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Abstract: Sudden flood disasters cause serious damage to agricultural production. Rapidly extracting
information such as the flooding extent of agricultural land and capturing the influence of flooding on
crops provides important guidelines for estimating the flood-affected area, promoting post-disaster
farmland restoration, and providing an auxiliary decision-making basis for flood prevention and
disaster relief departments. Taking the flood event in Henan and Shanxi Provinces as example, based
on the characteristics of the variations in radar data and optical data before and after the disaster,
we propose an extent information extraction method for the flood inundation area and the flood-
affected area of agricultural land. This method consists of change detection, threshold extraction,
and superposition analysis, which weakens the negative impact of the radar data speckle noise and
cloud contamination of the optical data on the extraction of the agricultural land flooding to a certain
extent. The method was developed based on a flood event in Henan Province and validated in Shanxi
Province. The results show that the production of this method have a clear boundary and accurate
extent, and the overall precisions of the flood inundation area and flood-affected area extraction
are 0.87 and 0.92, respectively. The proposed method combines the advantages of both radar and
optical remote sensing data in extracting the specific extents of the flood inundation area and the
flood-affected area in large spatial scale. Finally, the impact of time window size to the performance of
the method is further analyzed. In the application of the proposed method, the Google Earth Engine
(GEE) platform provides a low-cost, fast, and convenient way to extract flood information from
remote sensing data. The proposed scheme provides a scientific data basis for restoring production
of agricultural land after a flood disaster, as well as for national post-disaster damage assessment and
disaster relief decision making.

Keywords: flooding; remote sensing; change detection

1. Introduction

In the context of global climate change, the increasing number of extreme weather
events pose a serious threat to habitat functionality and human health [1]. Floods, account
for 40% of annual global losses from natural disasters [2], are common in Asia because
the growing season of main crops overlaps with the monsoon season [3]. Agricultural
production is vulnerable to destructive flooding due to the monospecificity of the ecosystem
and the large scale of agricultural production [4]. In the event of a flood, it is of great
importance to extract the information about the water bodies quickly, dynamically, and
accurately to determine the extent of the flood inundation and the degree of damage. These
measures provide detailed and accurate information for governments at all levels and the
relevant departments to take effective measures to carry out rescue work. They will also
provide a scientific basis for after-flood scheduling and disaster mitigation decisions [5].
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Traditional methods of collecting hydrological information are time consuming and
labor intensive. This makes it difficult to meet the need of flood analysis and assessment [6].
With the development of satellite remote sensing technology, the cost of obtaining data
has been significantly reduced, and remote sensing technology has become a commonly
used flood monitoring method [7,8]. It provides a clear spatio-temporal framework for
detecting the extent of flooding [9–12], measuring flood severity [13–15], and assessing
flood damage [16–27].

Many flood extraction studies have been conducted by previous researchers using
remote sensing technology and a number of research results have been achieved. The
data sources for extracting flood information mainly include two types of satellite data:
synthetic aperture radar (SAR) images [28–33] and optical images [34–36]. The main
methods for extracting water body information based on SAR images are the threshold-
based method [37], digital elevation model (DEM)-assisted extraction [38], and texture-
based extraction [39], among which the threshold method is simple and easy to implement
and has been widely used. For example, Guo et al. used image binarization to segment
the time-series SAR data to achieve spatio-temporal distribution mapping of water bodies
to extract their seasonal coverage and finally to achieve dynamic flood monitoring in the
middle and lower reaches of the Yangtze River [40]. However, this method is suitable for
images with a bimodal histogram, which is difficult for images that covering large areas.
Radar image is also widely used in flood monitoring [41], for example by constructing
disparity maps and classifying them to extract the extent of flood inundation [42,43]. This
method is affected by the coherent noise of SAR images and has limited detection accuracy.
The advantage of radar data is that it can penetrate clouds and capture high-precision
images at all times, and over a wide area, in all weather conditions. However, radar data
cause more speckle noise in the imaging, leading to information losses and distortions in
its application [44]. In addition, radar data is good for extracting flooded areas, but it has
a limited ability to extract silted areas where flooding has occurred [21]. The advantages
of optical data are the intuitive imaging of the optical sensors, higher image quality and
rich spectral information, highlighting the information about the inundated areas and
silted areas of the flood transit through the spectral index. However, optical data require
good weather conditions after heavy rains leads to missing data for some areas. Moreover,
continuous cloud cover leads to larger errors in the extraction of the inundation duration
in the covered area [45]. Therefore, a SAR-optical combined flood monitoring is in need.

In addition, previous studies have focused more on the extraction of flood-inundated
areas [46,47]. Besides of that, flood-affected areas are also important information for
cultivated land as a basis for an in-depth analysis of the growth status of crops that are
affected by different levels of flooding. Therefore, a comprehensive study of simultaneously
extraction of flood-inundated and flood-affected areas is required.

At the same time, it is also necessary to avoid problems such as untimely monitoring
of floods due to different data sources and processing methods. The rapidly evolving
cloud platforms such as Google Earth Engine (GEE), which provide powerful support for
collecting, processing, computation, and analyzing massive remote sensing data, have
become a powerful tool in geology-related research [48–51]. It provides strong support for
large-scale remote sensing flood monitoring utilizing multi-source images.

Therefore, the objectives of this study were to (1) make full use of the respective
advantages of radar and optical data to quickly extract the flood-affected area extent of
agricultural land; (2) to determine the accuracy and applicability of the method; and (3) to
determine the growth status of the crops affected by the floods. With a focus on these goals,
we developed a framework for mapping flood-affected agricultural land using the GEE
platform, imagery from Sentinel 1 and Moderate Resolution Imaging Spectroradiometer
(MODIS) to determine the extent of the inundated agricultural land after a flood. The
extraction method combines SAR and optical images, increasing the accuracy of the flood
information extraction and reducing the errors caused by random errors and cloud con-
tamination. The proposed method fully exploits the data from multi-source data in GEE
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to provide data support for post-disaster management of flooded agricultural land in a
convenient and real-time manner.

The rest of this paper is organized as follows. Section 2 presents the materials and
methods involved in this research. The method was established using flood events in Henan
Province, and those in Shanxi Province are used as an independent data for validation.
Section 3 shows the results of agricultural land flood inundation areas and flood-affected
areas in Henan and Shanxi Provinces and their performance. Section 4 discusses the effect
of time window size in the extraction of flood information, the growing condition of crops
under the influence of floods, flood-induced late-sown of winter wheat, and the limitations
and prospects of this research. Section 5 concludes this paper.

2. Materials and Methods
2.1. Study Area

In this study, Henan and Shanxi Provinces were selected as typical study areas. Henan
is one of the most important agricultural provinces in central China. The agricultural area
are concentrated in the central and eastern regions (Figure 1c) Overall, its topography is
high in the west and low in the east (Figure 2a), as well as superior agricultural growing
conditions. Most of Henan is in the warm temperate zone, and the southern part of the
province is subtropical with four distinct seasons. Henan is an important agricultural food
producing province in China, with 11,832,000 hectares of agricultural land in the province,
accounting for 71.48% of the province’s total land area.

The topography of Shanxi Province is high in the northeast and low in the southwest
(Figure 2b), with a parallelogram outline tilted slightly to the northeast (Figure 1b). The
landscape is dominated by mountains and hills, and the eastern and western sides of
Shanxi are mountainous, so the agricultural areas in Shanxi Province are mainly distributed
in the central and southwestern valleys and plains.
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Figure 2. Maps of the high slope (slope > 3◦) regions and all-year water regions in (a) Henan and
(b) Shanxi provinces.

From 17–27 July 2021, Henan Province experienced a rare heavy rainfall event with
long duration, high cumulative precipitation, and concentrated and widespread heavy rain
spells (Figure 3a, Figure S1). Data from national meteorological observation stations in
several cities exceeded historical extreme daily precipitation values since those stations
were established. The rains caused urban waterlogging and geological catastrophes from
mountain streams, causing significant social impact and loss of life and property [52].

From 2–7 October 2021, Shanxi Province experienced large-scale heavy precipitation
occurred in, with the province’s precipitation ranging from 15.4 mm to 285.2 mm (Figure 3b).
The maximum precipitation occurred in Daning County, Linfen, with 18 of the province’s
117 counties (cities and districts) receiving more than 200 mm of precipitation. Most areas
set records for cumulative rainfall in the first half of October.
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Province from 2–7 October 2021, respectively.

Continuous heavy rains prevents rainwater from infiltrating in time to prevent surface
runoff, forming rainwater collection in the areas of low terrain and topographical enclosures.
This water cannot drain away and spread in a short time. Agricultural floods cause
inundation of agricultural land and destruction of crops, resulting in reduction or even
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total loss of crops. Compared to the time before the flood, the flood leads to an expansion
of the water bodies and inundation of the surface, i.e., the flood-inundated area (Figure 4a).
Moreover, the area in which the additional soil moisture forms silt but no water collects on
the surface is called the flood-affected area (Figure 4b).
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2.2. Data Sources and Processing
2.2.1. Sentinel-1 Images and Preprocessing

Sentinel-1, which was launched by the European Space Agency (ESA), is an imaging
radar mission with a bipolar orbiting satellite with a spatial resolution of 10 m, an orbital
altitude of approximately 700 km, and a revisit period of 12 days (Table 1). It provides
c-band images with a combination of all-weather, day and night quad-modal data. Among
them, the ground range detected (GRD) first-class product provides data from the dual-
polarization c-band SAR instrument. According to previous studies, VV polarization
image is better for flood monitoring due to the water bodies have a lower backscattering
coefficient and appear dark black in single-polarized radar images, while land has a
stronger backscattering coefficient and appears grayish white. The VV polarization is also
more sensitive to surface roughness. This is very helpful for identifying semi-inundated
agricultural fields during floods [53,54]. In this study, the VV single co-polarization of the
Sentinel-1 data was used for the change detection to extract the flood inundation area.

Coherent speckle noise in the images, which due to the coherent wave characteristics
in the advanced synthetic aperture radar (ASAR) imaging process, seriously degrades
the image quality and reduces the target extraction ability [55]. In this study, refined-Lee
filtering [56] was performed on the Sentinel-1 images to reduce noise.

In addition, in order to achieve enough spatial coverage, a specific period before and
after the flood was selected as the time window. After that, the image maps of the entire
study area before and after the flood were synthesized. When stitching the images, to
further control the errors, a 0.9 quantile of all available data at each pixel was selected as
the final result. In this study, a total of 21 images from 1 to 19 July 2021 were selected for
the pre-flood data and a total of 29 images from 20 July to 15 August 2021 were selected as
after-flood data (Figure 5). The detailed influence of time window size will be discussed
in Section 4.2.

2.2.2. MODIS Images and Preprocessing

In this study, the normalized difference vegetation index (NDVI) product (MOD13Q1)
and the surface reflectance product (MYD09A1) of MODIS were used to extract the flood
information via change detection (Table 1), with a spatial resolution of 250 m. The NDVI
product was used to highlight the vegetation growth, and the surface reflectance product
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was used to calculate the normalized difference water index (NDWI) to highlight the
surface flood inundation information using the following equation.

NDWI =
ρGreen − ρNIR
ρGreen + ρNIR

(1)

where: ρGreen and ρNIR are the reflectance in the green band and near-infrared
band, respectively.

In order to reduce the influence of the systematic bias on the results, the NDVI and
NDWI index data were standardized to accommodate multi-temporal data as follows

X′ij =
Xij −minXij

maxXij −minXij
(2)

where: Xij denotes the original NDVI or NDWI value; X′ij denotes the NDVI or NDWI value
after standardization; minXij denotes the minimum NDVI or NDWI value in the original
dataset; and maxXij denotes the maximum NDVI or NDWI value in the original dataset.

Similar to the Sentinel-1 images, cloud masking, stitching, and cropping were also
performed on the MODIS images at different image time window in order to obtain an
image with full coverage. For the NDVI images, Two MODIS product images for 12 July
2021 (before the flood), and 28 July 2021 (after the flood), were used as the database for
extracting the NDVI values. For the NDWI images, five images from 12 July 2021 (before
the flood), and from 20 July to 30 August 2021 (after the flood), were selected as the database
for extracting the NDWI indexes, and the mean values of the three images taken after the
flood were calculated to obtain the final NDWI index data (Figure 5). The detailed effect of
the time window size to the extraction result is discussed in Section 4.1.
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2.2.3. Other Supporting Data and Processing

The ESA World Cover product is the ESA’s 2020 global land cover map based on
Sentinel-1 and Sentinel-2 data, with a 10-m resolution (Table 1). The World Cover product
includes 11 land cover categories and was used in this study to extract the extent of the
agricultural land.

The JRC/GSW1_0/Global Surface Water dataset contains maps of the spatial and
temporal distributions of the global surface water and provides statistical data on the extent
and variability of these water areas with a spatial resolution of 30 m (Table 1). In this study,
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the permanent water bodies were excluded using the monthly band data reflecting the
presence of water. We treat the pixels whose water temporal coverage is greater than 10
months as permanent water pixels and excluded.

The Shuttle Radar Topography Mission (SRTM) digital elevation dataset, which was
generated to provide consistent, high-quality elevation data on a global scale with a spatial
resolution of 90 m (Table 1), was applied in this study to extract the regional extent of the
area with large slopes. The slope was calculated as

X =
H
L

(3)

where: X denotes the slope; H denotes difference in elevation; and L denotes the distance
travelled. The slope calculation module was integrated in GEE platform and easy to be
applied. Considering the topographic factors in the flooded area, because the method used
to obtain radar images has the unique fore-shorting, layover, and shadow phenomenon [57]
in some mountainous areas, according to the topographic characteristics of Henan Province,
the areas with slopes of greater than 3◦ were excluded.

The Sentinel-2 multispectral data with a spatial resolution of 10 m were used for the
precision validation (Table 1).

Table 1. The parameters of the data involved in the study.

Name of Data
Products Spatial Resolution Revisit Time

Sentinel-1 SAR GRD 10 m 6 days
MOD13Q1 V6 250 m 16 days
MYD09A1 V6 500 m 8 days

ESA World Cover v100 10 m -
JRC Global Surface Water 30 m -
SRTM Digital Elevation 90 m -

Sentinel-2 MSI 10 m 5 days

2.3. Flood Extraction Method
2.3.1. Technical Route

Figure 6 shows the technical workflow of this study. First, the Sentinel-1 and MODIS
image data was acquired for preprocessing, including mosaicking and cutting. The prepro-
cessed results were subsequently masked by all-year water and high slope (slope higher
than 3◦) regions. After that, the refined-Lee filter was applied on Sentinel-1 data for de-
noising, and band math was applied to MODIS data for generating NDVI and NDWI
images. Then, change detection was performed on the multi-source images acquired be-
fore and after the flood to obtain the difference image. The optimal thresholds for each
index were calculated using the Double-window Flexible Pace Search (DFPS) threshold
determination method, and the flood extraction results of the radar data. We did not use
the classic histogram-based extraction method mainly because of the area of flood regions
are relatively small compared with the whole study area. The bimodal histogram is blurry
and flood information is indistinguishable (Figure S2). Finally, the intersection image of the
Sentinel-1 extraction results and the MODIS extraction results was the flood inundation
area, and the combined image of them was the flood-affected area.

The core concept of flood inundation area and flood-affected area is as follows: For the
areas that were severely affected by the flood process, the water surface signal is evident on
both Sentinel-1 images before and after the flood. This means the regions were continually
inundated and the crops growing will be surely influenced and captured by MODIS images.
These areas were defined as flood inundation areas. The extraction rule of these region
is an intersection of Sentinel-1 extracted and MODIS extracted results. For other slighter
affected regions that became silt for the Sentinel-1 images in the after-flood scene, the crop
growing might also be influenced by the laten broadcast. Combined with the first type of



Agronomy 2023, 13, 355 8 of 28

regions, these regions were defined as flood-affected area and their extraction rules are a
union of Sentinel-1 and MODIS extracted results.

In order to verify the precision and portability of the developed method, four seriously
flooded regions (Figure 1c), were selected to evaluate the precision of the extraction results.
The flood events in Shanxi Province were used for testing.
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2.3.2. Change Detection

Using a simple change detection method, we obtained the difference map by deter-
mining the difference between the two images before and after the flood. The calculation is
as follows

DIsub = |I1 − I2| (4)

where: DIsub is the difference image, and I1 and I2 denote the two images obtained in
different time windows. In this study, the difference image calculations were performed on
the NDVI, NDWI and radar images.
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2.3.3. Threshold Extraction

Based on the difference images, the flood area extraction was completed by choosing
an appropriate threshold. In this study, a two-window variable-step threshold search
method was used to determine the flood extraction thresholds [58]. The basic assumption
of this method is that if a certain threshold is determined to maximize the change detection
precision for a typical change training sample area containing different change types, then
this threshold can also maximize the detection precision for the entire-view in the image
(Figure 7). With this method, the threshold value can be determine quickly and precisely
using the prior knowledge of the interpreter.
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2.3.4. Image Resampling

The study involves data with many different spatial resolutions. A proper way to
unify spatial scales of multisource image data is needed for our method. The GEE platform-
based method used in this study is the nearest neighbor assignment method. This method
only changes the spatial scales of the pixels without changing their values and does not
introduce extra errors into the method. The maximum spatial error is half the size of the
image element.

2.3.5. Result Verification

Verification based on reference sample data is one of the main means of precision
verification, and it is also one of the indicators used to illustrate the precision of the
extraction results. After completing the extraction, a confusion matrix was constructed
based on randomly selected sample points. Then, the kappa coefficient, user precision,
mapping precision, overall precision, and other validation indicators were used for the
precision verification [59].

The overall precision was calculated as

p0 =
TP + TN

TP + TN + FP + FN
(5)
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where: p0 denotes the overall precision; TP denotes the true positive sample number; TN
denotes the true negative sample number; FT denotes the false positive sample number;
FN denotes the false negative sample number.

Kappa is another single-valued metric designed to evaluate the performance of a
range of classifiers. kappa is designed to compare the performance of any classifier to a
baseline of “random classifiers”. The Kappa was calculated as

k =
p0 − pe
1− pe

(6)

where: p0 denotes the overall precision; pe denotes the sum of the “product of actual
and predicted quantities” for all categories, divided by the “square of the total number
of samples”.

3. Results
3.1. Threshold Searching Results

In this study, the thresholds determined using the DFPS method were as follows: the
detection precision was the highest (84%) when the threshold of the extracted flooding
extent was −1.8 for the radar data. Table 2 shows the calculation process of the DFPS
threshold determination method for Sentinel-1 data, including the threshold search extent,
the step size, and the precision of the corresponding image.

Table 2. Double-window flexible pace search threshold determination calculation process for Radar data.

Threshold Range −4 to 0
Step Size 0.5

Threshold Range −1.1 to −1.9
Step Size 0.1

Threshold Detection Success Rate (%) Threshold Detection Success Rate (%)

0 0.701 −1.1 0.825
−0.5 0.782 −1.2 0.83
−1 0.826 −1.3 0.831
−1.5 0.838 −1.4 0.832
−2 0.830 −1.5 0.838
−2.5 0.812 −1.6 0.837
−3 0.796 −1.7 0.838
−3.5 0.780 −1.8 0.840
−4 0.762 −1.9 0.835

For the MODIS yielded NDVI data, the detected precision was the highest (82%) when
the threshold of the NDVI index was −0.08. Table 3 shows the calculation process of the
DFPS threshold determination method for the NDVI index of the optical data.

Table 3. Double-window flexible pace search threshold determination calculation process for NDVI
index from optical data.

Threshold Range −0 to −0.35
Step Size 0.05

Threshold Range −0.06 to −0.13
Step Size 0.01

Threshold Detection Success Rate (%) Threshold Detection Success Rate (%)

0 0.718 −0.06 0.814
−0.05 0.807 −0.07 0.816
−0.1 0.814 −0.08 0.820
−0.15 0.785 −0.09 0.819
−0.2 0.744 −0.1 0.814
−0.25 0.697 −0.11 0.803
−0.3 0.655 −0.12 0.801
−0.35 0.615 −0.13 0.797
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The detection precision was the highest (88.6%) when the threshold of the NDWI
index was 0.01. Table 4 shows the calculation process of the DFPS threshold determination
method for the NDWI index of the optical data.

Table 4. Double-window flexible pace search threshold determination calculation process for NDWI
index from optical data.

Threshold Range 0 to −0.08
Step Size 0.01

Threshold Detection Success Rate (%)

0 0.882
0.01 0.886
0.02 0.856
0.03 0.833
0.04 0.817
0.05 0.798
0.06 0.785
0.07 0.754
0.08 0.738

3.2. Flood Extraction Results

The method developed in this study was used to extract the flooding extent maps over
the agricultural land in the study area (Figures 8 and 9). Quantitatively, the flood inundation
area of the crops throughout Henan Province was 1563.66 km2, and the flood-affected area
of the crops in the entirety of Henan Province was 5441.73 km2.
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Overall, the speckle noise (Figure S3) was well controlled due to the intersection
operation of the radar and optical images in the flood inundation areas. Spatially, the
flood-inundated areas were mainly concentrated in Hebi, central Xinxiang, eastern Anyang,
western Kaifeng, northern Zhengzhou, and eastern Jiaozuo in Henan Province (Figure 9).
The distribution of the main flood-affected areas was roughly the same as that of the
inundated areas. Accordingly, Zhoukou, Xinxiang and Hebi in Henan Province were
mainly affected by the flood, with larger areas and larger extents (Figure 10). Overall, the
southern part of Henan (e.g., Zhumadian and Nanyang) and the western part of Henan
(e.g., Zhoukou, Shangqiu, and Kaifeng) were less affected by the heavy rainfall. Hebi,
Jiaozuo, Xinxiang, and other areas were mainly affected by this particular disaster. There
was obvious waterlogging in some places, and the production loss of autumn harvest was
relatively large, which not only led to a reduction in production but also to a total loss of in
the harvest, which had a greater impact on later yields.

We picked out some typical extraction results and exhibited them in Figure 10. From
this it can be concluded that the flood inundation area extracted by our method basically
overlaps with the spatial distribution of the flooding in the Sentinel-2 images. Thus, our
method successfully controls the speckle noise of the radar data while keeping the spatial
details clear. However, due to the coarse spatial resolution of the MODIS data, we extracted
the flood-affected area as the union of the inundation area and the optical index, so the
contour line of the small validation area (Figure 10f) is relatively fuzzy.
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Figure 10. Results of Sentinel-2 true color synthetic images (a,d,g), flood inundation area (b,e,h), and
flood-affected area (c,f,i).

Additionally, to exhibit the performance of Sentinel-1 images in post-flood siltation
regions, we extraced flood affected area without MODIS images. The results (Figure 11)
show that the data performs well for extracting the flooded area in the east-central part
of the figure. But the silt zone at the periphery of the flooded area and the silt zone in the
southwestern part of the figure were missed. This indicates the importance of combining
MODIS data with Sentinel-1 data to obtain complete flood information.
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3.3. Extraction Precision Verification

In this study, four areas where the flooding mainly occurred were selected as the
verification areas (Figure 1c), and the verification method of visually marking verification
points was carried out using Sentinel-2 image data with a resolution of 10 m. Among them,
827 flood inundation points and 778 non-inundation points were set in the extracted flood
inundation area, and 677 flood-affected points and 778 non-flood-affected points were set
in the extracted flood-affected area.

A confusion matrix was calculated using the sample points above. The overall preci-
sion of extracting flood inundation extent using the method developed in this study was
87% with a kappa coefficient of 0.73 (Table 5); and the overall precision of the extraction of
the flood-affected area extent was 92%, with a kappa coefficient of 0.84 (Table 6).

Table 5. Verification precision table for the flood inundation areas.

Actual Value

Not Flooded Flooded Total User Precision

Predicted
value

Not flooded 777 215 992 78%
Flooded 1 612 613 99%

Total 778 827 Overall precision: 87%
Producer precision 99% 74% Kappa coefficient: 0.73

Table 6. Verification precision table for the flood-affected areas.

Actual Value

Not Affected Affected Total User Precision

Predicted
value

Not affected 714 52 766 93%
Affected 64 625 680 92%

Total 778 677 Overall precision: 92%
Producer precision 92% 92% Kappa coefficient: 0.84

3.4. Flood Extraction Verification in Shanxi Province

We used the flood events in Shanxi Province to verify the applicability of the method
to different areas. Among them, 21 Sentinel-1 images taken from 15 September to 5 October
2021 (pre-flood) and 27 images taken from 7–27 October 2021 (post-flood) were selected.
One NDVI MODIS image acquired on 30 September (before the flood) and one NDVI
MODIS image acquired on 16 October 2021 (after the flood); and two NDWI images
acquired on 22 and 30 September (before the flood) and three NDWI images acquired on 8,
16, and 24 October (after the flood) were selected. Finally, we obtained the flood inundation
area (Figure 12a) and the flood-affected area (Figure 12b).

The analysis of the amounts and spatial distributions of the extents of the flood
inundation areas and affected areas of agricultural land were extracted using the method
developed in this study. In terms of the quantity, the flood inundation area of the crops
throughout Shanxi Province was 222.33 km2, and the flood-affected area of the crops
throughout Shanxi Province was 2028.2 km2. In terms of the spatial distribution, the flood
inundation areas were mainly distributed in the northern part of Yuncheng, mainly along
the Fen River (Figure 12a); while the flood-affected areas were mainly distributed in the
northern part of Shanxi Province (Figure 12b). Figure 13 shows a detailed comparison of
the image of a verification area and the extraction results. It can be seen that the extents and
boundaries of flood inundated areas (Figure 13b) and the flood-affected areas (Figure 13c)
are relatively clear.
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In terms of the precision verification, we selected 225 inundation sample points and
209 non-inundation sample points, as well as 247 flood-affected sample points and 214 non-
flood-affected sample points in the study area. A confusion matrix was calculated using
randomly selected verification sample points. The overall precision of the extraction of the
flood inundation areas was 85%, with a kappa coefficient of 0.71 (Table 7); and the overall
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precision of the extraction of the flood-affected areas was 96%, with a kappa coefficient of
0.93 (Table 8).

Table 7. Verification precision table for the flood inundation areas.

Actual Value

Not Flooded Flooded Total User Precision

Predicted
value

Not flooded 208 62 270 77%
Flooded 1 163 164 99%

Total 209 225 Overall precision: 85%
Producer precision 99% 72% Kappa coefficient: 0.71

Table 8. Verification precision table for the flood-affected areas.

Actual Value

Not Affected Affected Total User Precision

Predicted
value

Not affected 213 16 229 93%
Affected 1 231 234 99%

Total 214 247 Overall precision: 96%
Producer precision 99% 94% Kappa coefficient: 0.93

4. Discussion
4.1. Effect of the Time Window Size

In establishing the flood information extraction method for Henan Province, we
need to analyze the impact of sensitive factors of data selection on the accuracy of flood
information extraction. The size of the time window directly determines the number of
images involved in the method and affects the accuracy of flood information extraction.
To make a comprehensive discussion on the impact of the time window size on the flood
extraction result. We gradually changed the time window size of the after-flood images and
calculate the detection accuracy. The time window size before the flood was not discussed
here because the flood-sensitive information is concentrated in the post-flood images. The
re-entry period of Sentinel-1 data is about six days. So we selected five days as the initial
time window size and enlarged it gradually to 30 days. The accuracy under each time
window size is exhibited in Table 8. The overall accuracy is the highest when the time
window size is 25 days (Table 9). For this reason, we selected 20 July to 15 August after the
flooding as the time window for extracting flood information from the Sentinel-1 data.

Table 9. The accuracy of Sentinel-1-based change detection accuracy under different time window sizes.

Time Windows Size Overall Precision Kappa Coefficient

five days 81% 0.63
ten days 81% 0.63
15 days 83% 0.66
20 days 86% 0.72
25 days 87% 0.73
30 days 86% 0.73

For MODIS data, the data products of are synthesized from high quality NDVI images
every 16 days. This allows the two images with the closest date before and after the flood
to be selected. The NDWI images are synthesized every 8 days, which is more affected
by cloudy and rainy weather. The images are heavily contaminated by clouds after the
flood. Therefore, we choose 10 days as the initial time window size for accuracy assessment.
The overall accuracy is the highest when the time window size is 40 days (Table 10), so
we choose 20 July to 30 August after the flood as the time window for extracting flood
information from NDWI images.
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Table 10. The accuracy of NDWI change detection accuracy under different time window sizes.

Time Windows Size Overall Precision Kappa Coefficient

ten days 85% 0.71
20 days 87% 0.74
30 days 84% 0.68
40 days 92% 0.84
50 days 91% 0.84
60 days 91% 0.83

4.2. NDVI and NDWI Time Series of the Flood Year

An important basis of successful application of the proposed method is the sensitivity
of NDVI and NDWI indices to the flood events: NDVI will capture vegetation growth
status and NDWI reflects the moisture of the pixel. In this section, we illustrate the NDVI
and NDWI series o the flood year and normal year to directly show the ability of the
proposed method.

In the extraction results for the extent of the flood-affected areas in Henan Province
(Figure 10), 152 sampling points were randomly selected and the NDVI time series change
curves for sample points in 2020 and 2021 were extracted from the MODIS data (Figure 14).
The autumn crops were sown in early June and harvested in late September and early
October, with the NDVI values being the highest in August. However, after the NDVI
values started to increase in June 2021, the NDVI values dropped abruptly to a low point in
mid-late July when the floods occurred (Figure 14). Therefore, the difference between the
NDVI values in August and June was used as an extraction feature. The NDVI values in
the normal area in August were higher than those in June, and the difference was greater
than 0, In addition, the difference in the NDVI in the total crop failure area was less than 0.
After the flood, the crops in the total crop failure area stopped growing or the crop area
became bare ground, while the crops in the normal area continued to grow until the crops
were ripe for harvest.
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From the same sample points, we extracted the time series change curves of NDWI for
2020 and 2021 (Figure 15). It can be seen that the NDWI value in 2021 reaches its highest
value after the flood. Before the flood, the time series change curves of NDWI in 2020 and
2021 are roughly similar. Within two months after the flood, the NDWI values of 2021
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are much higher than the same period in 2020 because of the high soil moisture content.
Compared with NDVI series, the flood events affected the NDWI data in a relatively short
period. After 13 September, the NDWI curves of normal year (2020) and flood year (2021)
converged. Also, random vibrations appeared more frequently in NDWI curves than in
NDVI series. These random changes are probably caused by rainfall events of different year.
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In conclusion, NDVI and NDWI series are sensitive to vegetation growth and soil
moisture, respectively. Both of them play important roles in flood information recogni-
tion, and they are effectively included in our method to ensure the effectiveness of the
flood extraction.

4.3. Total Crop Failure Area of Autumn Crops

The general idea of traditional methods of investigating crop losses due to flood
disasters is to use historical statistical data and meteorological data to infer and predict the
occurrence and loss due to floods. The main problem with this evaluation method is that its
real-time performance is poor, and it cannot reflect the corresponding changes in farmland
management and crop growth under floods [60]. This study is based on the GEE platform,
which can be used to quickly obtain the affected area. We can easily extract the total crop
failure area of the autumn crops and conduct NDVI time series analysis. The principle is as
follows: after the crops are affected by floods, their normal growth process is inhibited, and
the leaves turn yellow and wilt. Within the flood-affected areas extracted in this study, the
NDVI data acquired before and after the flood were used to conduct comparative analysis
and to derive the distribution of the total crop failure areas [61].

The main flood-affected areas were in the northern and eastern parts of Henan
Province, where corn and peanuts were mainly cultivated. Corn is in the jointing pe-
riod in July, which requires a lot of water but is not resistant to waterlogging. When
the soil water content exceeds 90% of the maximum water holding capacity, corn will be
stunted [62]. Severe floods cause the root system of corn to die due to a lack of oxygen,
resulting in total corn crop failure. The peanuts in the flood were mainly affected by
respiration. the presence of too much water in peanut fields directly drowns the roots in the
soil, preventing them from absorbing outside air, thereby causing the plants to wither and
die. Therefore, within the flood-affected area, the NDVI image difference changes between
the two times were used to extract the total autumn crop failure distribution map.
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To determine the specific timing for fall crop failure areas, we further carried out a
one-way ANOVA analysis of the 2020 and 2021 NDVI series (Figure 15) to quantitatively
compare the differences and derive the most sensitive time to separate flood affected
regions and normal regions (Table 11). From the table, it is concluded that before the flood
(07_11), for five in 11 time points, NDVI values from normal year and flood year do not
differ significantly (p > 0.001). After the flood, NDVI values of 14 in 15 points of normal
years and flood years are significantly different (p < 0.001). The largest F-value and the
smallest p-value were found on 12 August, indicating the largest difference between groups,
i.e., the most sensitive time point of extracting flood information, occurred then. On 25 June,
the F value is 2.12, indicating that there is no significant difference (p < 0.001) between
the two groups. Therefore, 25 June was taken as the pre-flood time point. Therefore, the
difference between the two NDVI images on 25 June and 12 August was used to extract the
total autumn crop failure distribution map (Figure 16).

Table 11. Analysis of variance (ANOVA) between groups for NDVI values in 2020 and 2021 Table.

Time F p-Value Ranking of Data Differences
between Groups

01_01 1.9464 0.1640 24
01_17 131.8473 <0.001 11
02_02 59.8462 <0.001 14
02_18 20.2092 <0.001 17
03_05 40.7496 <0.001 15
03_21 12.8644 <0.001 20
04_06 0.6903 0.4067 26
04_22 15.4683 <0.001 19
05_08 3.8905 0.0494 22
05_24 1.2324 0.2678 25
06_09 16.8823 <0.001 18
06_25 2.1267 0.1458 23
07_11 114.0137 <0.001 12
07_27 548.5804 <0.001 6
08_12 5510.5470 <0.001 1
08_28 2733.7900 <0.001 2
09_13 586.0266 <0.001 4
09_29 0.363645 <0.001 27
10_15 32.41033 <0.001 16
10_31 447.1092 <0.001 7
11_16 559.3606 <0.001 5
12_02 701.6087 <0.001 3
12_18 320.2398 <0.001 8
01_01 224.5726 <0.001 9
01_17 10.53734 0.001301 21
02_02 137.0491 <0.001 10
02_18 87.34539 <0.001 13

Based on the results, the total area of total crop failure in autumn caused by this flood
was 3792.8 km2, and the crop failure areas were mainly concentrated in the southern part of
Hebi, the northern-central part of Xinxiang, and the eastern part of Anyang in the northern
part of Henan Province, as well as the western part of Zhoukou and Kaifeng in the eastern
part of Henan Province (Figure 16).
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4.4. Late-Sown Winter Wheat Area

Affected by flood disasters, the wheat sowing was delayed by accumulated water in
the fields in northern and eastern Henan. In this section, based on the flood affected areas,
we analyzed the late sowing of winter wheat to provide scientific guidance for post-disaster
wheat plant management and seed raising.

Rapid assessment of information on the area of farmland affected by flooding to
different degrees, depending on the degree of late sowing, can help to reduce disaster
risk. Vegetation index is a simple and effective metric parameter to characterize sur-
face vegetation coverage in the field of remote sensing [63], and is widely used in stud-
ies such as vegetation growth monitoring [64] and vegetation cover monitoring [65,66].
NDVI has become the best remote sensing index to monitor the vegetation cover and
growth status [67].

Winter wheat is sowing right after the summer crops have been harvested. After this
farming activity, NDVI curves began to rise in early-mid October, 2020. However, in 2021,
the rising point of NDVI curves has been shifted to 31 October (Figure 17), indicating a
15-day delaying wheat sowing. As a result of late sowing, the NDVI curves in 2021 are
systematically lower compared with those in 2020 in the wheat seedling period, overwin-
tering period, and part of the wheat growth period. This indicated that wheat growing was
obviously influenced by late sowing. Interestingly, 2021 NDVI values are slightly higher
than 2020 between late September and mid-October. One possible reason is that the heavy
flood made the farmers abandon the corn plants in the fields.

Therefore, we calculated the NDVI difference between 1 November and 15 October as
the sensitive factor for late sowing. According to this definition, the difference is greater
than 0 in normal region. In the late-seeded region, the difference is smaller or close to 0.
The smaller the difference value, the later the sowing was done. Based on this method, we
calculated the NDVI difference map of the flood affected region (Figure 18). To evaluate
late sowing degree, the difference map was divided into three categories according to the
natural breakpoint method. The regions with a difference value greater than 0, less than
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−0.06, and in range of −0.06 and 0, were defined as the normal sown area, the badly late
sown area, and the late sown area. Among them, the area of normal sown, late sown,
and badly late sown in Henan Province are 960.43 km2, 1953.94 km2, and 855.81 km2,
respectively. Spatially, the badly sown area is mainly distributed in the flood inundation
area, where the farmland was seriously waterlogged and the terrain is flat and difficult to
drain. The normal sowing areas were distributed in the flood-affected areas in central and
eastern Henan Province, where the overall precipitation was less (Figure 3) and had less
impact on wheat sowing, as well as a small number of late sowing areas (Figure 18).

Agronomy 2023, 13, 355 21 of 29 
 

 

Rapid assessment of information on the area of farmland affected by flooding to dif-

ferent degrees, depending on the degree of late sowing, can help to reduce disaster risk. 

Vegetation index is a simple and effective metric parameter to characterize surface vege-

tation coverage in the field of remote sensing [63], and is widely used in studies such as 

vegetation growth monitoring [64] and vegetation cover monitoring [65,66]. NDVI has 

become the best remote sensing index to monitor the vegetation cover and growth status 

[67]. 

Winter wheat is sowing right after the summer crops have been harvested. After this 

farming activity, NDVI curves began to rise in early-mid October, 2020. However, in 2021, 

the rising point of NDVI curves has been shifted to October 31 (Figure 17), indicating a 

15-day delaying wheat sowing. As a result of late sowing, the NDVI curves in 2021 are 

systematically lower compared with those in 2020 in the wheat seedling period, overwin-

tering period, and part of the wheat growth period. This indicated that wheat growing 

was obviously influenced by late sowing. Interestingly, 2021 NDVI values are slightly 

higher than 2020 between late September and mid-October. One possible reason is that 

the heavy flood made the farmers abandon the corn plants in the fields. 

 

Figure 17. NDVI time series change curves of wheat growing season in 2020 and 2021. 

Therefore, we calculated the NDVI difference between November 1st and October 

15th as the sensitive factor for late sowing. According to this definition, the difference is 

greater than 0 in normal region. In the late-seeded region, the difference is smaller or close 

to 0. The smaller the difference value, the later the sowing was done. Based on this 

method, we calculated the NDVI difference map of the flood affected region (Figure 18). 

To evaluate late sowing degree, the difference map was divided into three categories ac-

cording to the natural breakpoint method. The regions with a difference value greater 

than 0, less than −0.06, and in range of −0.06 and 0, were defined as the normal sown area, 

the badly late sown area, and the late sown area. Among them, the area of normal sown, 

late sown, and badly late sown in Henan Province are 960.43km2, 1953.94km2, and 

855.81km2, respectively. Spatially, the badly sown area is mainly distributed in the flood 

inundation area, where the farmland was seriously waterlogged and the terrain is flat and 

difficult to drain. The normal sowing areas were distributed in the flood-affected areas in 

central and eastern Henan Province, where the overall precipitation was less (Figure 3) 

and had less impact on wheat sowing, as well as a small number of late sowing areas 

(Figure 18). 

Figure 17. NDVI time series change curves of wheat growing season in 2020 and 2021.

Agronomy 2023, 13, 355 22 of 29 
 

 

 

Figure 18. The map of late sowing degree in the flood affected area. 

To illustrate the late sowing regions in detail, we mapped a typical region in Hebi 

(Figure 19). As shown in Figure 19, the normal sown regions were sporadically distributed 

along the edges of the flood-affected areas. The badly late sown areas were mainly in the 

center of the flood-affected areas and the farmlands around the rivers. The area of late 

sown regions was the largest. At the end of September (Figure 19b), some regions were 

still inundated. For areas not affected by the floods, autumn crops were getting mature 

and would be harvested soon (Figure 19b,e). At the end of October (Figure 19c), surface 

water was vaporized or drained in the flood-affected areas. The NDVI values were 

slightly higher than those in the surrounding non-flooded areas (Figure 19f). This phe-

nomenon corresponds to the October decreasing NDVI curves in Figure 12. It is because 

for normal regions, harvesting actives were successfully processed. But for flooded re-

gions, the farmland was heavily silted up and large machinery could not enter the field. 

The harvesting of the autumn crop was then delayed. The following late sowing further 

influenced wheat growing in the overwintering period (Figure 17) and generated the 

NDVI depression at the end of November (Figure 19g). 

Figure 18. The map of late sowing degree in the flood affected area.

To illustrate the late sowing regions in detail, we mapped a typical region in Hebi
(Figure 19). As shown in Figure 19, the normal sown regions were sporadically distributed
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along the edges of the flood-affected areas. The badly late sown areas were mainly in
the center of the flood-affected areas and the farmlands around the rivers. The area of
late sown regions was the largest. At the end of September (Figure 19b), some regions
were still inundated. For areas not affected by the floods, autumn crops were getting
mature and would be harvested soon (Figure 19b,e). At the end of October (Figure 19c),
surface water was vaporized or drained in the flood-affected areas. The NDVI values
were slightly higher than those in the surrounding non-flooded areas (Figure 19f). This
phenomenon corresponds to the October decreasing NDVI curves in Figure 12. It is because
for normal regions, harvesting actives were successfully processed. But for flooded regions,
the farmland was heavily silted up and large machinery could not enter the field. The
harvesting of the autumn crop was then delayed. The following late sowing further
influenced wheat growing in the overwintering period (Figure 17) and generated the NDVI
depression at the end of November (Figure 19g).
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2021, respectively.

To clearly judge the three late sowing degrees (Figure 19a), we selected and plotted
some typical pixels from the NDVI time series images of these types (Figure 20). On the
one hand, the sowing times of the three late sowing degrees are different. With the earliest
sowing time in the normal sown area, the NDVI values kept increasing after 30 September.
The late sown area started sowing on 1 November. Lastly, the badly late sown area started
sowing in around 17 November, after which the NDVI values started to rise slowly. The
time difference between the earliest and the latest sowing was about 46 days. On the
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other hand, the three late sowing levels differed in the NDVI values of wheat during the
overwintering period, with the highest NDVI values and the best wheat growth in the
normal sown area during the overwintering period. This was followed by the late sown
area, where the overall NDVI values were slightly lower than those of the normal sown
area. Finally, the overall NDVI values in the badly late sown areas were the lowest and
grew slowly during the overwintering period.
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In practical application, using the October difference map, it is possible to quickly
derive a distribution map of different levels of late sowing. Combined with the guidance of
agricultural experts, different measurements to avoid yield reduction could be taken for
different regions, such as varied fertilizer application recommendations for different late
sowing levels and precise management with the guidance of flood-affected region. These
polices have the potential of protect real benefits of farmers and ensure food security.

4.5. Limitations and Prospects

Based on the GEE cloud platform and multi-source remote sensing images, we con-
structed a set of real-time flood extraction methods in this study, and we analyzed the
impact of floods on two crops, corn and wheat. However, when using this research method
to extract flood information in other regions, the following factors need to be considered.
First, in this study, we used this method to extract flood information in Henan Province, and
MODIS images were selected as a data source due to their spatial and temporal coverages,
so the small-scale spatial extent could not be accurately extracted when extracting the
flood-affected areas. Therefore, this method is more suitable for the extraction of flood
information about large-scale agricultural land. If multispectral images with a higher
spatial resolution such as Sentinel 2 images are used, the temporal resolution will not be
sufficient to offset the thick cloud contamination and to obtain results over a large area.
Thus, the data source is still an important limiting factor in this method. Second, the flood
in Henan Province occurred in July, which is a period of relatively rapid crop growth and
significant changes in NDVI values. However, if the flood occurs in the harvesting stage or
the early sowing stage, the NDVI time series changes under the influence of the flood will
not be significant, and it will be difficult to distinguish the agricultural land affected by the
flood using the NDVI index, for example, the flood disaster in Shanxi Province in analyzed
October in this study, in which the flood-affected area was larger than the actual situation.
The reason is that the flooding in Shanxi occurred in October. The harvest was ongoing



Agronomy 2023, 13, 355 24 of 28

and the NDVI values decreased naturally. The NDVI curves cannot effectively distinguish
harvesting and flooding. Finally, the study area was Henan Province, where the terrain is
flat and open, the plots are relatively flat with large crop cultivation scale, and most of the
flooded areas were in the plain in northern and eastern Henan. This area had a single crop
cultivation structure, i.e., most of the fall crops were corn, peanuts, and other crops with
similar sowing and harvesting periods. Therefore, the extraction method should be further
demonstrated and tested in an area where the crop species in the study area are complex,
with different sowing, development, and harvesting periods.

In the application of this research method, due to the low resolution of MODIS, the
extraction accuracy is can be improved in small areas or fragmented agricultural land in
the future; also, extracting flood in the harvesting period is challenging for our method.

In recent years, many researchers have achieved excellent results in crop structure
extraction [68,69]. If they are combined with our proposed method, it will provide impor-
tant information for the government to take specific relief measures for different types of
agricultural land in the flood-affected areas. This could reduce the economic losses caused
by flooding of agricultural land and enable scientific assessment and prediction of the
amounts of various crop losses in flood-affected years.

For flood information extraction based on change detection, we used a single threshold
segmentation method to divide the study area into flood inundation or flood-affected
areas. After accumulating a large number of multi-temporal images of the study area, the
classification precision could be improved through combination with higher precision deep
learning methods. In addition, for flood information extraction based on multi-source data,
climate data such as precipitation and evaporation; hydrological data such as the capacity
and flow direction of reservoirs, lakes, and rivers can be added to extract flood information
from various aspects in order to improve the precision of the flood extraction. Finally, the
area of Henan Province is large. Due to the influences of temperature, soil, precipitation,
and terrain, the crop species, growth, and development information vary with latitude and
altitude, and whether these differences have an impact on the flood extraction is worth
further investigation.

With the development of remote sensing technology, more and more sensors with
high temporal and spatial resolutions are gradually being put into use, such as the CubeSat
and high score series. In the future, based on high-resolution data, we can combine radar
and optical multi-source satellite data to achieve real-time, dynamic monitoring of floods,
and we can combine these data with ground station data, terrain data, and hydrological
models to simultaneously perform multi-level monitoring and simulation and to achive
monitoring and early warning.

5. Conclusions and Suggestions

In response to the demand for the development of wide-area, rapid, and precise flood
remote sensing monitoring, in this study, a method of extracting the flood inundation area
and flood-affected area of agricultural land was developed based on the joint support of
radar images and optical images, and the method was tested using two typical flood events
as examples. The conclusions of this study are as follows.

1. Dynamic and real-time identification of flood inundation areas and flood-affected
areas were realized using the GEE cloud platform and multi-source image data;

2. In Henan Province, the overall precision and kappa coefficient of flood inundation
area extraction were 87% and 0.73, respectively, and the overall precision and kappa
coefficient of the flood-affected area were 92% and 0.84, respectively. In Shanxi
Province, the overall precision and kappa coefficient of the flood inundation area
extraction were 85% and 0.71, respectively, and the overall precision and kappa
coefficient of the flood-affected area were 96% and 0.93, respectively;

3. Based on the distribution of the flood-affected areas, the total crop failure area was
extracted easily and quickly, and the effect of the late sowing on the growth of the
winter wheat was analyzed.
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4. There are two main suggestions of the research results to practical policy: (1) The
geographical location of flood-affected areas is mostly along rivers and low-lying
areas, so we should strengthen the construction of high-standard farmland, build
water conservancy facilities, improve the level of farmland improvement and river
improvement projects, and actively defend against flooding. (2) The government
should improve the agricultural insurance system, and provide economic subsidies
and help according to the disasters to minimize the loss of farmers and promote the
work of agricultural resumption.

The code of this algorithm on the GEE platform is available to the public at https://
code.earthengine.google.com/561c41b41eec921df1eb6139386f5235 (accessed on 15 Novem-
ber 2022) and can be used for large-scale flood information extraction for flood scheduling
and disaster prevention and mitigation provide scientific basis for decision making.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy13020355/s1, Figure S1: Field shot flood in crop lands
of Henan Province after the “7.11” rainfall in 2021; Figure S2: Histogram of Sentinel-1 VV images after
flooding in Henan Province; Figure S3: Flood region map that derived only from Sentinel-1 images.
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