Extraction of Information on the Flooding Extent of Agricultural Land in Henan Province Based on Multi-Source Remote Sensing Images and Google Earth Engine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. Sentinel-1 Images and Preprocessing
2.2.2. MODIS Images and Preprocessing
2.2.3. Other Supporting Data and Processing
2.3. Flood Extraction Method
2.3.1. Technical Route
2.3.2. Change Detection
2.3.3. Threshold Extraction
2.3.4. Image Resampling
2.3.5. Result Verification
3. Results
3.1. Threshold Searching Results
3.2. Flood Extraction Results
3.3. Extraction Precision Verification
3.4. Flood Extraction Verification in Shanxi Province
4. Discussion
4.1. Effect of the Time Window Size
4.2. NDVI and NDWI Time Series of the Flood Year
4.3. Total Crop Failure Area of Autumn Crops
4.4. Late-Sown Winter Wheat Area
4.5. Limitations and Prospects
5. Conclusions and Suggestions
- Dynamic and real-time identification of flood inundation areas and flood-affected areas were realized using the GEE cloud platform and multi-source image data;
- In Henan Province, the overall precision and kappa coefficient of flood inundation area extraction were 87% and 0.73, respectively, and the overall precision and kappa coefficient of the flood-affected area were 92% and 0.84, respectively. In Shanxi Province, the overall precision and kappa coefficient of the flood inundation area extraction were 85% and 0.71, respectively, and the overall precision and kappa coefficient of the flood-affected area were 96% and 0.93, respectively;
- Based on the distribution of the flood-affected areas, the total crop failure area was extracted easily and quickly, and the effect of the late sowing on the growth of the winter wheat was analyzed.
- There are two main suggestions of the research results to practical policy: (1) The geographical location of flood-affected areas is mostly along rivers and low-lying areas, so we should strengthen the construction of high-standard farmland, build water conservancy facilities, improve the level of farmland improvement and river improvement projects, and actively defend against flooding. (2) The government should improve the agricultural insurance system, and provide economic subsidies and help according to the disasters to minimize the loss of farmers and promote the work of agricultural resumption.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Li, X.; Chen, H.; Li, Y. A Review on Monitoring and Assessment of flood disaster by satellite remote sensing. Chin. J. Agrometeorol. 2009, 30, 102–108. [Google Scholar]
- Boschetti, M.; Nelson, A.; Nutini, F.; Manfron, G.; Busetto, L.; Barbieri, M.; Laborte, A.; Raviz, J.; Holecz, F.; Mabalay, M.; et al. Rapid Assessment of Crop Status: An Application of MODIS and SAR Data to Rice Areas in Leyte, Philippines Affected by Typhoon Haiyan. Remote Sens. 2015, 7, 6535–6557. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhang, T.; Tu, Y.; Ren, Z.; Xu, B. Monitoring Post-Flood Recovery of Croplands Using the Integrated Sentinel-1/2 Imagery in the Yangtze-Huai River Basin. Remote Sens. 2022, 14, 690. [Google Scholar] [CrossRef]
- Feng, R. Remote sensing monitoring of flood drowning range. Liaoning Meteorol. Q. 2002, 04, 26–27. [Google Scholar]
- Wang, S. Research on Flood Remote Sensing Monitoring of the Lower Reaches of the Yellow River Based on Modis Data; Hohai University: Nanjing, China, 2006. [Google Scholar]
- Yang, C.; Wei, Y.; Chen, D. Investigation on extracting the flow inundated area from Jers-1SAR data. J. Nat. Disasters 1998, 7, 46–51. [Google Scholar]
- Zhang, Y. Using LiDAR-DEM based rapid flood inundation modelling framework to map floodplain inundation extent and depth. J. Geogr. Sci. 2021, 30, 1649–1663. [Google Scholar] [CrossRef]
- Tong, X.; Luo, X.; Liu, S.; Xie, H.; Chao, W.; Liu, S.; Liu, S.; Makhinov, A.N.; Makhinova, A.F.; Jiang, Y. An approach for flood monitoring by the combined use of Landsat 8 optical imagery and COSMO-SkyMed radar imagery. ISPRS J. Photogramm. Remote Sens. 2018, 136, 144–153. [Google Scholar] [CrossRef]
- DeVries, B.; Huang, C.; Armston, J.; Huang, W.; Jones, J.W.; Lang, M.W. Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine. Remote Sens. Environ. 2020, 240, 111664. [Google Scholar] [CrossRef]
- Chini, M.; Pelich, R.; Pulvirenti, L.; Pierdicca, N.; Hostache, R.; Matgen, P. Sentinel-1 InSAR Coherence to Detect Floodwater in Urban Areas: Houston and Hurricane Harvey as a Test Case. Remote Sens. 2019, 11, 107. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Wang, D.; Mao, K.; Anagnostou, E.; Hong, Y. Inundation Extent Mapping by Synthetic Aperture Radar: A Review. Remote Sens. 2019, 11, 879. [Google Scholar] [CrossRef] [Green Version]
- Psomiadis, E.; Diakakis, M.; Soulis, K.X. Combining SAR and Optical Earth Observation with Hydraulic Simulation for Flood Mapping and Impact Assessment. Remote Sens. 2020, 12, 3980. [Google Scholar] [CrossRef]
- Rättich, M.; Martinis, S.; Wieland, M. Automatic Flood Duration Estimation Based on Multi-Sensor Satellite Data. Remote Sens. 2020, 12, 643. [Google Scholar] [CrossRef] [Green Version]
- Kotera, A.; Nagano, T.; Hanittinan, P.; Koontanakulvong, S. Assessing the degree of flood damage to rice crops in the Chao Phraya delta, Thailand, using MODIS satellite imaging. Paddy Water Environ. 2015, 14, 271–280. [Google Scholar] [CrossRef]
- Pérez, I.S.P.M.; Bances, K.E.B.; Zavaleta, L.J.T.; Cabrera, H.I.M.; Monteza, V.A.T. Systematic Review of the Study of Flood Risks using Remote Sensing. Int. J. Eng. Adv. Technol. 2021, 11, 96–103. [Google Scholar] [CrossRef]
- Jiménez-Jiménez, S.I.; Ojeda-Bustamante, W.; Ontiveros-Capurata, R.E.; Marcial-Pablo, M.d.J. Rapid urban flood damage assessment using high resolution remote sensing data and an object-based approach. Geomat. Nat. Hazards Risk 2020, 11, 906–927. [Google Scholar] [CrossRef]
- Sajjad, A.; Lu, J.; Chen, X.; Chisenga, C.; Saleem, N.; Hassan, H. Operational Monitoring and Damage Assessment of Riverine Flood-2014 in the Lower Chenab Plain, Punjab, Pakistan, Using Remote Sensing and GIS Techniques. Remote Sens. 2020, 12, 714. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.S.; Di, L.; Yu, E.; Lin, L.; Yu, Z. Remote Sensing Based Rapid Assessment of Flood Crop Damage Using Novel Disaster Vegetation Damage Index (DVDI). Int. J. Disaster Risk Sci. 2020, 12, 90–110. [Google Scholar] [CrossRef]
- Tay, C.W.J.; Yun, S.H.; Chin, S.T.; Bhardwaj, A.; Jung, J.; Hill, E.M. Rapid flood and damage mapping using synthetic aperture radar in response to Typhoon Hagibis, Japan. Sci. Data 2020, 7, 100. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.N.; Yun, S.H.; Bhardwaj, A.; Hill, E.M. Urban Flood Detection with Sentinel-1 Multi-Temporal Synthetic Aperture Radar (SAR) Observations in a Bayesian Framework: A Case Study for Hurricane Matthew. Remote Sens. 2019, 11, 1778. [Google Scholar] [CrossRef]
- Wagner, W.; Freeman, V.; Cao, S.; Matgen, P.; Chini, M.; Salamon, P.; McCormick, N.; Martinis, S.; Bauer-Marschallinger, B.; Navacchi, C.; et al. Data Processing Architectures for Monitoring Floods Using Sentinel-1. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, V-3-2020, 641–648. [Google Scholar] [CrossRef]
- Moya, L.; Mas, E.; Koshimura, S. Learning from the 2018 Western Japan Heavy Rains to Detect Floods during the 2019 Hagibis Typhoon. Remote Sens. 2020, 12, 2244. [Google Scholar] [CrossRef]
- Dasgupta, A.; Grimaldi, S.; Ramsankaran, R.; Pauwels, V.R.; Walker, J.P.; Chini, M.; Hostache, R. Flood Mapping Using Synthetic Aperture Radar Sensors from Local to Global Scales. In Global Flood Hazard: Applications in Modeling, Mapping, and Forecasting; John Wiley & Sons, Inc.: New York, NY, USA, 2018; pp. 55–77. [Google Scholar] [CrossRef]
- Musa, Z.N.; Popescu, I.; Mynett, A. A review of applications of satellite SAR, optical, altimetry and DEM data for surface water modelling, mapping and parameter estimation. Hydrol. Earth Syst. Sci. Discuss. 2015, 12, 4857–4878. [Google Scholar] [CrossRef] [Green Version]
- Jawak, S.D.; Kulkarni, K.; Luis, A.J. A Review on Extraction of Lakes from Remotely Sensed Optical Satellite Data with a Special Focus on Cryospheric Lakes. Adv. Remote Sens. 2015, 4, 196–213. [Google Scholar] [CrossRef] [Green Version]
- Malinowski, R.; Groom, G.B.; Heckrath, G.; Schwanghart, W. Do Remote Sensing Mapping Practices Adequately Address Localized Flooding? a Critical Overview. Springer Sci. Rev. 2017, 5, 1–17. [Google Scholar] [CrossRef]
- Canisius, F.; Brisco, B.; Murnaghan, K.; Van Der Kooij, M.; Keizer, E. SAR Backscatter and InSAR Coherence for Monitoring Wetland Extent, Flood Pulse and Vegetation: A Study of the Amazon Lowland. Remote Sens. 2019, 11, 720. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Liu, W.; Yang, D.; Chen, L. Flooding monitoring application based on the object-oriented method and Sentinel-1A SAR data. J. Geo Inf. Sci. 2018, 20, 377–384. [Google Scholar]
- Long, S.; Fatoyinbo, T.E.; Policelli, F. Flood extent mapping for Namibia using change detection and thresholding with SAR. Environ. Res. Lett. 2014, 9, 035002. [Google Scholar] [CrossRef]
- Kundu, S.; Lakshmi, V.; Torres, R. Flood Depth Estimation during Hurricane Harvey Using Sentinel-1 and UAVSAR Data. Remote Sens. 2022, 14, 1450. [Google Scholar] [CrossRef]
- Tiampo, K.F.; Huang, L.; Simmons, C.; Woods, C.; Glasscoe, M.T. Detection of Flood Extent Using Sentinel-1A/B Synthetic Aperture Radar: An Application for Hurricane Harvey, Houston, TX. Remote Sens. 2022, 14, 2261. [Google Scholar] [CrossRef]
- Luan, Y.; Guo, J.; Gao, Y.; Liu, X. Remote sensing monitoring of flood and disaster analysis in Shouguang in 2018 from Sentinel-1B SAR data. J. Nat. Disasters 2021, 30, 168–175. [Google Scholar] [CrossRef]
- Su, Y. Study on Remote Sensing Monitoring Method of Multi-Source Satellite for Rainstorm and Flood in Farmland; Xi’an University of Science and Technology: Xi’an, China, 2018. [Google Scholar]
- Bryant, R.G.; Rainey, M.P. Investigation of flood inundation on playas within the Zone of Chotts, using a time-series of AVHRR. Remote Sens. Environ. 2002, 82, 360–375. [Google Scholar] [CrossRef]
- Jain, S.K.; Saraf, A.K.; Goswami, A.; Ahmad, T. Flood inundation mapping using NOAA AVHRR data. Water Resour. Manag. 2006, 20, 949–959. [Google Scholar] [CrossRef]
- Ulloa, N.I.; Yun, S.-H.; Chiang, S.-H.; Furuta, R. Sentinel-1 Spatiotemporal Simulation Using Convolutional LSTM for Flood Mapping. Remote Sens. 2022, 14, 246. [Google Scholar] [CrossRef]
- Ejikeme, J.O.; Igbokwe, J.I.; Ojiako, J.C.; Emengini, E.J.; Aweh, D.S. Modelling the Impact of Flooding Using Geographic Information System and Remote Sensing. Int. J. Tech. Res. Appl. 2015, 3, 67–72. [Google Scholar]
- Sghaier, M.O.; Hammami, I.; Foucher, S.; Lepage, R. Flood Extent Mapping from Time-Series SAR Images Based on Texture Analysis and Data Fusion. Remote Sens. 2018, 10, 237. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Du, P.; Meng, Y.; Wang, X.; Tang, P. Dynamic monitoring on flooding situation in the Middle and Lower Reaches of the Yangtze River Region using Sentinel-1A time series. Natl. Remote Sens. Bull. 2021, 25, 2127–2141. [Google Scholar]
- Martinis, S.; Twele, A.; Voigt, S. Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution Terra SAR-X data. Nat. Hazards Earth Syst. Sci. 2009, 9, 303–314. [Google Scholar] [CrossRef]
- Ghofrani, Z.; Mokhtarzade, M.; Sahebi, M.R.; Beykikhoshk, A. Evaluating coverage changes in national parks using a hybrid change detection algorithm and remote sensing. J. Appl. Remote Sens. 2014, 8, 083646. [Google Scholar] [CrossRef]
- Du, P.; Wang, X.; Meng, Y.; Lin, C.; Zhang, P.; Lu, G. Effective change detection approaches for geographic national condition monitoring and land cover map updating. J. Geo Inf. Sci. 2020, 22, 857–866. [Google Scholar]
- Leng, Y.; Li, N. Improved change detection method for flood monitoring. J. Radars 2017, 6, 204–212. [Google Scholar]
- Tian, Y.; Liao, X.; Zhang, C. Method on crop inundated time extraction after rainstorm using time series MODIS images. Remote Sens. Technol. Appl. 2012, 27, 778–783. [Google Scholar]
- Gokon, H.; Endo, F.; Koshimura, S. Detecting Urban Floods with Small- and Large-Scale Analysis of ALOS-2/PALSAR-2 Data. Remote Sens. 2023, 15, 532. [Google Scholar] [CrossRef]
- Wei, H.; Yu, T.; Tu, J.; Ke, F. Detection and Evaluation of Flood Inundation Using CYGNSS Data during Extreme Precipitation in 2022 in Guangdong Province, China. Remote Sens. 2023, 15, 297. [Google Scholar] [CrossRef]
- Hao, B.; Han, X.; Ma, M.; Liu, Y.; Li, S. Research progresson the application of Google Earth Engine in geoscience and environmental sciences. Remote Sens. Technol. Appl. 2018, 33, 600–611. [Google Scholar]
- Xiao, W.; Xu, S.; He, T. Mapping Paddy Rice with Sentinel-1/2 and Phenology-, Object-Based Algorithm—A Implementation in Hangjiahu Plain in China Using GEE Platform. Remote Sens. 2021, 13, 990. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, D.; Wang, X.; Zhang, Z.; Nawaz, Z. Testing Accuracy of Land Cover Classification Algorithms in the Qilian Mountains Based on GEE Cloud Platform. Remote Sens. 2021, 13, 5064. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, J.; Xiao, X.; Wang, X.; Dai, S.; Zhao, B. Long-Term Dynamic of Poyang Lake Surface Water: A Mapping Work Based on the Google Earth Engine Cloud Platform. Remote Sens. 2019, 11, 313. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Lu, J.; Zhai, X.; Li, Q.; Liu, R. Risk simulation and comparative analysis of “21·7” heavy rainfall and flood in Henan Province. Express Water Resour. Hydropower Inf. 2021, 42, 8–14. [Google Scholar] [CrossRef]
- Clement, M.A.; Kilsby, C.G.; Moore, P. Multi-temporal synthetic aperture radar flood mapping using change detection. J. Flood Risk Manag. 2018, 11, 152–168. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Liu, Z.; Zhang, H. SAR Image Water Extraction based on Scattering Characteristics. Remote Sens. Technol. Appl. 2014, 29, 963–969. [Google Scholar]
- Li, J.; Huang, S.; Li, J. Remote sensing technology application center China institute of water resources and hydropower research. J. Nat. Disasters 2010, 19, 139–145. [Google Scholar] [CrossRef]
- Song, H.; Lu, Z.; Zhao, S. The accuracy effect assessment on the PolSAR images classification brought by the boxcar and Refined Lee filter. Image Technol. 2011, 23, 39–44+13. [Google Scholar]
- Li, X.; Zhan, N.; Lu, J.; Li, L. The application of the “Sentinel” series satellite data in the monitoring of flood disasters. Satell. Appl. 2019, 52, 48–51. [Google Scholar]
- Chen, J.; He, C.; Shi, P.; Chen, Y.; Ma, N. Land use/cover change detection with change vector analysis (CVA): Change magnitude threshold determination. J. Remote Sens. 2001, 5, 259–266. [Google Scholar]
- Banko, G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data and of Methods Including Remote Sensing Data in Forest Inventory; Interim Report IT-98-081; International Institute for Applied Systems Analysis: Laxenburg, Austria, November 1998. [Google Scholar]
- Chen, Z. The Research of Monitoring and Assessment Technology on Flood Disaster of Maize Based on Remote Sensing Data; China University of Mining and Technology: Beijing, China, 2016. [Google Scholar]
- Yan, F.; Li, M.; Wang, Y.; Qin, Z. Application of remote sensing technique to monitor agricultural disasters. J. Nat. Disasters 2006, 15, 131–136. [Google Scholar]
- Yan, B.; Dai, Q.; Liu, X.; Huang, S.; Wang, Z. Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. Plant Soil 1996, 179, 261–268. [Google Scholar] [CrossRef]
- Yang, J.; Guo, N.; Huang, L. Analyses on MODIS-NDVI index saturation in northwest China. Plateau Meteorol. 2008, 27, 896–903. [Google Scholar]
- Hou, X.; Sui, X.; Yao, H. Study of the growth condition of winter wheat Shandong Province based on penology. Remote Sens. Land Resour. 2018, 30, 171–177. [Google Scholar]
- Hu, Y.; Jiang, S.; Liu, Y. Temporal and spatial variation coverage on upper Anning river based on RS. Trans. Chin. Soc. Agric. Mach. 2014, 45, 205–215. [Google Scholar]
- Mao, Z.; Song, Y.; Li, M. Research of the desertification in Hetao Area based on MODIS inversion data. Acta Sci. Nat. Univ. Pekin. 2015, 51, 1102–1110. [Google Scholar]
- Lin, Y.; Hu, X.; Qiu, R. Responses Landsat-based NDVI to the interaction of vegetation and influencing factors. Trans. Chin. Soc. Agric. Mach. 2018, 49, 212–219. [Google Scholar]
- Jiao, S.; Hu, D.; Shen, Z.; Wang, H.; Dong, W.; Guo, Y.; Li, S.; Lei, Y.; Kou, W.; Wang, J.; et al. Parcel-Level Mapping of Horticultural Crop Orchards in Complex Mountain Areas Using VHR and Time-Series Images. Remote Sens. 2022, 14, 2015. [Google Scholar] [CrossRef]
- Huang, X.; Fu, Y.; Wang, J.; Dong, J.; Zheng, Y.; Pan, B.; Skakun, S.; Yuan, W. High-Resolution Mapping of Winter Cereals in Europe by Time Series Landsat and Sentinel Images for 2016–2020. Remote Sens. 2022, 14, 2120. [Google Scholar] [CrossRef]
Name of Data Products | Spatial Resolution | Revisit Time |
---|---|---|
Sentinel-1 SAR GRD | 10 m | 6 days |
MOD13Q1 V6 | 250 m | 16 days |
MYD09A1 V6 | 500 m | 8 days |
ESA World Cover v100 | 10 m | - |
JRC Global Surface Water | 30 m | - |
SRTM Digital Elevation | 90 m | - |
Sentinel-2 MSI | 10 m | 5 days |
Threshold Range −4 to 0 Step Size 0.5 | Threshold Range −1.1 to −1.9 Step Size 0.1 | ||
---|---|---|---|
Threshold | Detection Success Rate (%) | Threshold | Detection Success Rate (%) |
0 | 0.701 | −1.1 | 0.825 |
−0.5 | 0.782 | −1.2 | 0.83 |
−1 | 0.826 | −1.3 | 0.831 |
−1.5 | 0.838 | −1.4 | 0.832 |
−2 | 0.830 | −1.5 | 0.838 |
−2.5 | 0.812 | −1.6 | 0.837 |
−3 | 0.796 | −1.7 | 0.838 |
−3.5 | 0.780 | −1.8 | 0.840 |
−4 | 0.762 | −1.9 | 0.835 |
Threshold Range −0 to −0.35 Step Size 0.05 | Threshold Range −0.06 to −0.13 Step Size 0.01 | ||
---|---|---|---|
Threshold | Detection Success Rate (%) | Threshold | Detection Success Rate (%) |
0 | 0.718 | −0.06 | 0.814 |
−0.05 | 0.807 | −0.07 | 0.816 |
−0.1 | 0.814 | −0.08 | 0.820 |
−0.15 | 0.785 | −0.09 | 0.819 |
−0.2 | 0.744 | −0.1 | 0.814 |
−0.25 | 0.697 | −0.11 | 0.803 |
−0.3 | 0.655 | −0.12 | 0.801 |
−0.35 | 0.615 | −0.13 | 0.797 |
Threshold Range 0 to −0.08 Step Size 0.01 | |
---|---|
Threshold | Detection Success Rate (%) |
0 | 0.882 |
0.01 | 0.886 |
0.02 | 0.856 |
0.03 | 0.833 |
0.04 | 0.817 |
0.05 | 0.798 |
0.06 | 0.785 |
0.07 | 0.754 |
0.08 | 0.738 |
Actual Value | |||||
---|---|---|---|---|---|
Not Flooded | Flooded | Total | User Precision | ||
Predicted value | Not flooded | 777 | 215 | 992 | 78% |
Flooded | 1 | 612 | 613 | 99% | |
Total | 778 | 827 | Overall precision: 87% | ||
Producer precision | 99% | 74% | Kappa coefficient: 0.73 |
Actual Value | |||||
---|---|---|---|---|---|
Not Affected | Affected | Total | User Precision | ||
Predicted value | Not affected | 714 | 52 | 766 | 93% |
Affected | 64 | 625 | 680 | 92% | |
Total | 778 | 677 | Overall precision: 92% | ||
Producer precision | 92% | 92% | Kappa coefficient: 0.84 |
Actual Value | |||||
---|---|---|---|---|---|
Not Flooded | Flooded | Total | User Precision | ||
Predicted value | Not flooded | 208 | 62 | 270 | 77% |
Flooded | 1 | 163 | 164 | 99% | |
Total | 209 | 225 | Overall precision: 85% | ||
Producer precision | 99% | 72% | Kappa coefficient: 0.71 |
Actual Value | |||||
---|---|---|---|---|---|
Not Affected | Affected | Total | User Precision | ||
Predicted value | Not affected | 213 | 16 | 229 | 93% |
Affected | 1 | 231 | 234 | 99% | |
Total | 214 | 247 | Overall precision: 96% | ||
Producer precision | 99% | 94% | Kappa coefficient: 0.93 |
Time Windows Size | Overall Precision | Kappa Coefficient |
---|---|---|
five days | 81% | 0.63 |
ten days | 81% | 0.63 |
15 days | 83% | 0.66 |
20 days | 86% | 0.72 |
25 days | 87% | 0.73 |
30 days | 86% | 0.73 |
Time Windows Size | Overall Precision | Kappa Coefficient |
---|---|---|
ten days | 85% | 0.71 |
20 days | 87% | 0.74 |
30 days | 84% | 0.68 |
40 days | 92% | 0.84 |
50 days | 91% | 0.84 |
60 days | 91% | 0.83 |
Time | F | p-Value | Ranking of Data Differences between Groups |
---|---|---|---|
01_01 | 1.9464 | 0.1640 | 24 |
01_17 | 131.8473 | <0.001 | 11 |
02_02 | 59.8462 | <0.001 | 14 |
02_18 | 20.2092 | <0.001 | 17 |
03_05 | 40.7496 | <0.001 | 15 |
03_21 | 12.8644 | <0.001 | 20 |
04_06 | 0.6903 | 0.4067 | 26 |
04_22 | 15.4683 | <0.001 | 19 |
05_08 | 3.8905 | 0.0494 | 22 |
05_24 | 1.2324 | 0.2678 | 25 |
06_09 | 16.8823 | <0.001 | 18 |
06_25 | 2.1267 | 0.1458 | 23 |
07_11 | 114.0137 | <0.001 | 12 |
07_27 | 548.5804 | <0.001 | 6 |
08_12 | 5510.5470 | <0.001 | 1 |
08_28 | 2733.7900 | <0.001 | 2 |
09_13 | 586.0266 | <0.001 | 4 |
09_29 | 0.363645 | <0.001 | 27 |
10_15 | 32.41033 | <0.001 | 16 |
10_31 | 447.1092 | <0.001 | 7 |
11_16 | 559.3606 | <0.001 | 5 |
12_02 | 701.6087 | <0.001 | 3 |
12_18 | 320.2398 | <0.001 | 8 |
01_01 | 224.5726 | <0.001 | 9 |
01_17 | 10.53734 | 0.001301 | 21 |
02_02 | 137.0491 | <0.001 | 10 |
02_18 | 87.34539 | <0.001 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, J.; Guo, Y.; Xu, Q.; Li, D.; Chen, W.; Shi, L.; Ji, G.; Li, L. Extraction of Information on the Flooding Extent of Agricultural Land in Henan Province Based on Multi-Source Remote Sensing Images and Google Earth Engine. Agronomy 2023, 13, 355. https://doi.org/10.3390/agronomy13020355
Cui J, Guo Y, Xu Q, Li D, Chen W, Shi L, Ji G, Li L. Extraction of Information on the Flooding Extent of Agricultural Land in Henan Province Based on Multi-Source Remote Sensing Images and Google Earth Engine. Agronomy. 2023; 13(2):355. https://doi.org/10.3390/agronomy13020355
Chicago/Turabian StyleCui, Jiaqi, Yulong Guo, Qiang Xu, Donghao Li, Weiqiang Chen, Lingfei Shi, Guangxing Ji, and Ling Li. 2023. "Extraction of Information on the Flooding Extent of Agricultural Land in Henan Province Based on Multi-Source Remote Sensing Images and Google Earth Engine" Agronomy 13, no. 2: 355. https://doi.org/10.3390/agronomy13020355