Effects of Fertilizer Application Patterns on Foxtail Millet Root Morphological Construction and Yield Formation during the Reproductive Stage in the Loess Plateau of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experimental Sites
2.2. Materials
2.3. Experimental Design and Management
2.4. Determination Index and Method
2.4.1. Determination of Root Morphology of Foxtail Millet
2.4.2. Determination of the Yield and Composition of Foxtail Millet
2.4.3. WUE Calculation
2.5. Data Analysis and Statistics
3. Results
3.1. Effects of Different Fertilizers on the Total Root Length (RL) of Foxtail Millet
3.2. Effects of Different Fertilizer Combinations on the Root Surface Area (RSA) of Foxtail Millet
3.3. Root Volume (RV) Change of Foxtail Millet in Five Fertilizer Patterns
3.4. Root Diameter (RD) Change of Foxtail Millet in Five Fertilizer Patterns
3.5. Effects of Different Fertilizer Combinations on the Root Biomass (RB) of Foxtail Millet
3.6. Correlation between Root Indexes and the Yield of Foxtail Millet
3.7. Effects of Different Fertilizer Application Patterns on Yield Composition
3.8. Effects of Different Fertilizer Application Patterns on the Yield and WUE of Foxtail Millet
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grassini, P.; Eskridge, K.M.; Cassman, K.G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 2013, 4, 2918. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.K.; Tahir, M.M.; Rahim, N. Effect of n fertilizer source and timing on yield and n use efficiency of rainfed maize (Zea mays L.) in kashmir-pakistan. Geoderma 2013, 195, 87–93. [Google Scholar] [CrossRef]
- Ahmed, M.; Rauf, M.; Mukhtar, Z.; Saeed, N.A. Excessive use of nitrogenous fertilizers: An unawareness causing serious threats to environment and human health. Environ. Sci. Pollut. Res. 2017, 24, 26983–26987. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.F.; Yue, S.C.; Hou, P.; Cui, Z.L.; Chen, X.P. Improving yield and nitrogen use efficiency simultaneously for maize and wheat in China: A review. Pedosphere 2016, 26, 137–147. [Google Scholar] [CrossRef]
- Chen, X.P.; Cui, Z.L.; Fan, M.S.; Zhao, M.; Ma, W.Q.; Wang, Z.L.; Zhang, W.J.; Yan, X.Y.; Ma, L.; Zhang, W.F.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Rattan, L. Climate-strategic agriculture and the water-soil waste nexus. Plant Nutr. Soil Sci. 2013, 176, 479–493. [Google Scholar]
- Xu, F.; Liu, Y.L.; Du, W.C.; Li, C.L.; Xu, M.L.; Xie, T.C.; Yin, Y.; Guo, H. Response of soil bacterial communities, antibiotic residuals, and crop yields to organic fertilizer substitution in north China under wheat- maize rotation. Sci. Total Environ. 2021, 785, 147248. [Google Scholar] [CrossRef]
- Verhulst, N.; Govaerts, B.; Verachtert, E.; Castellanos-Navarrete, A.; Mezzalamam, M.; Wall, P.; Deckers, J.; Sayre, K.D. Conservation agriculture, improving soil quality for sustainable production systems. Adv. Soil Sci. Food Secur. Soil Qual. 2010, 1799267585, 137–208. [Google Scholar]
- Abdel-Ghani, A.H.; Kumar, B.; Reyes-Matamoros, J.; Gonzalez-Portilla, P.J.; Jansen, C.; San Martin, J.P.; Lee, M.; Luebberstedt, T. Genotypic variation and relationships between seedling and adult plant traits in maize (Zea mays L.) inbred lines grown under contrasting nitrogen levels. Euphytica 2013, 189, 123–133. [Google Scholar] [CrossRef]
- Salvati, L.; Mavrakis, A.; Colantoni, A.; Mancino, G.; Ferrara, A. Complex adaptive systems, soil degradation and land sensitivity to desertification: A multivariate assessment of italian agro-forest landscape. Sci. Total Environ. 2015, 521, 235–245. [Google Scholar] [CrossRef]
- Masarirambi, M.T.; Mandisodza, F.C.; Mashingaidze, A.B.; Bhebhe, E. Influence of plant population and seed tuber size on growth and yield components of potato (Solanum tuberosum). Agric. Biol. 2012, 14, 545–551. [Google Scholar]
- Kumar, U.; Shahid, M.; Tripathi, R.; Mohanty, S.; Kumar, A.; Bhattacharyya, P.; Lal, B.; Gautam, P.; Raja, R.; Panda, B.B.; et al. Variation of functional diversity of soil microbial community in sub-humid tropical rice-rice cropping system under long-term organic and inorganic fertilization. Ecol. Indic. 2017, 73, 536–543. [Google Scholar] [CrossRef]
- Iqbal, A.; He, L.; Khan, A.; Wei, S.Q.; Akhtar, K.; Ali, I.; Ullah, S.; Munsif, F.; Zhao, Q.; Jiang, L. Organic manure coupled with inorganic fertilizer: An approach for the sustainable production of rice by improving soil properties and nitrogen use efficiency. Agronomy 2019, 9, 651. [Google Scholar] [CrossRef]
- Yu, Y.; Qian, C.R.; Gu, W.R.; Li, C.F. Responses of root characteristic parameters and plant dry matter accumulation, distribution and transportation to nitrogen levels for spring maize in northeast China. Agriculture 2021, 11, 308. [Google Scholar] [CrossRef]
- Lammerts van Bueren, E.; Struik, P.; Jacobsen, E. Ecological concepts in organic farming and their consequences for an organic crop ideotype. NJAS Wagening. J. Life Sci. 2002, 50, 1–26. [Google Scholar] [CrossRef]
- Meng, T.; Wei, H.H.; Li, X.Y.; Dai, Q.G.; Huo, Z.Y. A better root morpho-physiology after heading contributing to yield superiority of japonica/indica hybrid rice. Field Crops Res. 2018, 228, 135–146. [Google Scholar] [CrossRef]
- Xu, G.W.; Lu, D.K.; Wang, H.Z.; Li, Y.J. Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate. Agric. Water Manag. 2018, 203, 385–394. [Google Scholar] [CrossRef]
- Wei, H.; Hu, L.; Zhu, Y.; Xu, D.; Zheng, L.; Chen, Z.; Hu, Y.; Cui, P.; Guo, B.; Dai, Q. Different characteristics of nutrient absorption and utilization between inbred japonica super rice and inter-sub-specific hybrid super rice. Field Crops Res. 2018, 218, 88–96. [Google Scholar] [CrossRef]
- Huang, G.B.; Chen, W.; Li, F.R. Rainfed farming systems in the loess plateau of China. In Rainfed Farming Systems; Springer: Berlin/Heidelberg, Germany, 2011; pp. 643–669. [Google Scholar]
- Yang, Y.J.; Lei, T.; Du, W.; Liang, C.L.; Li, H.D.; Lv, J.L. Substituting chemical fertilizer nitrogen with organic manure and comparing their nitrogen use efficiency and winter wheat yield. Agric. Sci. 2020, 158, 262–268. [Google Scholar] [CrossRef]
- Guan, R.; Pan, H.; He, W.; Sun, M.J.; Wang, H.; Cui, X.M.; Lou, Y.H.; Zhuge, Y.P. Fertilizer recommendation for foxtail millet based on yield response and nutrient accumulation. Plant Nutr. 2022, 45, 332–345. [Google Scholar] [CrossRef]
- Jiang, D.; Hengsdijk, H.; Dai, T.B.; de Boer, W.; Qi, J.; Cao, W.X. Long-term effects of manure and inorganic fertilizers on yield and soil fertility for a winter wheat-maize system in jiangsu, China. Pedosphere 2006, 16, 25–32. [Google Scholar] [CrossRef]
- Cai, A.D.; Xu, M.G.; Wang, B.R.; Zhang, W.J.; Liang, G.P.; Hou, E.Q.; Luo, Y.Q. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil Tillage Res. 2019, 189, 168–175. [Google Scholar] [CrossRef]
- Yang, X.Y.; Li, P.R.; Zhang, S.L.; Sun, B.H.; Chen, X.P. Long-term-fertilization effects on soil organic carbon, physical properties, and wheat yield of a loess soil. Plant Nutr. Soil Sci. 2011, 174, 775–784. [Google Scholar] [CrossRef]
- Singh, P.; Boote, K.J.; Kadiyala, M.D.M.; Nedumaran, S.; Gupta, S.K.; Srinivas, K.; Bantilan, M.C.S. An assessment of yield gains under climate change due to genetic modification of pearl millet. Sci. Total Environ. 2017, 601, 1226–1237. [Google Scholar] [CrossRef] [PubMed]
- Nema, A.K.; Sankar, G.R.M.; Chauhan, S.P.S. Selection of superior tillage and fertilizer practices based on rainfall and soil moisture effects on pearl millet yield under semiarid inceptisols. Irrig. Drain. Eng. 2008, 134, 361–371. [Google Scholar] [CrossRef]
- Kilcher, L. How organic agriculture contributes to sustainable development. Agric. Res. Trop. Subtrop. Suppl. 2007, 89, 31–49. [Google Scholar]
- Moussa, A.A.; Mandozai, A.; Jin, Y.K.; Qu, J.; Zhang, Q.; Zhao, H.; Anwari, G.; Khalifa, M.A.S.; Lamboro, A.; Noman, M. Genome-wide association screening and verification of potential genes associated with root architectural traits in maize (Zea mays L.) at multiple seedling stages. Bmc Genom. 2021, 22, 1–19. [Google Scholar] [CrossRef]
- Kumar, A.; Mishra, V.N.; Srivastav, L.K.; Banwasi, R. Evaluations of soil fertility status of available major nutrients (N, P & K) and micro nutrients (Fe, Mn, Cu & Zn) in vertisol of Kabeerdham district of Chhat tisgarh, India. Int. J. Interdiscip. Multidiscip. Stud. 2014, 1, 72–79. [Google Scholar]
- Vanlauwe, B.; Kihara, J.; Chivenge, P.; Pypers, P.; Coe, R.; Six, J. Agronomic use efficiency of n fertilizer in maize-based systems in sub-saharan africa within the context of integrated soil fertility management. Plant Soil 2011, 339, 35–50. [Google Scholar] [CrossRef]
- Alishahi, F.; Alikhani, H.A.; Khoshkholgh-Sima, N.A.; Etesami, H. Mining the roots of various species of the halophyte suaeda for halotolerant nitrogen-fixing endophytic bacteria with the potential for promoting plant growth. Int. Microbiol. 2020, 23, 415–427. [Google Scholar] [CrossRef]
- Ibrahim, A.; Abaidoo, R.C.; Fatondji, D.; Opoku, A. Determinants of fertilizer microdosing-induced yield increment of pearl millet on an acid sandy soil. Exp. Agric. 2016, 52, 562–578. [Google Scholar] [CrossRef]
- Adekiya, A.; Agbede, T.; Aboyeji, C.; Dunsin, O.; Simeon, V. Effects of biochar and poultry manure on soil characteristics and the yield of radish. Sci. Hortic. 2019, 243, 457–463. [Google Scholar] [CrossRef]
- Dordas, C. Nutrient management perspectives in conservation agriculture. In Conservation Agriculture; Springer: Berlin/Heidelberg, Germany, 2015; pp. 79–107. [Google Scholar]
- Lanna, N.B.; Silva, P.N.L.; Colombari, L.F.; Corrêa, C.V.; Cardoso, A.I.I. Residual effect of organic fertilization on radish production. Hortic. Bras. 2018, 36, 47–53. [Google Scholar] [CrossRef]
- Nkoa, R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agron. Sustain. Dev. 2014, 34, 473–492. [Google Scholar] [CrossRef]
- Leblanc, V.; Vanasse, A.; Belanger, G.; Seguin, P. Sweet pearl millet yields and nutritive value as influenced by fertilization and harvest dates. Agronomy 2012, 104, 542–549. [Google Scholar] [CrossRef]
- Xie, J.H.; Wang, L.L.; Li, L.L.; Anwar, S.; Luo, Z.Z.; Fudjoe, S.k.; Meng, H.F. Optimal nitrogen rate increases water and nitrogen use efficiencies of maize under fully mulched ridge–furrow system on the loess plateau. Agriculture 2022, 12, 1799. [Google Scholar] [CrossRef]
- Masud, A.A.C.; Karim, M.F.; Bhuyan, M.H.M.B.; Al Mahmud, J.; Nahar, K.; Fujita, M.; Hasanuzzaman, M. Potassium-induced regulation of cellular antioxidant defense and improvement of physiological processes in wheat under water deficit condition. Phyton-Int. J. Exp. Bot. 2021, 90, 353–372. [Google Scholar]
- Mehrabi, F.; Sepaskhah, A.R.; Ahmadi, S.H. Winter wheat root distribution with irrigation, planting methods, and nitrogen application. Nutr. Cycl. Agroecosystems 2021, 119, 231–245. [Google Scholar] [CrossRef]
- Parizad, S.; Bera, S. The effect of organic farming on water reusability, sustainable ecosystem, and food toxicity. Environ. Sci. Pollut. Res. 2023, 30, 71665–71676. [Google Scholar] [CrossRef]
- Meng, X.P.; Lian, Y.H.; Liu, Q.; Zhang, P.; Jia, Z.K.; Han, Q.F. Optimizing the planting density under the ridge and furrow rainwater harvesting system to improve crop water productivity for foxtail millet in semiarid areas. Agric. Water Manag. 2020, 238, 106220. [Google Scholar] [CrossRef]
- Zhai, L.; Wang, Z.; Zhai, Y.; Zhang, L.; Zheng, M.; Yao, H.; Lv, L.; Shen, H.; Zhang, J.; Yao, Y. Partial substitution of chemical fertilizer by organic fertilizer benefits grain yield, water use efficiency, and economic return of summer maize. Soil Tillage Res. 2022, 217, 105287. [Google Scholar] [CrossRef]
- Lian, Y.; Ali, S.; Zhang, X.; Wang, T.; Liu, Q.; Jia, Q.; Jia, Z.; Han, Q. Nutrient and tillage strategies to increase grain yield and water use efficiency in semi-arid areas. Agric. Water Manag. 2016, 178, 137–147. [Google Scholar] [CrossRef]
- Adebayo, A.R.; Kutu, F.R.; Sebetha, E.T. Data on root system architecture of water efficient maize as affected by different nitrogen fertilizer rates and plant density. Data Brief 2020, 30, 105561. [Google Scholar] [CrossRef] [PubMed]
Treatment | N | P2O5 | Organic Manure * | Microbial Manure * |
---|---|---|---|---|
N45 | 45 | 0 | 0 | 0 |
N60P30 | 60 | 30 | 0 | 0 |
N90P45 | 90 | 45 | 0 | 0 |
N60P40–O | 60 | 40 | 2000 | 0 |
N60P40–M | 60 | 40 | 0 | 5 |
Treatment | Spike Length/ (cm) | Spike Diameter/ (cm) | Weight per Spike/(g) | Grain Weight per Spike/(g) | 1000-Grain Weight/(g) |
---|---|---|---|---|---|
N45 | 20.5 ± 3.2 a | 2.7 ± 0.2 ab | 19.5 ± 3.6 b | 15.7 ± 3.0 b | 3.0 ± 0.1 a |
N60P30 | 21.1 ± 1.7 a | 2.4 ± 0.5 b | 30.7 ± 2.4 a | 25.1 ± 2.2 a | 3.1 ± 0.2 a |
N90P45 | 22.9 ± 1.6 a | 2.8 ± 0.1 ab | 29.8 ± 5.5 a | 24.2 ± 4.7 a | 3.2 ± 0.1 a |
N60P40–O | 21.4 ± 2.1 a | 2.6 ± 0.3 ab | 24.0 ± 2.6 ab | 19.4 ± 2.5 ab | 3.1 ± 0.1 a |
N60P40–M | 23.6 ± 0.9 a | 3.1 ± 0.3 a | 22.3 ± 7.0 ab | 17.7 ± 5.6 ab | 3.1 ± 0.2 a |
Treatment | Water Consumption/(mm) | Yield/(103 kg·hm−2) | WUE/(kg·hm−2·mm−1) | |||
---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | |
N45 | 544.3 | 492.2 | 2.6 ± 0.2 b | 2.8 ± 0.6 b | 4.8 ± 0.4 b | 5.7 ± 1.1 b |
N60P30 | 537.4 | 491.9 | 3.4 ± 0.9 ab | 4.5 ± 0.4 a | 6.4 ± 1.7 ab | 9.2 ± 0.8 a |
N90P45 | 520..2 | 492.9 | 4.0 ± 0.6 a | 4.4 ± 0.9 a | 7.7 ± 1.1 a | 8.8 ± 1.7 a |
N60P40–O | 538.2 | 492.7 | 3.1 ± 0.5 ab | 3.5 ± 0.4 ab | 5.7 ± 0.9 b | 7.1 ± 0.9 ab |
N60P40–M | 518.7 | 492.4 | 3.2 ± 0.8 ab | 3.2 ± 1.0 ab | 6.2 ± 1.5 ab | 6.5 ± 2.1 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, T.; Zhang, H.; Liu, Q.; Wei, L.; Wang, X. Effects of Fertilizer Application Patterns on Foxtail Millet Root Morphological Construction and Yield Formation during the Reproductive Stage in the Loess Plateau of China. Agronomy 2023, 13, 2847. https://doi.org/10.3390/agronomy13112847
Zhou T, Zhang H, Liu Q, Wei L, Wang X. Effects of Fertilizer Application Patterns on Foxtail Millet Root Morphological Construction and Yield Formation during the Reproductive Stage in the Loess Plateau of China. Agronomy. 2023; 13(11):2847. https://doi.org/10.3390/agronomy13112847
Chicago/Turabian StyleZhou, Tianyou, Huaping Zhang, Qinhui Liu, Lichao Wei, and Xiaolin Wang. 2023. "Effects of Fertilizer Application Patterns on Foxtail Millet Root Morphological Construction and Yield Formation during the Reproductive Stage in the Loess Plateau of China" Agronomy 13, no. 11: 2847. https://doi.org/10.3390/agronomy13112847
APA StyleZhou, T., Zhang, H., Liu, Q., Wei, L., & Wang, X. (2023). Effects of Fertilizer Application Patterns on Foxtail Millet Root Morphological Construction and Yield Formation during the Reproductive Stage in the Loess Plateau of China. Agronomy, 13(11), 2847. https://doi.org/10.3390/agronomy13112847