Assessing Soil Biodiversity Potentials in China: A Multi-Attribute Decision Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Approach
2.2. Study Area
2.3. Data Source and Preprocessing
2.4. Construction of the DEX Multi-Attribute Decision Model
2.4.1. Indicator Soil Biota and Their Diversity Drivers
2.4.2. Attribute Tree and the Relative Importance of Attributes
2.4.3. Attributes’ Scales
2.4.4. Expert Consultation for Model Optimization
2.4.5. Decision Rules
2.5. Attribute Mapping
2.6. Spatial Analysis
3. Results
3.1. The Decision Rules of the DEX Multi-Attribute Decision Model
3.2. Habitat Suitability Maps of Four Soil Taxa in China
3.3. Map of Soil Biodiversity Potentials in China
3.4. Spatial Pattern Characteristics and Priority Areas of Soil Biodiversity Potentials in China
4. Verification
5. Discussion
5.1. New Knowledge in Soil Biogeography Develops the Soil Biodiversity Assessment at Large Spatial Scales
5.2. Soil Biogeography Knowledge Applied to the DEX Multi-Attribute Decision Model
5.3. Application of the Map of Soil Biodiversity Potentials at the National Scale
- In the Yangtze Plain and Pearl River Delta, explore the symbiotic development of intensive agricultural production and biodiversity in densely populated areas;
- In the Jiangnan Hills and Southeast Coastal Hills, establish a long-term monitoring network of forest soil biodiversity to maintain a high level of soil biodiversity;
- In the Eastern Sichuan Hills and Guizhou–Guangxi Karst Hills, conduct SBP risk assessment on farmland to jointly conserve soil biodiversity;
- In the Gansu–Xinjiang Region and Qaidam Basin, given the low SBP baseline conditions in northwest arid areas, moderately cultivate native vegetation to prevent deterioration of the soil ecological environment.
5.4. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, R.; Wang, C.; Sun, B. Soil related scientific and technological problems in implementing strategy of “Storing Grain in Land and Technology”. Bull. Chin. Acad. Sci. 2018, 33, 135–144. [Google Scholar] [CrossRef]
- Tang, H.; Sang, L.; Yun, W. China’s cultivated land balance policy implementation dilemma and direction of scientific and technological innovation. Bull. Chin. Acad. Sci. 2020, 35, 637–644. [Google Scholar] [CrossRef]
- Xu, M.; Lu, C.; Zhang, W.; Li, l.; Duan, Y. Situation of the quality of arable land in China and improvement strategy. Chin. J. Agric. Resour. Reg. Plan. 2016, 37, 8–14. [Google Scholar] [CrossRef]
- Zhou, J. Evolution of soil quality and sustainable use of soil resources in China. Bull. Chin. Acad. Sci. 2015, 30, 459–467. [Google Scholar] [CrossRef]
- Wu, K.; Yang, Q.; Zhao, R. A discussion on soil health assessment of arable land in China. Acta Pedol. Sin. 2021, 58, 537–544. [Google Scholar] [CrossRef]
- Helming, K.; Daedlow, K.; Paul, C.; Techen, A.-K.; Bartke, S.; Bartkowski, B.; Kaiser, D.; Wollschläger, U.; Vogel, H.-J. Managing soil functions for a sustainable bioeconomy—Assessment framework and state of the art. Land Degrad. Dev. 2018, 29, 3112–3126. [Google Scholar] [CrossRef]
- Vogel, H.J.; Bartke, S.; Daedlow, K.; Helming, K.; Kögel-Knabner, I.; Lang, B.; Rabot, E.; Russell, D.; Stößel, B.; Weller, U.; et al. A systemic approach for modeling soil functions. Soil 2018, 4, 83–92. [Google Scholar] [CrossRef]
- Schulte, R.P.O.; Creamer, R.E.; Donnellan, T.; Farrelly, N.; Fealy, R.; O’Donoghue, C.; O’hUallachain, D. Functional land management: A framework for managing soil-based ecosystem services for the sustainable intensification of agriculture. Environ. Sci. Policy 2014, 38, 45–58. [Google Scholar] [CrossRef]
- Bardgett, R.D.; van der Putten, W.H. Belowground biodiversity and ecosystem functioning. Nature 2014, 515, 505–511. [Google Scholar] [CrossRef]
- Lavelle, P.; Decaëns, T.; Aubert, M.; Barot, S.; Blouin, M.; Bureau, F.; Margerie, P.; Mora, P.; Rossi, J.P. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 2006, 42, S3–S15. [Google Scholar] [CrossRef]
- Wagg, C.; Bender, S.F.; Widmer, F.; van der Heijden, M.G.A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. USA 2014, 111, 5266–5270. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef]
- McBratney, A.; Field, D.J.; Koch, A. The dimensions of soil security. Geoderma 2014, 213, 203–213. [Google Scholar] [CrossRef]
- Orgiazzi, A.; Panagos, P.; Fernández-Ugalde, O.; Wojda, P.; Labouyrie, M.; Ballabio, C.; Franco, A.; Pistocchi, A.; Montanarella, L.; Jones, A. LUCAS Soil Biodiversity and LUCAS Soil Pesticides, new tools for research and policy development. Eur. J. Soil Sci. 2022, 73, e13299. [Google Scholar] [CrossRef]
- Jeffery, S.; Gardi, C.; Jones, A.; Montanarella, L.; Marmo, L.; Miko, L.; Ritz, K.; Peres, G.; Römbke, J.; van der Putten, W.H. European Atlas of Soil Biodiversity; European Commission, Publications Office of the European Union: Luxembourg, 2010. [Google Scholar]
- Orgiazzi, A.; Bardgett, R.D.; Barrios, E.; Behan-Pelletier, V.; Briones, M.J.I.; Chotte, J.-L.; De Deyn, G.B.; Eggleton, P.; Fierer, N.; Fraser, T.; et al. Global Soil Biodiversity Atlas; European Commission, Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Greiner, L.; Keller, A.; Grêt-Regamey, A.; Papritz, A. Soil function assessment: Review of methods for quantifying the contributions of soils to ecosystem services. Land Use Policy 2017, 69, 224–237. [Google Scholar] [CrossRef]
- Vogel, H.J.; Eberhardt, E.; Franko, U.; Lang, B.; Liess, M.; Weller, U.; Wiesmeier, M.; Wollschlager, U. Quantitative evaluation of soil functions: Potential and state. Front. Environ. Sci. 2019, 7, 164. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, K.; Feng, Z.; Zhao, R.; Zhang, X.; Li, X. Soil quality assessment on large spatial scales: Advancement and revelation. Acta Pedol. Sin. 2020, 57, 565–579. [Google Scholar] [CrossRef]
- Rutgers, M.; van Leeuwen, J.P.; Vrebos, D.; van Wijnen, H.J.; Schouten, T.; de Goede, R.G.M. Mapping soil biodiversity in Europe and the Netherlands. Soil Syst. 2019, 3, 39. [Google Scholar] [CrossRef]
- van Leeuwen, J.P.; Creamer, R.E.; Cluzeau, D.; Debeljak, M.; Gatti, F.; Henriksen, C.B.; Kuzmanovski, V.; Menta, C.; Pérès, G.; Picaud, C.; et al. Modeling of soil functions for assessing soil quality: Soil biodiversity and habitat provisioning. Front. Environ. Sci. 2019, 7, 113. [Google Scholar] [CrossRef]
- Aksoy, E.; Louwagie, G.; Gardi, C.; Gregor, M.; Schröder, C.; Löhnertz, M. Assessing soil biodiversity potentials in Europe. Sci. Total Environ. 2017, 589, 236–249. [Google Scholar] [CrossRef]
- Tedersoo, L.; Bahram, M.; Põlme, S.; Kõljalg, U.; Yorou, N.S.; Wijesundera, R.; Ruiz, L.V.; Vasco-Palacios, A.M.; Thu, P.Q.; Suija, A.; et al. Global diversity and geography of soil fungi. Science 2014, 346, 1256688. [Google Scholar] [CrossRef] [PubMed]
- Větrovský, T.; Morais, D.; Kohout, P.; Lepinay, C.; Algora, C.; Awokunle Hollá, S.; Bahnmann, B.D.; Bílohnědá, K.; Brabcová, V.; D’Alò, F.; et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci. Data 2020, 7, 228. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Baquerizo, M.; Oliverio, A.M.; Brewer, T.E.; Benavent-González, A.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh, B.K.; Fierer, N. A global atlas of the dominant bacteria found in soil. Science 2018, 359, 320–325. [Google Scholar] [CrossRef]
- Van den Hoogen, J.; Geisen, S.; Routh, D.; Ferris, H.; Traunspurger, W.; Wardle, D.A.; de Goede, R.G.M.; Adams, B.J.; Ahmad, W.; Andriuzzi, W.S.; et al. Soil nematode abundance and functional group composition at a global scale. Nature 2019, 572, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Van den Hoogen, J.; Geisen, S.; Wall, D.H.; Wardle, D.A.; Traunspurger, W.; de Goede, R.G.M.; Adams, B.J.; Ahmad, W.; Ferris, H.; Bardgett, R.D.; et al. A global database of soil nematode abundance and functional group composition. Sci. Data 2020, 7, 103. [Google Scholar] [CrossRef] [PubMed]
- Phillips, H.R.P.; Guerra, C.A.; Bartz, M.L.C.; Briones, M.J.I.; Brown, G.; Crowther, T.W.; Ferlian, O.; Gongalsky, K.B.; van den Hoogen, J.; Krebs, J.; et al. Global distribution of earthworm diversity. Science 2019, 366, 480–485. [Google Scholar] [CrossRef]
- Arrouays, D.; Grundy, M.G.; Hartemink, A.E.; Hempel, J.W.; Heuvelink, G.B.M.; Hong, S.Y.; Lagacherie, P.; Lelyk, G.; McBratney, A.B.; McKenzie, N.J.; et al. GlobalSoilMap: Toward a fine-resolution global grid of soil properties. Adv. Agron. 2014, 125, 93–134. [Google Scholar] [CrossRef]
- Chen, S.C.; Arrouays, D.; Leatitia Mulder, V.; Poggio, L.; Minasny, B.; Roudier, P.; Libohova, Z.; Lagacherie, P.; Shi, Z.; Hannam, J.; et al. Digital mapping of GlobalSoilMap soil properties at a broad scale: A review. Geoderma 2022, 409, 115567. [Google Scholar] [CrossRef]
- Liu, F.; Wu, H.Y.; Zhao, Y.G.; Li, D.; Yang, J.-L.; Song, X.; Shi, Z.; Zhu, A.X.; Zhang, G.-L. Mapping high resolution National Soil Information Grids of China. Sci. Bull. 2022, 67, 328–340. [Google Scholar] [CrossRef]
- Poggio, L.; de Sousa, L.M.; Batjes, N.H.; Heuvelink, G.B.M.; Kempen, B.; Ribeiro, E.; Rossiter, D. SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. Soil 2021, 7, 217–240. [Google Scholar] [CrossRef]
- FAO; IIASA. Harmonized World Soil Database Version 2.0; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Köninger, J.; Panagos, P.; Jones, A.; Briones, M.J.I.; Orgiazzi, A. In defence of soil biodiversity: Towards an inclusive protection in the European Union. Biol. Conserv. 2022, 268, 109475. [Google Scholar] [CrossRef]
- Bohanec, M. DEX (Decision EXpert): A qualitative hierarchical multi-criteria method. In Multiple Criteria Decision Making: Techniques, Analysis and Applications; Kulkarni, A.J., Ed.; Springer: Singapore, 2022; pp. 39–78. [Google Scholar]
- Bohanec, M.; Žnidaržič, M.; Rajkovič, V.; Bratko, I.; Zupan, B. DEX methodology: Three decades of qualitative multi-attribute modeling. Informatica 2013, 37, 49–54. [Google Scholar]
- Bampa, F.; O’Sullivan, L.; Madena, K.; Sandén, T.; Spiegel, H.; Henriksen, C.B.; Ghaley, B.B.; Jones, A.; Staes, J.; Sturel, S.; et al. Harvesting European knowledge on soil functions and land management using multi-criteria decision analysis. Soil Use Manag. 2019, 35, 6–20. [Google Scholar] [CrossRef]
- Debeljak, M.; Trajanov, A.; Kuzmanovski, V.; Schröder, J.; Sandén, T.; Spiegel, H.; Wall, D.P.; Van de Broek, M.; Rutgers, M.; Bampa, F.; et al. A field-scale decision support system for assessment and management of soil functions. Front. Environ. Sci. 2019, 7, 115. [Google Scholar] [CrossRef]
- FAO; ITPS; GSBI; CBD; EC. State of Knowledge of Soil Biodiversity—Status, Challenges and Potentialities; FAO, ITPS, GSBI, CBD and EC: Rome, Italy, 2020. [Google Scholar]
- Nationwide Committee of Agricultural Regionalization. Comprehensive Agricultural Regionalization of China; China Agriculture Press: Beijing, China, 1981. [Google Scholar]
- Xu, X.; Liu, J.; Zhang, S.; Li, R.; Yan, C.; Wu, S. China’s Multi-Period Land Use/Land Cover Remote Sensing Monitoring Dataset (CNLUCC). 2018. Available online: https://www.resdc.cn/DOI/doi.aspx?DOIid=54 (accessed on 1 June 2021).
- Zheng, J.; Bian, J.; Ge, Q.; Hao, Z.; Yin, Y.; Liao, Y. The climate regionalization in China for 1981–2010. Chin. Sci. Bull. 2013, 58, 3088–3099. [Google Scholar] [CrossRef]
- Bohanec, M.; Rajkovič, V. Multi-attribute decision modeling: Industrial applications of DEX. Informatica 1999, 23, 487–491. [Google Scholar]
- Bohanec, M.; Rajkovič, V.; Jereb, E.; Rajkovič, U.; Vintar, Z. DEXi: A Program for Multi-Attribute Decision Making, Version 5.05. Available online: https://kt.ijs.si/MarkoBohanec/dexi.html (accessed on 1 June 2021).
- Větrovský, T.; Kohout, P.; Kopecký, M.; Machac, A.; Man, M.; Bahnmann, B.D.; Brabcová, V.; Choi, J.; Meszárošová, L.; Human, Z.R.; et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 2019, 10, 5142. [Google Scholar] [CrossRef]
- Turbé, A.; de Toni, A.; Benito, P.; Lavelle, P.; Lavelle, P.; Ruiz Camacho, N.; van Der Putten, W.H.; Labouze, E.; Mudgal, S. Soil Biodiversity: Functions, Threats and Tools for Policy Makers; HAL: Paris, France, 2010. [Google Scholar]
- Luan, L.; Jiang, Y.; Dini-Andreote, F.; Crowther, T.W.; Li, P.; Bahram, M.; Zheng, J.; Xu, Q.; Zhang, X.-X.; Sun, B. Integrating pH into the metabolic theory of ecology to predict bacterial diversity in soil. Proc. Natl. Acad. Sci. USA 2023, 120, e2207832120. [Google Scholar] [CrossRef]
- Xue, P.; Minasny, B.; McBratney, A.; Pino, V.; Fajardo, M.; Luo, Y. Distribution of soil bacteria involved in C cycling across extensive environmental and pedogenic gradients. Eur. J. Soil Sci. 2023, 74, e13337. [Google Scholar] [CrossRef]
- Luan, L.; Jiang, Y.; Cheng, M.; Dini-Andreote, F.; Sui, Y.; Xu, Q.; Geisen, S.; Sun, B. Organism body size structures the soil microbial and nematode community assembly at a continental and global scale. Nat. Commun. 2020, 11, 6406. [Google Scholar] [CrossRef]
- Stone, D.; Costa, D.; Daniell, T.J.; Mitchell, S.M.; Topp, C.F.E.; Griffiths, B.S. Using nematode communities to test a European scale soil biological monitoring programme for policy development. Appl. Soil Ecol. 2016, 97, 78–85. [Google Scholar] [CrossRef]
- Blouin, M.; Hodson, M.E.; Delgado, E.A.; Baker, G.; Brussaard, L.; Butt, K.R.; Dai, J.; Dendooven, L.; Peres, G.; Tondoh, J.E.; et al. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 2013, 64, 161–182. [Google Scholar] [CrossRef]
- Pulleman, M.; Creamer, R.; Hamer, U.; Helder, J.; Pelosi, C.; Pérès, G.; Rutgers, M. Soil biodiversity, biological indicators and soil ecosystem services—An overview of European approaches. Curr. Opin. Environ. Sustain. 2012, 4, 529–538. [Google Scholar] [CrossRef]
- Bohanec, M. DEXi: Program for Multi-Attribute Decision Making, User’s Manual; IJS Report DP-13100; Jožef Stefan Institute: Ljubljana, Slovenia, 2021. [Google Scholar]
- Cliff, A.D.; Ord, J.K. Spatial Autocorrelation; Pion: London, UK, 1973. [Google Scholar]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local spatial autocorrelation statistics: Distributional Issues and an application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Briones, M.J.I.; Schmidt, O. Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta-analysis. Glob. Chang. Biol. 2017, 23, 4396–4419. [Google Scholar] [CrossRef]
- Creamer, R.E.; Hannula, S.E.; Leeuwen, J.P.V.; Stone, D.; Rutgers, M.; Schmelz, R.M.; Ruiter, P.C.d.; Hendriksen, N.B.; Bolger, T.; Bouffaud, M.L.; et al. Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe. Appl. Soil Ecol. 2016, 97, 112–124. [Google Scholar] [CrossRef]
- Rutgers, M.; Schouten, A.J.; Bloem, J.; Van Eekeren, N.; De Goede, R.G.M.; Jagersop Akkerhuis, G.A.J.M.; Van der Wal, A.; Mulder, C.; Brussaard, L.; Breure, A.M. Biological measurements in a nationwide soil monitoring network. Eur. J. Soil Sci. 2009, 60, 820–832. [Google Scholar] [CrossRef]
- Siebert, J.; Ciobanu, M.; Schädler, M.; Eisenhauer, N. Climate change and land use induce functional shifts in soil nematode communities. Oecologia 2020, 192, 281–294. [Google Scholar] [CrossRef]
- Spurgeon, D.J.; Keith, A.M.; Schmidt, O.; Lammertsma, D.R.; Faber, J.H. Land-use and land-management change: Relationships with earthworm and fungi communities and soil structural properties. BMC Ecol. 2013, 13, 46. [Google Scholar] [CrossRef]
- Tsiafouli, M.A.; Thébault, E.; Sgardelis, S.P.; de Ruiter, P.C.; van der Putten, W.H.; Birkhofer, K.; Hemerik, L.; de Vries, F.T.; Bardgett, R.D.; Brady, M.V.; et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Chang. Biol. 2015, 21, 973–985. [Google Scholar] [CrossRef] [PubMed]
- Van Leeuwen, J.P.; Djukic, I.; Bloem, J.; Lehtinen, T.; Hemerik, L.; de Ruiter, P.C.; Lair, G.J. Effects of land use on soil microbial biomass, activity and community structure at different soil depths in the Danube floodplain. Eur. J. Soil Biol. 2017, 79, 14–20. [Google Scholar] [CrossRef]
- Xue, P.; Minasny, B.; McBratney, A.B. Land-use affects soil microbial co-occurrence networks and their putative functions. Appl. Soil Ecol. 2022, 169, 104184. [Google Scholar] [CrossRef]
- James, S.W.; Csuzdi, C.; Chang, C.-H.; Aspe, N.M.; Jiménez, J.J.; Feijoo, A.; Blouin, M.; Lavelle, P. Comment on “Global distribution of earthworm diversity”. Science 2021, 371, eabe4629. [Google Scholar] [CrossRef]
- Chu, H.Y.; Gao, G.-F.; Ma, Y.Y.; Fan, K.; Delgado-Baquerizo, M. Soil microbial biogeography in a changing world: Recent advances and future perspectives. mSystems 2020, 5, e00803–e00819. [Google Scholar] [CrossRef]
- Lemanceau, P.; Creamer, R.; Griffiths, B.S. Soil biodiversity and ecosystem functions across Europe: A transect covering variations in bio-geographical zones, land use and soil properties. Appl. Soil Ecol. 2016, 97, 1–2. [Google Scholar] [CrossRef]
- Griffiths, B.S.; Rombke, J.; Schmelz, R.M.; Scheffczyk, A.; Faber, J.H.; Bloem, J.; Peres, G.; Cluzeau, D.; Chabbi, A.; Suhadolc, M.; et al. Selecting cost effective and policy-relevant biological indicators for European monitoring of soil biodiversity and ecosystem function. Ecol. Indic. 2016, 69, 213–223. [Google Scholar] [CrossRef]
- Ritz, K.; Black, H.I.J.; Campbell, C.D.; Harris, J.A.; Wood, C. Selecting biological indicators for monitoring soils: A framework for balancing scientific and technical opinion to assist policy development. Ecol. Indic. 2009, 9, 1212–1221. [Google Scholar] [CrossRef]
- Stone, D.; Ritz, K.; Griffiths, B.G.; Orgiazzi, A.; Creamer, R.E. Selection of biological indicators appropriate for European soil monitoring. Appl. Soil Ecol. 2016, 97, 12–22. [Google Scholar] [CrossRef]
- van Leeuwen, J.P.; Saby, N.P.A.; Jones, A.; Louwagie, G.; Micheli, E.; Rutgers, M.; Schulte, R.P.O.; Spiegel, H.; Toth, G.; Creamer, R.E. Gap assessment in current soil monitoring networks across Europe for measuring soil functions. Environ. Res. Lett. 2017, 12, 124007. [Google Scholar] [CrossRef]
- Gardi, C.; Jeffery, S.; Saltelli, A. An estimate of potential threats levels to soil biodiversity in EU. Glob. Chang. Biol. 2013, 19, 1538–1548. [Google Scholar] [CrossRef] [PubMed]
- Dequiedt, S.; Saby, N.P.A.; Lelievre, M.; Jolivet, C.; Thioulouse, J.; Toutain, B.; Arrouays, D.; Bispo, A.; Lemanceau, P.; Ranjard, L. Biogeographical patterns of soil molecular microbial biomass as influenced by soil characteristics and management. Glob. Ecol. Biogeogr. 2011, 20, 641–652. [Google Scholar] [CrossRef]
- Griffiths, R.I.; Thomson, B.C.; Plassart, P.; Gweon, H.S.; Stone, D.; Creamer, R.E.; Lemanceau, P.; Bailey, M.J. Mapping and validating predictions of soil bacterial biodiversity using European and national scale datasets. Appl. Soil Ecol. 2016, 97, 61–68. [Google Scholar] [CrossRef]
- Rutgers, M.; Orgiazzi, A.; Gardi, C.; Römbke, J.; Jänsch, S.; Keith, A.M.; Neilson, R.; Boag, B.; Schmidt, O.; Murchie, A.K.; et al. Mapping earthworm communities in Europe. Appl. Soil Ecol. 2016, 97, 98–111. [Google Scholar] [CrossRef]
- Terrat, S.; Horrigue, W.; Dequietd, S.; Saby, N.P.A.; Lelièvre, M.; Nowak, V.; Tripied, J.; Régnier, T.; Jolivet, C.; Arrouays, D.; et al. Mapping and predictive variations of soil bacterial richness across France. PLoS ONE 2017, 12, e0186766. [Google Scholar] [CrossRef]
- Jenny, H. Factors of soil formation. Soil Sci. 1941, 52, 415. [Google Scholar] [CrossRef]
- McBratney, A.B.; Mendonça Santos, M.L.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Liang, Y.T.; Xiao, X.; Nuccio, E.E.; Yuan, M.; Zhang, N.; Xue, K.; Cohan, F.M.; Zhou, J.; Sun, B. Differentiation strategies of soil rare and abundant microbial taxa in response to changing climatic regimes. Environ. Microbiol. 2020, 22, 1327–1340. [Google Scholar] [CrossRef]
- Cameron, E.K.; Martins, I.S.; Lavelle, P.; Mathieu, J.; Tedersoo, L.; Gottschall, F.; Guerra, C.A.; Hines, J.; Patoine, G.; Siebert, J.; et al. Global gaps in soil biodiversity data. Nat. Ecol. Evol. 2018, 2, 1042–1043. [Google Scholar] [CrossRef]
- Pickett, S.T.A. Space-for-time substitution as an alternative to long-term studies. In Long-Term Studies in Ecology: Approaches and Alternatives; Springer: New York, NY, USA, 1989; pp. 110–135. [Google Scholar]
Types | Primary Drivers | Other Main Drivers | References |
---|---|---|---|
Fungal richness (0–5 cm) | Climate (Latitude, Mean annual precipitation) | Soil (pH, Calcium (CEC), Phosphorus) | [23] |
Fungal diversity (0–5 cm) | Climate (Temperature, Precipitation) | Soil (Bulk density, pH), Plant | [45] |
Bacterial abundance (0–5 cm) | Soil (pH) | Climate (Aridity Index, Minimum and maximum temperature, Precipitation, Mean diurnal temperature range), UV light, Net primary productivity, Soil (SOC, Nitrogen, Phosphorus, C/N ratio, Clay + silt), Land use (Forest, Grassland) | [25] |
Nematode abundance (0–15 cm) | Soil (SOC, CEC, pH) | Climate (Temperature, Precipitation) | [26] |
Earthworm diversity (0–30 cm) | Climate (Precipitation, Temperature) | Soil (pH, SOC, Clay, Silt, CEC), Plant | [28] |
Consulted Modules | Number of Experts’ Comments | ||
---|---|---|---|
The relative importance of attributes | Global | Soil biodiversity potentials | 4 |
Local | Fungal richness | 7 | |
Bacterial abundance | 6 | ||
Nematode abundance | 3 | ||
Earthworm diversity | 5 | ||
The scales of soil biological habitat suitability attributes | Global | Reclassification of spatial data | 2 |
Local | Fungal richness | 5 | |
Bacterial abundance | 6 | ||
Nematode abundance | 2 | ||
Earthworm diversity | 4 | ||
Total | 44 |
The Relative Importance Scores of the Attributes | The Weights of the Attributes |
---|---|
3:2:2:2 | 36% 21% 21% 21% |
3:2:1 | 42% 39% 19% |
3:2 | 67% 33% |
2:1:1 | 50% 25% 25% |
2:1 | 67% 33% |
1:1:1:1 | 25% 25% 25% 25% |
1:1:1 | 33% 33% 33% |
1:1 | 50% 50% |
Agricultural Regions | Agricultural Subregions | High Potential (km2) | Medium–High Potential (km2) | Medium Potential (km2) | Medium–Low Potential (km2) | Low Potential (km2) | Total Coverage (km2) |
---|---|---|---|---|---|---|---|
VI Southwest China | VI1 Qinling-Daba Mountains | 77,616 | 83,373 | 18,520 | 759 | 0 | 180,268 |
VI3 Chongqing-Hubei-Hunan-Guizhou Border Mountainous | 40,274 | 146,119 | 21 | 0 | 0 | 186,414 | |
VI2 Sichuan Basin | 32,440 | 133,759 | 3293 | 0 | 0 | 169,492 | |
VI5 Sichuan-Yunnan Plateau (Mountainous) | 49,631 | 201,715 | 11,833 | 0 | 0 | 263,179 | |
VI4 Guizhou-Guangxi Plateau (Mountainous) | 18,648 | 144,291 | 523 | 0 | 0 | 163,462 | |
V Yangtze Plain | V2 Hubei-Henan-Anhui Plain (Mountainous) | 37,409 | 41,911 | 1362 | 0 | 0 | 80,682 |
V3 Middle Yangtze Plain | 26,017 | 81,989 | 52 | 0 | 0 | 108,058 | |
V1 Lower Yangtze Plain (Hills) | 30,621 | 80,059 | 14,173 | 46 | 0 | 124,899 | |
V4 Jiangnan Hills (Mountainous) | 4595 | 264,499 | 323 | 0 | 0 | 269,417 | |
V6 Nanling Hills (Mountainous) | 1920 | 168,395 | 471 | 0 | 0 | 170,786 | |
V5 Zhejiang-Fujian Hills (Mountainous) | 700 | 131,270 | 591 | 0 | 0 | 132,561 | |
VII South China | VII3 Southern Yunnan | 15,420 | 141,697 | 134 | 0 | 0 | 157,251 |
VII2 Western Guangdong-Southern Guangxi | 7605 | 114,864 | 475 | 0 | 0 | 122,944 | |
VII5 Taiwan | 704 | 30,718 | 872 | 0 | 0 | 32,294 | |
VII1 Southern Fujian-Central Guangdong | 1146 | 100,478 | 2092 | 0 | 0 | 103,716 | |
VII4 Leizhou Peninsula and South China Sea Islands | 581 | 34,405 | 3285 | 0 | 0 | 38,271 | |
I Northeast China | I3 Changbai Mountains | 0 | 99,496 | 30,330 | 0 | 0 | 129,826 |
I1 Khingan Mountains | 0 | 207,023 | 91,854 | 2 | 0 | 298,879 | |
I2 Songneng-Sanjiang Plain | 0 | 238,639 | 67,247 | 39,199 | 12,873 | 357,958 | |
I4 Liaoning Plain (Hills) | 0 | 9634 | 113,698 | 5093 | 51 | 128,476 | |
III Huanghuaihai | III3 Huanghuai Plain | 39,310 | 19,480 | 36,740 | 156 | 0 | 95,686 |
III1 Yanshan-Taihang Mountains Foothills (Plain) | 0 | 11,091 | 56,382 | 67 | 0 | 67,540 | |
III4 Shandong Hills | 0 | 1674 | 76,359 | 22 | 0 | 78,055 | |
III2 Hebei-Shandong-Henan Low-lying Plain | 0 | 390 | 78,777 | 170 | 0 | 79,337 | |
IV Loess Plateau | IV1 Eastern Shanxi-Western Henan Hills (Mountainous) | 5 | 28,815 | 48,933 | 706 | 0 | 78,459 |
IV2 Fenwei Valley | 0 | 23,507 | 55,725 | 1539 | 0 | 80,771 | |
IV4 Central Gansu-Eastern Qinghai Hills | 0 | 20,978 | 11,403 | 60,216 | 2007 | 94,604 | |
IV3 Shanxi-Shaanxi-Gansu Loess Hills (Gullies) | 0 | 18,169 | 63,383 | 72,899 | 11,678 | 166,129 | |
IX Qinghai-Tibet | IX2 Sichuan-Tibet Border | 17,336 | 265,063 | 130,225 | 3760 | 0 | 416,384 |
IX1 Southern Tibet | 3693 | 44,562 | 74,530 | 80,248 | 3278 | 206,311 | |
IX4 Qinghai-Tibet Alpine | 0 | 252,014 | 107,274 | 540,028 | 188,378 | 1,087,694 | |
IX3 Qinghai-Gansu Border | 0 | 86,188 | 53,481 | 86,960 | 148,424 | 375,053 | |
II Inner Mongolia and the Great Wall | II3 Along the Great Wall | 0 | 27,439 | 78,377 | 55,466 | 1309 | 162,591 |
II2 South-central Inner Mongolia | 0 | 37,790 | 71,106 | 93,310 | 18,363 | 220,569 | |
II1 Northern Inner Mongolia | 0 | 48,317 | 68,101 | 155,774 | 37,238 | 309,430 | |
VIII Gansu-Xinjiang | VIII2 Northern Xinjiang | 0 | 77,396 | 39,612 | 216,594 | 100,427 | 434,029 |
VIII3 Southern Xinjiang | 0 | 17,113 | 10,806 | 317,093 | 806,586 | 1,151,598 | |
VIII1 Inner Mongolia-Ningxia-Gansu Border | 0 | 732 | 4154 | 164,303 | 436,749 | 605,938 |
Hot and Cold Spots (Agricultural Regions) | Dominant WRB Second Level Reference Soil Groups | Natural Conditions and Agricultural Characteristics |
---|---|---|
Hot spots | ||
V Yangtze Plain | ||
V2 Hubei-Henan-Anhui Plain (Mountainous) V3 Middle Yangtze Plain V4 Jiangnan Hills (Mountainous) V6 Nanling Hills (Mountainous) V5 Zhejiang-Fujian Hills (Mountainous) | Haplic Acrisols Plaggic-&Terric Anthrosols Acric Umbrisols Haplic Luvisols Haplic Alisols | Located in the subtropics, with an alternating distribution of plains, hills, and low to medium mountains; excellent water, heat, and soil conditions; developed agriculture, forestry, and fisheries; and high agricultural productivity. |
VI Southwest China | ||
VI3 Chongqing-Hubei-Hunan-Guizhou Border Mountainous VI4 Guizhou-Guangxi Plateau (Mountainous) | Haplic Alisols Haplic Luvisols Chromic Luvisols Acric Umbrisols Dystric Cambisols Plaggic-&Terric Anthrosols | Located in the subtropics, dominated by hilly mountains and plateaus, with complex topography; significant vertical differentiation in natural conditions and agricultural production; and a substantial agricultural and forestry production base. |
VII South China | ||
VII2 Western Guangdong-Southern Guangxi VII1 Southern Fujian-Central Guangdong | Ferric Acrisols Plaggic-&Terric Anthrosols Haplic Acrisols Haplic Luvisols | Located in the subtropics and tropics, with hilly and mountainous terrain; rich in water and heat resources, evergreen in all seasons; and suitable for tropical economic corps. |
Cold spots | ||
VIII Gansu-Xinjiang | ||
VIII2 Northern Xinjiang VIII3 Southern Xinjiang VIII1 Inner Mongolia-Ningxia-Gansu Border | Arenosols Leptic Cryosols Petric Gypsisols Eutric Leptosols Luvic Calcisols Calcic Gypsisols Brunic Arenosols Lixic-&Luvic Gypsisols | Located inland, most of it has an arid desert climate, with deficiencies in the coordination of light, heat, water and soil resources; mainly relies on oasis agriculture and wilderness grazing. |
IX Qinghai-Tibet | ||
IX3 Qinghai-Gansu Border | Leptic Cryosols Arenosols Mollic Leptosols Hypersalic Solonchaks Rendzic Leptosols Eutric Leptosols | Located in an alpine area with insufficient heat and low vegetation coverage, mainly composed of grasslands and desert grasslands, and has poor grazing tolerance. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Wollschläger, U.; Vogel, H.-J.; Liu, F.; Feng, Z.; Wu, K. Assessing Soil Biodiversity Potentials in China: A Multi-Attribute Decision Approach. Agronomy 2023, 13, 2822. https://doi.org/10.3390/agronomy13112822
Yang Q, Wollschläger U, Vogel H-J, Liu F, Feng Z, Wu K. Assessing Soil Biodiversity Potentials in China: A Multi-Attribute Decision Approach. Agronomy. 2023; 13(11):2822. https://doi.org/10.3390/agronomy13112822
Chicago/Turabian StyleYang, Qijun, Ute Wollschläger, Hans-Jörg Vogel, Feng Liu, Zhe Feng, and Kening Wu. 2023. "Assessing Soil Biodiversity Potentials in China: A Multi-Attribute Decision Approach" Agronomy 13, no. 11: 2822. https://doi.org/10.3390/agronomy13112822
APA StyleYang, Q., Wollschläger, U., Vogel, H. -J., Liu, F., Feng, Z., & Wu, K. (2023). Assessing Soil Biodiversity Potentials in China: A Multi-Attribute Decision Approach. Agronomy, 13(11), 2822. https://doi.org/10.3390/agronomy13112822