Real-Time Measurement of Atmospheric CO2, CH4 and N2O above Rice Fields Based on Laser Heterodyne Radiometers (LHR)
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Atmospheric CO2
4.2. Atmospheric CH4
4.3. Atmospheric N2O
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fan, K.; Yan, Y.; Xu, D.; Li, S.; Zhao, Y.; Wang, X.; Xin, X. Methane and Nitrous Oxide Fluxes with Different Land Uses in the Temperate Meadow Steppe of Inner Mongolia, China. Agronomy 2022, 12, 2810. [Google Scholar] [CrossRef]
- McGill, B.M.; Hamilton, S.K.; Millar, N.; Robertson, G.P. The Greenhouse Gas Cost of Agricultural Intensification with Groundwater Irrigation in a Midwest U.S. Row Cropping System. Glob. Chang. Biol. 2018, 24, 5948–5960. [Google Scholar] [CrossRef] [PubMed]
- Duval, B.D.; Martin, J.; Marsalis, M.A. The Effect of Variable Fertilizer and Irrigation Treatments on Greenhouse Gas Fluxes from Aridland Sorghum. Agronomy 2022, 12, 3109. [Google Scholar] [CrossRef]
- Knorr, W. Is the airborne fraction of anthropogenic CO2 emissions increasing? Geophys. Res. Lett. 2009, 36, L21710. [Google Scholar] [CrossRef]
- Wang, G.; Liang, Y.; Zhang, Q.; Jha, S.K.; Gao, Y.; Shen, X.; Sun, J.; Duan, A. Mitigated CH4 and N2O Emissions and Improved Irrigation Water Use Efficiency in Winter Wheat Field with Surface Drip Irrigation in the North China Plain. Agric. Water Manag. 2016, 163, 403–407. [Google Scholar] [CrossRef]
- Pereira, J.L.S.; Perdigão, A.; Marques, F.; Wessel, D.F.; Trindade, H.; Fangueiro, D. Mitigating Ammonia and Greenhouse Gas Emissions from Stored Pig Slurry Using Chemical Additives and Biochars. Agronomy 2022, 12, 2744. [Google Scholar] [CrossRef]
- IPCC. Available online: https://www.ipcc.ch/report/sixth-assessment-report-cycle/ (accessed on 10 November 2022).
- Zhu, X.; Burger, M.; Doane, T.A.; Horwath, W.P. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. Proc. Natl. Acad. Sci. USA 2013, 110, 6328–6333. [Google Scholar] [CrossRef]
- Levy, P.; Drewer, J.; Jammet, M.; Leeson, S.; Friborg, T.; Skiba, U.; Oijen, M. Inference of spatial heterogeneity in surface fluxes from eddy covariance data: A case study from a subarctic mire ecosystem. Agric. For. Meteorol. 2020, 280, 107783. [Google Scholar] [CrossRef]
- Gu, M.; Chen, J.; Mei, J.; Tan, T.; Wang, G.; Liu, K.; Liu, G.; Liu, X. Open-path anti-pollution multi-pass cell-based TDLAS sensor for the online measurement of atmospheric H2O and CO2 fluxes. Opt. Express 2022, 30, 43961–43972. [Google Scholar] [CrossRef]
- Feng, M.Y.; Zhang, G.; Xia, L.J.; Xiong, X.; Li, B.Z.; Kong, P.; Zhan, M.J.; Zhang, Y.X. Spatial and temporal distribution of atmospheric methane in middle-low reaches of Yangtze River based on satellite observations. Geochimica 2021, 50, 121–132. [Google Scholar]
- Wilson, E.L.; DiGregorio, A.J.; Riot, V.J.; Ammons, M.S.; Bruner, W.W.; Carter, D.; Mao, J.; Ramanathan, A.; Strahan, S.E.; Oman, L.D.; et al. A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing CubeSat. Meas. Sci. Technol. 2017, 28, 035902. [Google Scholar] [CrossRef]
- Zenevich, S.; Gazizov, I.; Churbanov, D.; Plyashkov, Y.; Spiridonov, M.; Talipov, R.; Rodin, A. A Concept of 2U Spaceborne Multichannel Heterodyne Spectroradiometer for Greenhouse Gases Remote Sensing. Remote Sens. 2021, 13, 2235. [Google Scholar] [CrossRef]
- Shen, F.; Wang, G.; Wang, J.; Tan, T.; Wang, G.; Jeseck, P.; Te, Y.V.; Gao, X.; Chen, W. Transportable mid-infrared laser heterodyne radiometer operating in the shot-noise dominated regime. Opt. Lett. 2021, 46, 3171. [Google Scholar] [CrossRef] [PubMed]
- Wilson, E.L.; DiGregorio, A.J.; Villanueva, G.; Grunberg, C.E.; Souders, Z.; Miletti, K.M.; Menendez, A.; Grunberg, M.H.; Floyd, M.A.M.; Bleacher, J.E.; et al. A portable miniaturized laser heterodyne radiometer (mini-LHR) for remote measurements of column CH4 and CO2. Appl. Phys. B-Lasers Opt. 2019, 125, 211. [Google Scholar] [CrossRef]
- Wang, J.; Sun, C.; Wang, G.; Zou, M.; Tan, T.; Liu, K.; Chen, W.; Gao, X. A fibered near-infrared laser heterodyne radiometer for simultaneous remote sensing of atmospheric CO2 and CH4. Opt. Lasers Eng. 2020, 129, 106083. [Google Scholar] [CrossRef]
- Robinson, I.; Butcher, H.L.; Macleod, N.A.; Weidmann, D. Hollow waveguide-miniaturized quantum cascade laser heterodyne spectro-radiometer. Opt. Express 2021, 29, 2299–2308. [Google Scholar] [CrossRef] [PubMed]
- Weidmann, D.; Perrett, B.J.; Macleod, N.A.; Jenkins, R.M. Hollow waveguide photomixing for quantum cascade laser heterodyne spectro-radiometry. Opt. Express 2011, 19, 9074–9085. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.Y.; Shen, F.J.; Li, J.; Liu, X.H.; Wang, G.S.; Liu, K.; Gao, X.M.; Chen, W.D.; Tan, T. MEMS Modulator-Based Mid-Infrared Laser Heterodyne Radiometer for Atmospheric Remote Sensing. Front. Phys. 2022, 10, 945995. [Google Scholar] [CrossRef]
- Xue, Z.; Shen, F.; Li, J.; Liu, X.; Wang, J.; Wang, G.; Liu, K.; Chen, W.; Gao, X.; Tan, T. A MEMS modulator-based dual-channel mid-infrared laser heterodyne radiometer for simultaneous remote sensing of atmospheric CH4, H2O and N2O. Opt. Express 2022, 30, 31828–31838. [Google Scholar] [CrossRef]
- Sun, C.; Wang, G.; Zhu, G.; Tan, T.; Liu, K.; Gao, X. Atmospheric CO2 column concentration retrieval based on high resolution laser heterodyne spectra and evaluation method of system measuring error. Acta Phys. Sin. 2020, 69, 144201. [Google Scholar] [CrossRef]
- Clarke, G.B.; Wilson, E.L.; Miller, J.H.; Melroy, H.R. Uncertainty analysis for the miniaturized laser heterodyne radiometer (mini-LHR) for the measurement of carbon dioxide in the atmospheric column. Meas. Sci. Technol. 2014, 25, 055204. [Google Scholar] [CrossRef]
- Shen, F.; Wang, G.; Xue, Z.; Tan, T.; Cao, Z.; Gao, X.; Chen, W. Impact of Lock-In Time Constant on Remote Monitoring of Trace Gas in the Atmospheric Column Using Laser Heterodyne Radiometer (LHR). Remote Sens. 2022, 14, 2923. [Google Scholar] [CrossRef]
- Weidmann, D.; Reburn, W.J.; Smith, K.M. Retrieval of atmospheric ozone profiles from an infrared quantum cascade laser heterodyne radiometer: Results and analysis. Appl. Opt. 2007, 46, 7162–7171. [Google Scholar] [CrossRef] [PubMed]
- Dudhia, A. The reference forward model (RFM). J. Quant. Spectrosc. Radiat. Transf. 2017, 186, 243–253. [Google Scholar] [CrossRef]
- Zou, J.; Liu, S.; Qin, Y.; Pan, G.; Zhu, D. Sewage irrigation increased methane and nitrous oxide emissions from rice paddies in southeast China. Agric. Ecosyst. Environ. 2009, 129, 516–522. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Xue, Z.; Li, Y.; Bo, G.; Shen, F.; Gao, X.; Zhang, J.; Tan, T. Real-Time Measurement of Atmospheric CO2, CH4 and N2O above Rice Fields Based on Laser Heterodyne Radiometers (LHR). Agronomy 2023, 13, 373. https://doi.org/10.3390/agronomy13020373
Li J, Xue Z, Li Y, Bo G, Shen F, Gao X, Zhang J, Tan T. Real-Time Measurement of Atmospheric CO2, CH4 and N2O above Rice Fields Based on Laser Heterodyne Radiometers (LHR). Agronomy. 2023; 13(2):373. https://doi.org/10.3390/agronomy13020373
Chicago/Turabian StyleLi, Jun, Zhengyue Xue, Yue Li, Guangyu Bo, Fengjiao Shen, Xiaoming Gao, Jian Zhang, and Tu Tan. 2023. "Real-Time Measurement of Atmospheric CO2, CH4 and N2O above Rice Fields Based on Laser Heterodyne Radiometers (LHR)" Agronomy 13, no. 2: 373. https://doi.org/10.3390/agronomy13020373
APA StyleLi, J., Xue, Z., Li, Y., Bo, G., Shen, F., Gao, X., Zhang, J., & Tan, T. (2023). Real-Time Measurement of Atmospheric CO2, CH4 and N2O above Rice Fields Based on Laser Heterodyne Radiometers (LHR). Agronomy, 13(2), 373. https://doi.org/10.3390/agronomy13020373