The Influence of Consortia of Beneficial Microorganisms on the Growth and Yield of Aquaponically Grown Romaine Lettuce
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Beneficial Bacterial Strains for Water Enrichment in Aquaponic Cultivation of Romaine Lettuce
2.2. Crop and Experimental Site
2.3. Microbiological Analysis of the Media for Growing Lettuce Plants
2.4. Statistical Analysis
3. Results
3.1. Selection of Beneficial Bacterial Strains and Development of Microbial Consortia
- Beneficial microorganism consortium I containing strains with the properties of NH4+ ion oxidation and growth on a mineral medium containing NH4Cl as a nitrogen source: RXAAC (Klebsiella spp.); and RXBAB (Klebsiella spp.);
- Beneficial microorganism consortium II containing strains with the properties of inhibiting the pathogen Phytophthora cactorum: SpBX2020 (Paenibacillus polymyxa); and SpBY2020 (Paenibacillus polymyxa);
- Beneficial microorganism consortium III containing strains with the properties of NH4+ ion oxidation and growth on a mineral medium containing NH4Cl as a source of nitrogen: ODBA (Nocardia spp.), ODBB (Rhodococcus spp.).
3.2. Evaluation of the Growth of the Above-Ground Part and Roots of Romaine Lettuce
3.3. Microbiological Analysis of the Media for Growing Lettuce Plants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qin, G.; Liu, C.C.; Richman, N.H.; Moncur, J.E. Aquaculture wastewater treatment and reuse by wind-driven reverse osmosis membrane technology: A pilot study on Coconut Island, Hawaii. Aquac. Eng. 2005, 32, 365–378. [Google Scholar] [CrossRef]
- Bao, W.; Zhu, S.; Jin, G.; Ye, Z. Generation, characterization, perniciousness, removal and reutilization of solids in aquaculture water: A review from the whole process perspective. Rev. Aquac. 2019, 11, 1342–1366. [Google Scholar] [CrossRef]
- McMurtry, M.R.; Sanders, D.C.; Cure, J.D.; Hodson, R.G.; Haning, B.C.; Amand, E.S. Efficiency of water use of an integrated fish/vegetable co-culture system. J. World Aquac. Soc. 1997, 28, 420–428. [Google Scholar] [CrossRef]
- Greenfeld, A.; Becker, N.; Bornman, J.F.; Spatari, S.; Angel, D.L. Is aquaponics good for the environment?—Evaluation of environmental impact through life cycle assessment studies on aquaponics systems. Aquac. Int. 2022, 30, 305–322. [Google Scholar] [CrossRef]
- Seawright, D.E.; Stickney, R.R.; Walker, R.B. Nutrient dynamics in integrated aquaculture–hydroponics systems. Aquaculture 1998, 160, 215–237. [Google Scholar] [CrossRef]
- Piedrahita, R.H. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture 2003, 226, 35–44. [Google Scholar] [CrossRef]
- Sugiura, S.H. Phosphorus, aquaculture, and the environment. Rev. Fish. Sci. Aquac. 2018, 26, 515–521. [Google Scholar] [CrossRef]
- Dauda, A.B.; Ajadi, A.; Tola-Fabunmi, A.S.; Akinwole, A.O. Waste production in aquaculture: Sources, components and managements in different culture systems. Aquac. Fish. 2019, 4, 81–88. [Google Scholar] [CrossRef]
- Campanati, C.; Willer, D.; Schubert, J.; Aldridge, D.C. Sustainable intensification of aquaculture through nutrient recycling and circular economies: More fish, less waste, blue growth. Rev. Fish. Sci. Aquac. 2022, 30, 143–169. [Google Scholar] [CrossRef]
- Martins, C.I.M.; Eding, E.H.; Verdegem, M.C.; Heinsbroek, L.T.; Schneider, O.; Blancheton, J.-P.; d’Orbcastel, E.R.; Verreth, J.A.J. New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquac. Eng. 2010, 43, 83–93. [Google Scholar] [CrossRef]
- Beveridge, M.C.M.; Phillips, M.J.; Macintosh, D.J. Aquaculture and the environment: The supply of and demand for environmental goods and services by Asian aquaculture and the implications for sustainability. Aquac. Res. 1997, 28, 797–807. [Google Scholar] [CrossRef]
- Weitzman, J. Applying the ecosystem services concept to aquaculture: A review of approaches, definitions, and uses. Ecosyst. Serv. 2019, 35, 194–206. [Google Scholar] [CrossRef]
- Effendi, H.; Utomo, B.A.; Darmawangsa, G.M. Phytoremediation of freshwater crayfish (Cherax quadricarinatus) culture wastewater with spinach (Ipomoea aquatica) in aquaponic system. Aquac. Aquar. Conserv. Legis. 2015, 8, 421–430. [Google Scholar]
- Effendi, H.; Utomo, B.A.; Pratiwi, N.T. Ammonia and orthophosphate removal of tilapia cultivation wastewater with Vetiveria zizanioides. J. King Saud Univ. -Sci. 2020, 32, 207–212. [Google Scholar] [CrossRef]
- Parvathy, A.J.; Das, B.C.; Jifiriya, M.J.; Varghese, T.; Pillai, D.; Rejish Kumar, V.J. Ammonia induced toxico-physiological responses in fish and management interventions. Rev. Aquac. 2022, 1–28. [Google Scholar] [CrossRef]
- Ying, F.; Juanjuan, L.; Jie, P. A Review: Toxicity of Ammonia-N to Fish and Detoxification Strategy of Fish. Anim. Husb. Feed. Sci. 2018, 10, 306–310. [Google Scholar] [CrossRef]
- Fedoroff, N.V.; Battisti, D.S.; Beachy, R.N.; Cooper, P.J.; Fischhoff, D.A.; Hodges, C.N.; Knauf, V.C.; Lobell, D.; Mazur, B.J.; Molden, D.; et al. Radically rethinking agriculture for the 21st century. Science 2010, 327, 833–834. [Google Scholar] [CrossRef]
- Touliatos, D.; Dodd, I.C.; McAinsh, M. Vertical farming increases lettuce yield per unit area compared to conventional horizontal hydroponics. Food Energy Secur. 2016, 5, 184–191. [Google Scholar] [CrossRef]
- Ahmed, Z.F.R.; Alnuaimi, A.K.H.; Askri, A.; Tzortzakis, N. Evaluation of Lettuce (Lactuca sativa L.) Production under Hydroponic System: Nutrient Solution Derived from Fish Waste vs. Inorganic Nutrient Solution. Horticulturae 2021, 7, 292. [Google Scholar] [CrossRef]
- Baganz, G.F.M.; Junge, R.; Portella, M.C.; Goddek, S.; Keesman, K.J.; Baganz, D.; Staaks, G.; Shaw, C.; Lohrberg, F.; Kloas, W. The aquaponic principle—It is all about coupling. Rev. Aquac. 2022, 14, 252–264. [Google Scholar] [CrossRef]
- Ajijah, N.; Apriyana, A.Y.; Sriwuryandari, L.; Priantoro, E.A.; Janetasari, S.A.; Pertiwi, T.Y.R.; Suciati, A.M.; Ardeniswan Sembiring, T. Beneficiary of nitrifying bacteria for enhancing lettuce (Lactuca sativa) and vetiver grass (Chrysopogon zizanioides L.) growths align with carp (Cyprinus carpio) cultivation in an aquaponic system. Environ. Sci. Pollut. Res. 2021, 28, 880–889. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Lee, J.W.; Chandran, K.; Kim, S.; Brotto, A.C.; Khanal, S.K. Effect of plant species on nitrogen recovery in aquaponics. Bioresour. Technol. 2015, 188, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Endut, A.; Jusoh, A.; Ali, N.; Nik, W.W.; Hassan, A. A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system. Bioresour. Technol. 2010, 101, 1511–1517. [Google Scholar] [CrossRef] [PubMed]
- Zappernick, N.; Nedunuri, K.V.; Islam, K.R.; Khanal, S.; Worley, T.; Laki, S.L.; Shah, A. Techno-economic analysis of a recirculating tilapia-lettuce aquaponics system. J. Clean. Prod. 2022, 365, 132753. [Google Scholar] [CrossRef]
- Tyson, R.V.; Treadwell, D.D.; Simonne, E.H. Opportunities and challenges to sustainability in aquaponic systems. HortTechnology 2011, 21, 6–13. [Google Scholar] [CrossRef]
- Roosta, H.R.; Hamidpour, M. Effects of foliar application of some macro-and micro-nutrients on tomato plants in aquaponic and hydroponic systems. Sci. Hortic. 2011, 129, 396–402. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Horgan, T.E.; Astatkie, T.; Fratesi, D.; Mischke, C.C. Study on shrimp waste water and vermicompost as a nutrient source for bell peppers. HortScience 2011, 46, 1493–1496. [Google Scholar] [CrossRef]
- Ahmed, N.; Turchini, G.M. Recirculating aquaculture systems (RAS): Environmental solution and climate change adaptation. J. Clean. Prod. 2021, 297, 126604. [Google Scholar] [CrossRef]
- Kralik, B.; Weisstein, F.; Meyer, J.; Neves, K.; Anderson, D.; Kershaw, J. From water to table: A multidisciplinary approach comparing fish from aquaponics with traditional production methods. Aquaculture 2022, 552, 737953. [Google Scholar] [CrossRef]
- Roberts, J.M.; Bruce, T.J.A.; Monaghan, J.M.; Pope, T.W.; Leather, S.R.; Beacham, A.M. Vertical farming systems bring new considerations for pest and disease management. Ann. Appl. Biol. 2020, 176, 226–232. [Google Scholar] [CrossRef]
- Petrea, S.M.; Cristea, V.; Dediu, L.; Contoman, M.; Stroe, M.D.; Antache, A.; Coadă, M.T.; Placinta, S. Vegetable production in an integrated aquaponic system with stellate sturgeon and spinach–Matador variety. Scientific Papers: Anim. Sci. Biotechnol. 2014, 47, 228–238. [Google Scholar]
- Thomas, R.M.; Verma, A.K.; Krishna, H.; Prakash, S.; Kumar, A.; Peter, R.M. Effect of salinity on growth of Nile tilapia (Oreochromis niloticus) and spinach (Spinacia oleracea) in aquaponic system using inland saline groundwater. Aquac. Res. 2021, 52, 6288–6298. [Google Scholar] [CrossRef]
- Dediu, L.; Cristea, V.; Xiaoshuan, Z. Waste production and valorization in an integrated aquaponic system with bester and lettuce. Afr. J. Biotechnol. 2012, 11, 2349–2358. [Google Scholar] [CrossRef]
- Simeonidou, M.; Paschos, I.; Gouva, E.; Kolygas, M.; Perdikaris, C. Performance of a small-scale modular aquaponic system. Aquac. Aquar. Conserv. Legis. 2012, 5, 182–188. [Google Scholar]
- Buzby, K.M.; Lin, L.S. Scaling aquaponic systems: Balancing plant uptake with fish output. Aquac. Eng. 2014, 63, 39–44. [Google Scholar] [CrossRef]
- Wahyuningsih, S.; Effendi, H.; Wardiatno, Y. Nitrogen removal of aquaculture wastewater in aquaponic recirculation system. Aquac. Aquar. Conserv. Legis. 2015, 8, 491–499. Available online: http://www.bioflux.com.ro/docs/2015.491-499.pdf (accessed on 3 November 2022).
- Ogah, S.I.; Kamarudin, M.S.; Nurul Amin, S.M.; Puteri Edaroyati, M.W. Biological filtration properties of selected herbs in an aquaponic system. Aquac. Res. 2020, 51, 1771–1779. [Google Scholar] [CrossRef]
- Makhdom, S.; Shekarabi, S.P.H.; Shamsaie Mehrgan, M. Biological nutrient recovery from culturing of pearl gourami (Trichogaster leerii) by cherry tomato (Solanum lycopersicum) in aquaponic system. Environ. Sci. Pollut. Res. 2017, 24, 20634–20640. [Google Scholar] [CrossRef]
- Braglia, R.; Costa, P.; Di Marco, G.; D’Agostino, A.; Redi, E.L.; Scuderi, F.; Gismondi, A.; Canini, A. Phytochemicals and quality level of food plants grown in an aquaponics system. J. Sci. Food Agric. 2022, 102, 844–850. [Google Scholar] [CrossRef]
- Tyson, R.V.; Simonne, E.H.; Treadwell, D.D.; White, J.M.; Simonne, A. Reconciling pH for ammonia biofiltration and cucumber yield in a recirculating aquaponic system with perlite biofilters. HortScience 2008, 43, 719–724. [Google Scholar] [CrossRef]
- Graber, A.; Junge, R. Aquaponic Systems: Nutrient recycling from fish wastewater by vegetable production. Desalination 2009, 246, 147–156. [Google Scholar] [CrossRef]
- Babatunde, A.; Deborah, R.A.; Gan, M.; Simon, T. Effects of plant density and stem pruning on plant biomass yield and economic benefits in a low-cost gravel bed aquaponic system. J. Appl. Aquac. 2022, 1–27. [Google Scholar] [CrossRef]
- Roosta, H.R.; Mohsenian, Y. Effects of foliar spray of different Fe sources on pepper (Capsicum annum L.) plants in aquaponic system. Sci. Hortic. 2012, 146, 182–191. [Google Scholar] [CrossRef]
- Saseendran, S.; Dube, K.; Chandrakant, M.H.; Rani, A.B. Enhanced growth response and stress mitigation of genetically improved farmed Tilapia in a biofloc integrated aquaponic system with bell pepper. Aquaculture 2021, 533, 736200. [Google Scholar] [CrossRef]
- Oladimeji, S.A.; Okomoda, V.T.; Olufeagba, S.O.; Solomon, S.G.; Abol-Munafi, A.B.; Alabi, K.I.; Ikhwanuddin, M.; Martins, C.O.; Umaru, J.; Hassan, A. Aquaponics production of catfish and pumpkin: Comparison with conventional production systems. Food Sci. Nutr. 2020, 8, 2307–2315. [Google Scholar] [CrossRef]
- Astuti, L.P.; Warsa, A.; Krismono. The Ability of Some Vegetables to Reduce Nutrients from Fish Culture Waste to Support Environmentally Friendly Floating Net Cage Culture. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; Volume 1062, p. 012028. [Google Scholar] [CrossRef]
- Stouvenakers, G.; Dapprich, P.; Massart, S.; Jijakli, M.H. Plant Pathogens and Control Strategies in Aquaponics. In Aquaponics Food Production Systems; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer Open: Cham, Switzerland, 2019; pp. 353–378. [Google Scholar]
- Lee, S.; Lee, J. Beneficial bacteria and fungi in hydroponics system: Types and characteristics of hydroponic food production methods. Sci. Hortic. 2015, 195, 206–215. [Google Scholar] [CrossRef]
- Joyce, A.; Timmons, M.; Goddek, S.; Pentz, T. Bacterial Relationships in Aquaponics: New Research Directions. In Aquaponics Food Production Systems; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer Open: Cham, Switzerland, 2019; pp. 145–161. [Google Scholar]
- Diver, S.; Rinehart, L. Aquaponics—Integration of hydroponics with aquaculture. ATTRA—Natl. Sustain. Agric. Inf. Serv. 2000, 28, 1–28. [Google Scholar]
- Rakocy, J.E. Aquaponics: Integrating fish and plant culture. In Aquaculture Production Systems; Tidwell, J.H., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 344–386. [Google Scholar] [CrossRef]
- Day, J.A.; Diener, C.; Otwell, A.E.; Tams, K.E.; Bebout, B.; Detweiler, A.M.; Lee, M.D.; Scott, M.T.; Ta, W.; Ha, M.; et al. Lettuce (Lactuca sativa) productivity influenced by microbial inocula under nitrogen-limited conditions in aquaponics. PLoS ONE 2021, 16, e0247534. [Google Scholar] [CrossRef]
- Pérez-Urrestarazu, L.; Lobillo-Eguíba, J.; Fernández-Cañero, R.; Fernández-Cabanás, V.M. Food safety concerns in urban aquaponic production: Nitrate contents in leafy vegetables. Urban For. Urban Green. 2019, 44, 126431. [Google Scholar] [CrossRef]
- Monsees, H.; Suhl, J.; Paul, M.; Kloas, W.; Dannehl, D.; Würtz, S. Lettuce (Lactuca sativa, variety Salanova) production in decoupled aquaponic systems: Same yield and similar quality as in conventional hydroponic systems but drastically reduced greenhouse gas emissions by saving inorganic fertilizer. PLoS ONE 2019, 14, e0218368. [Google Scholar] [CrossRef]
- Tokuyama, T.; Mine, A.; Kamiyama, K.; Yabe, R.; Satoh, K.; Matsumoto, H.; Takahasi, R.; Itonaga, K. Nitrosomonas communis strain YNSRA, an ammonia-oxidizing bacterium, isolated from the reed rhizoplane in an aquaponics plant. J. Biosci. Bioeng. 2004, 98, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Heise, J.; Müller, H.; Probst, A.J.; Meckenstock, R.U. Ammonium removal in aquaponics indicates participation of comammox Nitrospira. Curr. Microbiol. 2021, 78, 894–903. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Hu, Z.; Li, D.; Tang, R. Nitrogen Removal of Water and Sediment in Grass Carp Aquaculture Ponds by Mixed Nitrifying and Denitrifying Bacteria and Its Effects on Bacterial Community. Water 2022, 14, 1855. [Google Scholar] [CrossRef]
- Abbo, D. Inoculating Fish Sludge from Aquaponics with Microbes to Enhance Mineralisation of Phosphorus. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2020. Available online: https://libstore.ugent.be/fulltxt/RUG01/002/863/976/RUG01-002863976_2020_0001_AC.pdf (accessed on 3 November 2022).
- Albadwawi, M.A.O.K.; Ahmed, Z.F.R.; Kurup, S.S.; Alyafei, M.A.; Jaleel, A. A Comparative Evaluation of Aquaponic and Soil Systems on Yield and Antioxidant Levels in Basil, an Important Food Plant in Lamiaceae. Agronomy 2022, 12, 3007. [Google Scholar] [CrossRef]
- Schmautz, Z.; Espinal, C.A.; Smits, T.H.M.; Frossard, E.; Junge, R. Nitrogen transformations across compartments of an aquaponic system. Aquac. Eng. 2021, 92, 102145. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Y.; Liu, J.; Lin, Z.; Lee, C.T.; Hashim, H.; Wu, W.-M.; Li, C. Recovery of nutrients from fish sludge as liquid fertilizer to enhance sustainability of aquaponics: A review. Chem. Eng. Trans. 2021, 83, 55–60. [Google Scholar] [CrossRef]
- Prajapati, K.; Modi, H. Growth promoting effect of potassium solubilizing Enterobacter hormaechei (KSB-8) on cucumber (Cucumis sativus) under hydroponic conditions. Int. J. Adv. Res. Biol. Sci. 2016, 3, 168–173. Available online: http://s-o-i.org/1.15/ijarbs-2016-3-5-24 (accessed on 3 November 2022).
- Wang, C.; Jiang, C.; Gao, T.; Peng, X.; Ma, S.; Sun, Q.; Xia, B.; Xie, X.; Bai, Z.; Xu, S.; et al. Improvement of fish production and water quality in a recirculating aquaculture pond enhanced with bacteria-microalgae association. Aquaculture 2022, 547, 737420. [Google Scholar] [CrossRef]
- Fujiwara, K.; Iida, Y.; Someya, N.; Takano, M.; Ohnishi, J.; Terami, F.; Shinohara, M. Emergence of antagonism against the pathogenic fungus Fusarium oxysporum by interplay among non-antagonistic bacteria in a hydroponics using multiple parallel mineralization. J. Phytopathol. 2016, 164, 853–862. [Google Scholar] [CrossRef]
- Rivas-García, T.; González-Estrada, R.R.; Chiquito-Contreras, R.G.; Reyes-Pérez, J.J.; González-Salas, U.; Hernández-Montiel, L.G.; Murillo-Amador, B. Biocontrol of phytopathogens under aquaponics systems. Water 2020, 12, 2061. [Google Scholar] [CrossRef]
- Rueda, D.; Valencia, G.; Soria, N.; Rueda, B.; Manjunatha, B.; Kundapur, R.R.; Selvanayagam, M. Effect of Azospirillum spp. and Azotobacter spp. on the growth and yield of strawberry (Fragaria vesca) in hydroponic system under different nitrogen levels. J. Appl. Pharm. Sci. 2016, 6, 48–54. [Google Scholar] [CrossRef]
- Moncada, A.; Miceli, A.; Vetrano, F. Use of plant growth-promoting rhizobacteria (PGPR) and organic fertilization for soilless cultivation of basil. Sci. Hortic. 2021, 275, 109733. [Google Scholar] [CrossRef]
- Zhan, L.; Hu, J.; Ai, Z.; Pang, L.; Li, Y.; Zhu, M. Light exposure during storage preserving soluble sugar and l-ascorbic acid content of minimally processed romaine lettuce (Lactuca sativa L. var. longifolia). Food Chem. 2013, 136, 273–278. [Google Scholar] [CrossRef]
- Szczepkowski, M.; Kolman, R. Development and behaviour of two reciprocal back cross hybrids of Siberian sturgeon (Acipenser baeri Brandt) and Russian sturgeon (Acipenser gueldenstaedti Brandt) during early ontogenesis sturgeon. Czech J. Anim. Sci. 2002, 47, 289–296. [Google Scholar]
- Dediu, L.; Cristea, V.; Docan, A.; Vasilean, I. Evaluation of condition and technological performance of hybrid bester reared in standard and aquaponic system. Aquac. Aquar. Conserv. Legis. 2011, 4, 490–498. [Google Scholar]
- Matysiak, B.; Kaniszewski, S.; Dyśko, J.; Kowalczyk, W.; Kowalski, A.; Grzegorzewska, M. The impact of LED light spectrum on the growth, morphological traits, and nutritional status of ‘Elizium’ romaine lettuce grown in an indoor controlled environment. Agriculture 2021, 11, 1133. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plantarum 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Gomez, E.; Ferreras, L.; Toresani, S. Soil bacterial functional diversity as influenced by organic amendment application. Bioresour. Technol. 2006, 97, 1484–1489. [Google Scholar] [CrossRef]
- Zak, J.C.; Willig, M.R.; Moorhead, D.L.; Wildman, H.G. Functional diversity of microbial communities: A quantitative approach. Soil Biol. Biochem. 1994, 26, 1101–1108. [Google Scholar] [CrossRef]
- Pantanella, E.; Cardarelli, M.; Colla, G.; Rea, E.; Marcucci, A. Aquaponics vs. hydroponics: Production and quality of lettuce crop. Acta Hortic. 2012, 927, 887–893. [Google Scholar] [CrossRef]
- Purwandari, Y.; Effendi, H.; Wardiatno, Y. The use of gouramy (Osphronemus goramy) rearing wastewater for growing romaine lettuce (Lactuca sativa l. var. longifolia) in aquaponic system. Asian J. Microbiol. Biotechnol. Environ. Sci. 2017, 19, 121–128. [Google Scholar]
- Khastini, R.O.; Idaryanto, F.R.; Wahyuni, I.; Sari, I.J.; Puspita, N.; Wahyuni, A.F. Microbial consortia effects on the yields of water spinach in milkfish aquaponics system. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 383, p. 012040. [Google Scholar] [CrossRef]
- Aini, N.; Yamika, W.S.D.; Ulum, B. Effect of nutrient concentration, PGPR and AMF on plant growth, yield, and nutrient uptake of hydroponic lettuce. Int. J. Agric. Biol. 2019, 21, 175–183. [Google Scholar] [CrossRef]
- Kasozi, N.; Kaiser, H.; Wilhelmi, B. Effect of Bacillus spp. on lettuce growth and root associated bacterial community in a small-scale aquaponics system. Agronomy 2021, 11, 947. [Google Scholar] [CrossRef]
- Effendi, H.; Wahyuningsih, S.; Wardiatno, Y. The use of nile tilapia (Oreochromis niloticus) cultivation wastewater for the production of romaine lettuce (Lactuca sativa L. var. longifolia) in water recirculation system. Appl. Water Sci. 2017, 7, 3055–3063. [Google Scholar] [CrossRef]
- Schmautz, Z.; Espinal, C.A.; Bohny, A.M.; Rezzonico, F.; Junge, R.; Frossard, E.; Smits, T.H. Environmental parameters and microbial community profiles as indication towards microbial activities and diversity in aquaponic system compartments. BMC Microbiol. 2021, 21, 12. [Google Scholar] [CrossRef]
- Schmautz, Z.; Walser, J.C.; Espinal, C.A.; Gartmann, F.; Scott, B.; Pothier, J.F.; Frossard, E.; Junge, R.; Smits, T.H. Microbial diversity across compartments in an aquaponic system and its connection to the nitrogen cycle. Sci. Total Environ. 2022, 852, 158426. [Google Scholar] [CrossRef]
- Espinal, C.A.; Matulić, D. Recirculating Aquaculture Technologies. In Aquaponics Food Production Systems; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer Open: Cham, Switzerland, 2019; pp. 35–76. [Google Scholar]
Nutrient | Concentration |
---|---|
N-NO3− | 62.0 |
N-NH4 | 7.3 |
P-PO4−3 | 5.68 |
K+ | 17.6 |
Ca+2 | 138 |
Mg+2 | 27.6 |
Na+ | 18.9 |
Cl− | 50.1 |
SO4−2 | 130 |
Fe | 0.06 |
Fe total | 0.29 |
Mn | 0.02 |
Cu | 0.02 |
Zn | 0.10 |
B | 0.11 |
Strain | The Genus/Species of Bacteria with the Greatest Similarity to the NCBI Sequence | NCBI Sequence No. | Degree of Similarity (%) | Identification |
---|---|---|---|---|
RXAAC | Klebsiella sp. strain KKP_3088 | MT580115.1 | 99.04 | Klebsiella sp. |
RXBAB | Klebsiella sp. strain D8 | MT580115.1 | 98.98 | Klebsiella sp. |
SpBX2020 | Paenibacillus polymyxa strain DSM 36 | NR_117733.2 | 99.8 | Paenibacillus polymyxa |
SpBY2020 | Paenibacillus polymyxa strain NBRC 15309 | NR_112641.1 | 99.63 | Paenibacillus polymyxa |
Combination | Root Fresh Weight [g] | Root Dry Weight [g] | Root Length [cm] | Root Surface Area [cm2] | Root Diameter [mm] | Root Volume [cm3] | Number of Root Tips |
---|---|---|---|---|---|---|---|
Control (fish farm wastewater) | 7.44 ± 0.5 a | 0.27 ± 0.02 a | 4315.7 ± 913.4 a | 545.5 ± 74.9 a | 0.43 ± 0.04 a | 6.1 ± 0.29 a | 5016 ± 941.5 b |
Fish farm wastewater + beneficial micro-organisms Consortium I | 7.19 ± 1.7 a | 0.25 ± 0.06 a | 3573.8 ± 744.8 a | 535.6 ± 109.9 a | 0.47 ± 0.01 a | 6.4 ± 1.29 a | 3283 ± 623 a |
Fish farm wastewater + beneficial micro-organism Consortium II | 7.30 ± 0.3 a | 0.24 ± 0.02 a | 4365.3 ± 1755.0 a | 555.8 ± 130.1 a | 0.43 ± 0.08 a | 5.8 ± 0.3 a | 3480 ± 107.5 a |
Fish farm wastewater + beneficial micro-organism Consortium III | 9.34 ± 2.9 a | 0.31 ± 0.09 a | 3749.4 ± 233.4 a | 443.4 ± 38.6 a | 0.50 ± 0.05 ab | 7.6 ± 2.01 a | 3497 ± 436.5 a |
Mineral medium based on fish farm wastewater | 9.59 ± 1.1 a | 0.35 ± 0.05 a | 2126.1 ± 206.6 a | 595.6 ± 98.3 a | 0.66 ± 0.01 b | 7.4 ± 0.57 a | 2311 ± 114.5 a |
Combination | 48–72 h after Consortium Application | 7 Days After Consortium Application | 14 Days after Consortium Application | 21 Days after Consortium Application | 28 Days after Consortium Application | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AWCD | Index H | ×105 CFU × mL−1 | AWCD | Index H | ×105 CFU × mL−1 | AWCD | Index H | ×105 CFU × mL−1 | AWCD | Index H | ×105 CFU × mL−1 | AWCD | Index H | ×105 CFU × mL−1 | |
Control (fish farm wastewater) | 0.17 ± 0.06 a | 2.11 ± 0.07 a | 1.24 ± 0.14 a | 0.33 ± 0.01 a | 2.69 ± 0.07 a | 2.54 ± 0.1 a | 0.23 ± 0.01 ab | 2.24 ± 0.3 a | 1.64 ± 0.32 a | 0.19 ± 0.01 a | 2.54 ± 0.46 a | 1.58 ± 0.17 a | 0.29 ± 0.04 a | 2.66 ± 0.13 a | 2.07 ± 0.19 a |
Fish farm wastewater + beneficial micro-organisms Consortium I | 1.01 ± 0.13 d | 3.11 ± 0.16 b | 10.5 ± 2.05 c | 0.62 ± 0.1 c | 2.96 ± 0.03 a | 5.17 ± 0.52 c | 0.13 ± 0.01 a | 2.07 ± 0.21 a | 1.18 ± 0.05 c | 0.93 ± 0.01 b | 2.85 ± 0.07 a | 8.45 ± 0.34 b | 0.57 ± 0.02 bc | 2.79 ± 0.25 a | 4.38 ± 0.13 b |
Fish farm wastewater + beneficial micro-organism Consortium II | 0.92 ± 0.12 cd | 2.77 ± 0.08 b | 9.03 ± 1.95 c | 0.45 ± 0.1 b | 3.15 ± 0.54 a | 4.09 ± 0.33 b | 0.31 ± 0.02 b | 2.72 ± 0.22 a | 2.43 ± 0.54 b | 0.28 ± 0.04 a | 2.47 ± 0.15 a | 2.0 ± 0.14 a | 0.44 ± 0.09 b | 2.9 ± 0.29 a | 4.89 ± 0.68 b |
Fish farm wastewater + beneficial micro-organism Consortium III | 0.44 ± 0.13 ab | 2.95 ± 0.02 b | 3.38 ± 0.47 ab | 0.59 ± 0.01 c | 3.25 ± 0.22 a | 4.54 ± 0.27 ab | 0.12 ± 0.02 a | 2.71 ± 0.23 a | 1.2 ± 0.07 ab | 0.8 ± 0.26 b | 2.98 ± 0.32 a | 8.89 ± 1.16 b | 0.63 ± 0.01 c | 2.67 ± 0.21 a | 4.85 ± 0.15 b |
Mineral medium based on fish farm wastewater | 0.67 ± 0.05 bc | 2.76 ± 0.3 b | 5.11 ± 0.77 b | 0.99 ± 0.02 d | 3.19 ± 0.12 a | 6.6 ± 0.53 bc | 0.56 ± 0.05 c | 2.72 ± 0.24 a | 3.73 ± 0.34 bc | 0.15 ± 0.02 a | 2.6 ± 0.4 a | 1.36 ± 0.05 a | 0.68 ± 0.04 c | 2.9 ± 0.38 a | 7.56 ± 0.53 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sas-Paszt, L.; Trzciński, P.; Lisek, A.; Głuszek, S.; Matysiak, B.; Kaniszewski, S. The Influence of Consortia of Beneficial Microorganisms on the Growth and Yield of Aquaponically Grown Romaine Lettuce. Agronomy 2023, 13, 546. https://doi.org/10.3390/agronomy13020546
Sas-Paszt L, Trzciński P, Lisek A, Głuszek S, Matysiak B, Kaniszewski S. The Influence of Consortia of Beneficial Microorganisms on the Growth and Yield of Aquaponically Grown Romaine Lettuce. Agronomy. 2023; 13(2):546. https://doi.org/10.3390/agronomy13020546
Chicago/Turabian StyleSas-Paszt, Lidia, Paweł Trzciński, Anna Lisek, Sławomir Głuszek, Bożena Matysiak, and Stanisław Kaniszewski. 2023. "The Influence of Consortia of Beneficial Microorganisms on the Growth and Yield of Aquaponically Grown Romaine Lettuce" Agronomy 13, no. 2: 546. https://doi.org/10.3390/agronomy13020546