbial Concentrations
4. Discussion
4.1. Changes in Soil C, N, and P Fractions at Different Altitudes
4.2. Changes in Soil Microorganisms and Nutrients at Different Altitudes
4.3. Relationships between Soil C, N, and P Fractions and Concentrations of Microorganisms and Mineral Elements
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bertolet, B.L.; Corman, J.R.; Casson, N.J.; Sebestyen, S.D.; Kolka, R.K.; Stanley, E.H. Influence of soil temperature and moisture on the dissolved carbon, nitrogen, and phosphorus in organic matter entering lake ecosystems. Biogeochemistry 2018, 139, 293–305. [Google Scholar] [CrossRef]
- Hou, E.; Luo, Y.; Kuang, Y.; Chen, C.; Lu, X.; Jiang, L.; Luo, X.; Wen, D. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in terrestrial ecosystems. Nat. Commun. 2020, 11, 637. [Google Scholar] [CrossRef] [Green Version]
- He, Z.L.; Yang, X.E.; Baligar, V.C.; Calvert, D.V. Microbiological and biochemical indexing systems for assessing quality of acid soils. Adv. Agron. 2003, 78, 89–138. [Google Scholar]
- Leff, J.W.; Jones, S.E.; Prober, S.M.; Barberán, A.; Borer, E.T.; Firn, J.L.; Harpole, W.S.; Hobbie, S.E.; Hofmockel, K.S.; Knops, J.M.H.; et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. USA 2015, 112, 10967–10972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, E.H.; Chen, T.H.; Tian, G.L.; Chiu, C.Y. The effect of altitudinal gradient on soil microbial community activity and structure in no so bamboo plantations. Appl. Soil Ecol. 2016, 98, 213–220. [Google Scholar] [CrossRef]
- He, X.; Hou, E.; Liu, Y.; Wen, D. Altitudinal patterns and controls of plants and soil nutrient concentration and stoichiometry in subtropical China. Sci. Rep. 2016, 6, 24261. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.F.; He, Z.B.; Du, J.; Yang, J.J.; Zhu, X. Patterns and environmental controls of soil organic carbon and total nitrogen in alpine ecosystems of northwestern China. Catena 2016, 137, 37–43. [Google Scholar] [CrossRef]
- Qin, Y.; Feng, Q.; Holden, M.N.; Cao, J. Variation in soil organic carbon by slope aspect in the middle of the Qilian Mountains in the upper Heihe River Basin, China. Catena 2016, 147, 308–314. [Google Scholar] [CrossRef]
- Kobler, J.; Zehetgruber, B.; Dirnbǒck, T.; Jandl, R.; Mirtl, M.; Schindlbacher, A. Effects of aspect and altitude on carbon cycling processes in a temperate mountain forest catchment. Landscape Ecol. 2019, 34, 325–340. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhao, P.P.; Lin, K.S.; Zhou, J.C.; Lv, M.K.; Zhang, Q.F.; Zheng, W.; Cheng, L.; Xu, J.G.; Chen, Y.M. Elevation gradient characteristics and impact factors of soil carbon fractions in the Pinus taiwanensis Hayata forests of Daiyun Mountain. Acta Ecol. Sin. 2020, 40, 5761–5770. [Google Scholar]
- Yang, Q.F.; Xiong, Y.; Yu, Z.P.; Liu, Z.; Liu, X.Y.; Xi, D. Characteristics of soil active nitrogen fractions in evergreen broad-leaved forests at different altitudes in Guanhan mountain of eastern China. J. Cent. South Univ. For. Technol. 2021, 41, 138–147. [Google Scholar]
- De Feudis, M.; Gardelli, V.; Massaccesi, L.; Willbold, R.B.; Cocco, S.; Corti, S.; Agnelli, A. Effect of beech (Fagus sylvatica L.) rhizosphere on phosphorus availability in soils at different altitudes (Central Italy). Geoderma 2016, 276, 53–63. [Google Scholar] [CrossRef]
- Che, M.X.; Wu, Q.; Fang, H.; Kang, C.F.; Lü, C.; Xu, M.J.; Gong, Y.B. Effects of elevation and slope aspect on soil nitrogen and phosphorus distribution of western Sichuan Plateau shrub meadow. Chin. J. Appl. Environ. Biol. 2021, 27, 1163–1169. [Google Scholar]
- Zhang, G.S.; Deng, H.J.; Du, K.; Lin, Y.M. Soil stoichiometry characteristics at different elevation gradient of a mountain in an area with high-frequency debris flow: A case study in Xiaojiang Watershed, Yunnan. Acta Ecol. Sin. 2016, 36, 675–687. [Google Scholar]
- Michael, M.; Yvonne, O.; Udo, S.; Jurgen, B.; Thomas, S. Himalayan treeline soil and foliar C: N:P stoichiometry indicate nutrient shortage with elevation. Geoderma 2017, 291, 21–32. [Google Scholar]
- Soussana, J.F.; Lemaire, G. Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agr. Ecosyst. Environ. 2014, 190, 9–17. [Google Scholar] [CrossRef]
- Mao, Q.G.; Lu, X.K.; Cheng, H.; Mo, J.M. Responses of terrestrial plant diversity to elevated mineral element inputs. Acta Ecol. Sin. 2015, 35, 5884–5897. [Google Scholar]
- Yanghua, Y.; Wei, Z.; Xinping, Z.; Bin, Y. Stoichiometric characteristics in Z anthoxylum planispinum var. ‘dintanensis’ plantation of different ages. Agron. J. 2020, 113, 685–695. [Google Scholar] [CrossRef]
- Song, Y.P.; Yu, Y.H.; Li, Y.T. Leaf Function Traits and relationships with Soil Properties of Zanthoxylum planispinum ‘dintanensis’in Plantations of Different Ages. Agronomy 2022, 12, 1891. [Google Scholar] [CrossRef]
- Zou, J.; Yu, L.F.; Huang, Z.S. Variation of leaf carbon isotope in plants in different lithological habitats in a karst area. Forest 2019, 10, 356. [Google Scholar] [CrossRef] [Green Version]
- Bao, S.D. Soil Agricultural Analysis, 3rd ed.; China Agricultural Publishing House: Beijing, China, 2000; pp. 30–177. [Google Scholar]
- Zhang, J.H.; Ding, W.X.; Meng, L. Spatial variability of soil labile organic carbon in the tropical rubber plantations of Hainan province, China. Ecol. Environ. Sci. 2010, 19, 2563–2567. [Google Scholar]
- Han, L.; Zhang, Y.L.; Jing, S.; Wang, J.; Wei, Y.Y.; Cui, N.; Wei, W. Effects of Different Irrigation Patterns on Soil Dissolved Organic Carbon and Microbial Biomass Carbon in Protected Field. Sci. Agric. Sin. 2010, 43, 1625–1633. [Google Scholar]
- Yang, Y.; Niu, D.C.; Wen, H.R.; Zhang, B.L.; Dong, Q.; Chen, J.L.; Fu, H. Responses of soil particulate organic carbon and nitrogen along an altitudinal gradient on the Helan Mountain. Inn. Mong. 2012, 21, 54–60. [Google Scholar]
- Hedley, M.J.; Stewart JW, B.; Chauhan, B.S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci. Soc. Am. J. 1982, 46, 970–976. [Google Scholar] [CrossRef]
- Costa, M.G.; Gama-Rodrigues, A.C.; de Moraes Gonçalves, J.L.; Gama-Rodrigues, E.F.; da Silva Sales, M.V.; Aleixo, S. Labile and non-labile fraction of phosphorus and its transformation in soil under eucalyptus plantations. Brazil. For. 2016, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.G. Principles and Methods of Soil Microbial Research; Higher Education Press: Beijing, China, 2017. [Google Scholar]
- Yu, F.Z.; Zhang, Z.Q.; Chen, L.Q.; Wang, J.X.; Shen, Z.P. Spatial distribution characteristics of soil organic carbon in subtropical forests of mountain Lushan, China. Env. Monit Assess 2018, 190, 545. [Google Scholar] [CrossRef]
- Zhou, W.J.; Sha, L.Q.; Schaefer, D.A.; Zhang, Y.P.; Song, Q.H. Directs of litter decomposition on soil dissolved organic carbon and nitrogen in a tropical rainforest. Soil Biol. Biochem. 2015, 81, 255–258. [Google Scholar] [CrossRef]
- Bargali, K.; Manral, V.; Padalia, K.; Bargali, S.S.; Upadhyay, V.P. Effect of vegetation type and season on microbial biomass carbon in Central Himalayan forest soils, India. Catena 2018, 171, 125–135. [Google Scholar] [CrossRef]
- Xiang, Y.Z.; Chang, S.X.; Shen, Y.Y.; Chen, G.; Liu, Y.; Yao, B.; Xue, J.M.; Li, Y. Grass cover increases soil microbial abundance and diversity and extracellular enzyme activities in orchards: A synthesis across China. Appl. Soil Ecol. 2023, 182, 104720. [Google Scholar] [CrossRef]
- Pang, D.B.; Cui, M.; Liu, Y.G.; Wang, G.Z.; Cao, J.H.; Wang, X.R.; Dan, X.Q.; Zhou, J.X. Responses of soil labile organic carbon fractions and stocks to different vegetation restoration strategies in degraded karst ecosystems of southwest China. Ecol. Eng. 2019, 138, 391–402. [Google Scholar] [CrossRef]
- Golchina, A.; Oades, J.M.; Skjemstd, J.O. Soil structure and carbon cycling. Aust. J. Soil Res. 1994, 32, 1043–1068. [Google Scholar] [CrossRef]
- Xiao, Y.; Huang, Z.G.; Lu, X.G. Changes of soil labile organic carbon fractions and their relation to soil microbial characteristics in four typical wetlands of Sanjiang Plain, Northeast China. Ecol. Eng. 2015, 82, 381–389. [Google Scholar] [CrossRef]
- Wen, G.T.; De, X.C.; Phillips, O.L.; Liu, X.; Zhou, Z.; Li, Y.D.; Xi, D.; Zhu, F.F.; Fang, J.Y.; Zhang, L.M.; et al. Effects of long-term increased N deposition on tropical montane forest soil N2 and N2O emissions. Soil Biol. Biochem. 2018, 126, 194–203. [Google Scholar]
- Hu, B.; Yang, B.; Pang, X.; Bao, W.; Tian, G. Responses of soil phosphorus fractions to gap size in a reforested spruce forest. Geoderma 2016, 279, 61–69. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, Y.H.; Bing, H.J.; Yang, Z.J.; Wang, J.P.; Sun, H.Y.; Luo, J. Variations in soil phosphorus biogeochemistry across six vegetation types along an altitudinal gradient in SW China. Catena 2016, 142, 102–111. [Google Scholar] [CrossRef]
- Hou, E.Q.; Chen, C.R.; Lou, Y.Q.; Zhou, G.; Kuang, Y.; Zhang, Y.; Heenan, M.; Lu, X.; Wen, D. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Global Change Biol. 2018, 24, 3344–3356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, C.Q.; Wang, J.C.; Cheng, H.T.; Zou, Y.K. Effects of rubber (Hevea brasiliensis) plantations on soil phosphorus fractions and microbial community composition. Acta Ecol. Sin. 2017, 37, 7983–7993. [Google Scholar]
- Liu, Y.J.; Wang, L.; Fan, W.; Ma, R.H.; Wang, F.; Xu, X.N. Effects of altitude on soil active organic carbon components in Cunninghamia lanceolata plantations. J. Northwest A F Univ.(Nat. Sci. Ed.) 2021, 49, 59–69. [Google Scholar]
- Singh, D.; Takahashi, K.; Kim, M.; Chun, J.; Adams, J.M. A hump-backed trend in bacterial diversity with elevation on Mount Fuji, Japan. Microb. Ecol. 2012, 63, 429–437. [Google Scholar] [CrossRef]
- Du, B.M.; Kang, H.Z.; Pumpanen, J.; Zhu, P.H.; Yin, S.; Zou, Q.; Wang, Z.; Kong, F.Q.; Liu, C.J. Soil organic carbon stock and chemical composition along altitude gradient in the Lushan Mountain, subtropical China. Ecol. Res. 2014, 29, 433–439. [Google Scholar] [CrossRef]
- Li, S.; Zhang, S.; Pu, Y.L.; Li, T.; Xu, X.X.; Jia, Y.X.; Deng, O.P.; Gong, G.S. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain. Soil Till. Res. 2015, 155, 289–297. [Google Scholar] [CrossRef]
- Hodge, A.; Robinson, D.; Fitteg, A. Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci. 2000, 5, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H.M.; Wen, Z.D.; Zhang, L.L.; Li, J. Altitudinal changes in active and recalcitrant soil carbon pools of forests in the Dinghu Mountains. Acta Ecol. Sin. 2015, 25, 6089–6099. [Google Scholar]
- Bunemann, E.K.; Marschner, P.; McNeili, A.M.; Mclaughlin, A.J. Measuring rates of gross and net mineralization of organic phosphorus in soils. Soil Biol. Biochem. 2007, 39, 900–913. [Google Scholar] [CrossRef]
- Ma, H.F.; Xie, M.Y.; Hu, H.; Guo, Y.X.; Ren, C.J.; Zhao, F.Z. Effects of stoichiometric characteristics of soil-plant-litter on soil nitrogen components in different forests along an elevational gradient of Qinling Mountains. Chin. J. Ecol. 2020, 39, 749–757. [Google Scholar]
- Bing, H.J.; Wu, Y.H.; Zhou, J.; Sun, H.Y.; Luo, J.; Wang, J.P. Stoichiometric variation of carbon, nitrogen, and phosphorus in soils and its implication for nutrient limitation in alpine ecosystem of Eastern Tibetan Plateau. J Soils Sediments 2016, 16, 405–416. [Google Scholar] [CrossRef]
- Lin, H.Y.; Yuan, X.C.; Zhou, J.C.; Zeng, Q.X.; Sun, J.; Cheng, L.; Lin, K.S.; Xu, J.G.; Chen, Y.M. Effects of different elevational gradients on soil phosphorus fractions and availability in Pinus taiwanensis forest on Wuyi Mountain. Acta Ecol. Sin. 2021, 41, 5611–5631. [Google Scholar]
Sample Plot | Altitude (m) | Longitude and Latitude | pH Value | Slope (°) | Soil Thickness (cm) | Average Tree Height (m) | Average Crown Width (m) | Density (Plants/hm2) | Vegetation Coverage (%) |
---|---|---|---|---|---|---|---|---|---|
YD1 | 531 | 105°40′9.9″ E 25°39′57.7″ N | 7.05 | 15 | 40 | 4.2 | 3 × 3 | 3 × 4 | 65 |
YD2 | 640 | 105°39′5.6″ E 25°39′46.1″ N | 7.86 | 10 | 45 | 4.0 | 3 × 3.5 | 4 × 3.5 | 70 |
YD3 | 780 | 105°38′34.7″ E 25°39′22.4″ N | 8.03 | 10 | 35 | 3.7 | 3 × 3 | 3.5 × 3 | 60 |
YD4 | 871 | 105°38′13.9″ E 25°39′17.1″ N | 7.89 | 5 | 30 | 3.4 | 3 × 3.5 | 3 × 2.8 | 60 |
YD5 | 1097 | 105°38′15.8″ E 25°38′2.4″ N | 6.79 | 5 | 40 | 3.2 | 3 × 3 | 3 × 3.2 | 60 |
Factor | TOC | POC | DOC | EOC | TN | AN | NH4+-N | NO3−-N | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | F | P | F | P | F | P | |
Altitude | 0.17 | 0.95 | 3.05 | 0.07 | 20.67 | <0.01 | 1.73 | 0.22 | 0.17 | 0.95 | 3.05 | 0.07 | 20.67 | <0.01 | 1.73 | 0.22 |
Soil depth | 5.30 | <0.05 | 43.12 | <0.01 | 1.52 | 0.25 | 3.68 | 0.08 | 5.30 | <0.05 | 43.12 | <0.01 | 1.52 | 0.25 | 3.68 | 0.08 |
Altitude × Soil depth | 0.92 | 0.49 | 2.60 | 0.10 | 1.88 | 0.19 | 0.95 | 0.47 | 0.92 | 0.49 | 2.60 | 0.10 | 1.88 | 0.19 | 0.95 | 0.47 |
Factor | TP | AP | O-P | OP1 | OP | Ca-P | SP | |||||||||
F | P | F | P | F | P | F | P | F | P | F | P | F | P | |||
Altitude | 41.23 | <0.01 | 26.55 | <0.01 | 4.35 | <0.05 | 18.10 | <0.01 | 38.513 | <0.01 | 2.64 | 0.097 | 34.40 | <0.01 | ||
Soil depth | 40.28 | <0.01 | 40.46 | <0.01 | 0.99 | 0.34 | 19.27 | <0.01 | 43.196 | <0.01 | 5.68 | 0.038 | 15.11 | <0.01 | ||
Altitude × Soil depth | 6.25 | <0.01 | 10.47 | <0.01 | 0.29 | 0.88 | 4.78 | <0.05 | 16.433 | <0.01 | 1.28 | 0.342 | 3.20 | 0.062 |
Factor | BAC | FUN | ACT | MBC | MBN | MBP | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | F | P | |
Altitude | 12.20 | <0.01 | 2.54 | 0.11 | 1.58 | 0.25 | 0.59 | 0.68 | 0.39 | 0.81 | 4.73 | <0.05 |
Soil depth | 1.16 | 0.31 | 7.50 | <0.05 | 0.33 | 0.28 | 0.58 | 0.72 | 0.16 | 0.70 | 0.37 | 0.56 |
Altitude × Soil depth | 01.15 | 0.39 | 0.61 | 0.67 | 0.84 | 0.53 | 0.75 | 0.58 | 0.62 | 0.66 | 0.47 | 0.76 |
Factor | TCa | ACa | TMg | AMg | TFe | AFe | TZn | AZn | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | F | P | F | P | F | P | |
Altitude | 151.99 | <0.01 | 38.84 | <0.01 | 18.70 | <0.01 | 6.84 | <0.01 | 1.76 | 0.21 | 16.67 | <0.01 | 5.32 | <0.05 | 11.57 | <0.01 |
Soil depth | 0.00 | 1.00 | 2.38 | 0.15 | 0.17 | 0.69 | 0.01 | 0.93 | 0.54 | 0.48 | 1.35 | 0.27 | 2.44 | 0.15 | 22.30 | <0.01 |
Altitude × Soil depth | 0.29 | 0.88 | 0.48 | 0.75 | 0.64 | 0.71 | 0.09 | 0.98 | 0.33 | 0.85 | 1.18 | 0.38 | 0.29 | 0.88 | 4.38 | <0.05 |
Factor | PC 1 | PC 2 | PC 3 | PC 4 |
---|---|---|---|---|
TCa | 0.215 | 0.930 | −0.200 | −0.112 |
ACa | 0.773 | 0.497 | −0.247 | −0.089 |
TMg | −0.505 | 0.603 | −0.495 | −0.197 |
AMg | −0.595 | 0.116 | −0.659 | 0.093 |
TFe | 0.655 | −0.010 | 0.286 | −0.058 |
AFe | −0.803 | −0.163 | 0.486 | 0.105 |
TZn | 0.020 | 0.768 | 0.564 | 0.091 |
AZn | −0.512 | 0.398 | 0.629 | 0.157 |
BAC | 0.783 | 0.160 | 0.267 | 0.338 |
FUN | −0.439 | 0.376 | −0.161 | 0.645 |
ACT | 0.430 | −0.249 | −0.404 | 0.623 |
Eigenvalue | 2.875 | 2.782 | 2.322 | 1.199 |
Contribution rate % | 26.135 | 25.294 | 21.114 | 10.903 |
Cumulative contribution rate % | 26.135 | 51.429 | 75.543 | 83.446 |
Indicators | TOC | POC | DOC | EOC | MBC | TN | AN | NH4+-N | NO3--N | MBN | TP | AP | O-P | OP1 | OP | SP | Ca-P | MBP | TCa | ACa | AFe | TZn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
POC | 0.651 ** | 1 | ||||||||||||||||||||
DOC | −0.024 | 0.035 | 1 | |||||||||||||||||||
EOC | 0.407 | 0.588 ** | 0.099 | 1 | ||||||||||||||||||
MBC | −0.190 | 0.145 | −0.027 | 0.272 | 1 | |||||||||||||||||
TN | 0.629 ** | 0.739 ** | 0.036 | 0.590 ** | 0.315 | 1 | ||||||||||||||||
AN | 0.239 | 0.349 | 0.450 * | 0.513 * | 0.167 | 0.498 * | 1 | |||||||||||||||
NH4+-N | 0.357 | 0.349 | −0.725 ** | 0.372 | 0.295 | 0.485 * | 0.022 | 1 | ||||||||||||||
NO3−-N | 0.333 | −0.045 | −0.723 ** | −0.089 | 0.133 | 0.061 | −0.421 | 0.639 ** | 1 | |||||||||||||
MBN | 0.008 | −0.026 | 0.281 | −0.024 | −0.196 | 0.015 | −0.062 | −0.203 | −0.143 | 1 | ||||||||||||
TP | 0.210 | 0.370− | 0.384 | 0.479 * | 0.145 | 0.226 | 0.610 ** | −0.100 | −0.223 | 0.214 | 1 | |||||||||||
AP | 0.170 | 0.319 | 0.312 | 0.369 | 0.275 | 0.142 | 0.468 * | −0.059 | −0.060 | 0.131 | 0.905 ** | 1 | ||||||||||
O-P | 0.099 | 0.322 | 0.594 ** | 0.461 * | 0.022 | 0.320 | 0.487 * | −0.319 | −0.613 ** | 0.500 * | 0.640 ** | 0.376 | 1 | |||||||||
OP1 | 0.154 | 0.339 | 0.283 | 0.450 * | 0.278 | 0.191 | 0.524 * | −0.034 | −0.131 | 0.060 | 0.947 ** | 0.965 ** | 0.460 * | 1 | ||||||||
OP | 0.233 | 0.280 | 0.210 | 0.396 | 0.180 | 0.119 | 0.539 * | 0.004 | 0.033 | 0.135 | 0.891 ** | 0.915 ** | 0.325 | 0.890 ** | 1 | |||||||
SP | 0.038 | 0.183 | 0.337 | 0.341 | 0.106 | −0.032 | 0.527 * | −0.170 | −0.226 | 0.145 | 0.939 ** | 0.870 ** | 0.493 * | 0.897 ** | 0.901 ** | 1 | ||||||
Ca-P | 0.472 * | 0.336 | 0.266 | 0.264 | −0.144 | 0.251 | 0.253 | −0.154 | 0.102 | 0.419 | 0.698 ** | 0.600 ** | 0.509 * | 0.588 ** | 0.667 ** | 0.559 * | 1 | |||||
MBP | 0.127 | 0.015 | 0.293 | 0.085 | −0.047 | −0.107 | 0.502 * | −0.188 | −0.194 | −0.295 | 0.580 ** | 0.559 * | 0.134 | 0.593 ** | 0.616 ** | 0.705 ** | 0.213 | 1 | ||||
TCa | −0.106 | 0.264 | 0.055 | −0.192 | −0.207 | −0.030 | −0.306 | −0.162 | −0.400 | 0.257 | −0.338 | −0.347 | 0.085 | −0.349 | −0.453 * | −0.375 | −0.298 | −0.325 | 1 | |||
ACa | −0.240 | −0.086 | −0.187 | −0.291 | −0.249 | −0.245 | −0.557 ** | −0.089 | −0.030 | 0.279 | −0.430 | −0.337 | −0.108 | −0.390 | −0.402 | −0.463 * | −0.169 | −0.389 | 0.700 ** | 1 | ||
AFe | 0.065 | 0.075 | 0.344 | 0.131 | 0.185 | 0.099 | 0.610 ** | −0.122 | −0.267 | −0.338 | 0.458 * | 0.419 | 0.099 | 0.474 * | 0.431 | 0.563 ** | 0.039 | 0.646 ** | −0.424 | −0.839 ** | 1 | |
TZn | −0.100 | 0.383 | 0.119 | 0.133 | 0.122 | 0.205 | 0.130 | 0.050 | −0.437 | 0.078 | 0.200 | 0.173 | 0.227 | 0.252 | 0.063 | 0.212 | −0.131 | 0.227 | 0.568 ** | 0.203 | 0.168 | 1 |
BAC | −0.347 | −0.153 | −0.456 * | −0.193 | 0.156 | −0.044 | −0.440 | 0.297 | 0.314 | 0.080 | −0.404 | −0.249 | −0.418 | −0.305 | −0.259 | −0.344 | −0.331 | −0.278 | 0.238 | 0.567 ** | −0.493 * | 0.268 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Yu, Y. Soil Carbon, Nitrogen and Phosphorus Fractions and Response to Microorganisms and Mineral Elements in Zanthoxylum planispinum ‘Dintanensis’ Plantations at Different Altitudes. Agronomy 2023, 13, 558. https://doi.org/10.3390/agronomy13020558
Wu Y, Yu Y. Soil Carbon, Nitrogen and Phosphorus Fractions and Response to Microorganisms and Mineral Elements in Zanthoxylum planispinum ‘Dintanensis’ Plantations at Different Altitudes. Agronomy. 2023; 13(2):558. https://doi.org/10.3390/agronomy13020558
Chicago/Turabian StyleWu, Yingu, and Yanghua Yu. 2023. "Soil Carbon, Nitrogen and Phosphorus Fractions and Response to Microorganisms and Mineral Elements in Zanthoxylum planispinum ‘Dintanensis’ Plantations at Different Altitudes" Agronomy 13, no. 2: 558. https://doi.org/10.3390/agronomy13020558
APA StyleWu, Y., & Yu, Y. (2023). Soil Carbon, Nitrogen and Phosphorus Fractions and Response to Microorganisms and Mineral Elements in Zanthoxylum planispinum ‘Dintanensis’ Plantations at Different Altitudes. Agronomy, 13(2), 558. https://doi.org/10.3390/agronomy13020558