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Abstract: Habitat for biodiversity is a crucial soil function. When assessed at large spatial scales,
subjective assessment models are usually constructed by integrating expert knowledge to estimate
soil biodiversity potentials (SBP) and predict their trends. However, these regional evaluation
methods are challenging to apply mechanistically to other regions, especially in China, where soil
biodiversity surveys are still in their infancy. Taking China (9.6 × 106 km2) as the study area, we
constructed a Decision EXpert (DEX) multi-attribute decision model based on abiotic factors from soil
and climate data that are known to be relevant for the habitat of soil biota. It was used to indirectly
assess and map national SBP based on the habitat suitability for fungi, bacteria, nematodes, and
earthworms in the topsoil. The results show: (1) the SBP in China was classified into five grades:
low, covering 19.8% of the area, medium-low (21.2%), medium (16.0%), medium-high (38.5%), and
high (4.5%); (2) the national SBP is at a moderate level, with hotspot areas (1.3 × 106 km2) located in
the Yangtze Plain Region, the southeastern Southwest China Region, and the central-eastern South
China Region; while the coldspot areas (2.6 × 106 km2) are located in the Gansu–Xinjiang Region
and the northeastern Qinghai–Tibet Region; (3) Soil (pH, SOC, CEC, texture, total P, and C/N ratio)
and climate (arid/humid regions, temperature zones) were identified as driving this SBP variation.
This study presents a general approach to describing soil habitat function on a broad scale based on
environmental covariates. It provides a systematic basis for selecting indicators and maps them to SBP
from an objective perspective. This approach can be applied to regions where no soil organism survey
is available and can also serve as a pre-survey for planning soil resource utilization and conservation.

Keywords: soil biodiversity; soil functions; geographical scale; soil assessment; DEX model

1. Introduction

There are urgent practical needs in China for the rational utilization and conservation
of soil resources [1–3]. A timely understanding of soil quality and its dynamic changes is
helpful for the accurate management of soil resources [4]. An assessment of soil functions
is essential to achieving this demand. Establishing large-scale soil function assessment
theories and methods has become a bottleneck in China’s natural resource management [5].

Habitat for biodiversity (hereinafter referred to as “soil habitat function”), as a typical
complex soil function [6–8], supports and interacts with other soil functions such as biomass
production, water storage, carbon storage, and nutrient cycling [9–11]. With that, it is an
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integral part of the concept of soil health [12] and recognized as a cornerstone for soil
security [13]. In recent decades, soil biodiversity surveys, monitoring, and mapping have
been carried out globally, especially in Europe [14]. The European Atlas of Soil Biodiversity [15]
and the Global Soil Biodiversity Atlas [16] were successively published. The latter is the first
attempt to map the potential level of global soil biodiversity and the threat to soil organisms
at a relatively coarse resolution. Efforts in China are also on the way. A nationwide survey
of soil biota (microbes, nematodes, and earthworms) is being set up in China’s Third
National Soil Survey (2022–2025). The evaluation of soil functions is a specific task as well.

Large-scale soil function assessment mainly focuses on the intrinsic potential and
long-term status of soil functions [17–19]. When the soil habitat function is assessed on
a national or continental scale, subjective assessment models are usually constructed by
integrating expert knowledge [20]. Van Leeuwen et al. [21] assessed the habitat function of
European agricultural land (arable land, grassland) and related it to soil nutrient status,
biological status, structure, and hydrological status. They found that soil pH, organic
carbon (SOC), and carbon-to-nitrogen (C/N) ratio are the most important driving factors
that significantly affect the soil nutrient status. Aksoy et al. [22] subtly used the term “soil
biodiversity potentials (SBP)” to broadly express the significance and purpose of assessing
soil habitat function, that is, focusing on the capability of soils to host biodiversity to help
policymakers develop appropriate and sustainable management actions. The authors used
indicators including soil pH, soil texture, SOC, potential evapotranspiration, annual average
temperature, soil biomass productivity, and land use/land cover to map SBP in terms of soil
biota’s abundance at the European scale. They found that soil biomass productivity, land
use/land cover are most strongly correlated with SBP. In both works, the index values were
classified into discrete categories to avoid information redundancy caused by soil biota’s
sensitivity, and the potential level or long-term status of soil biodiversity was effectively
expressed. However, these regional evaluation methods are challenging to apply directly to
other regions, especially in China, where soil biodiversity surveys are still in their infancy.

On the one hand, in recent years, global-scale biogeographic research results on four se-
lected soil biota, such as fungi [23,24], bacteria [25], nematodes [26,27], and earthworms [28],
have been released. These studies have mined the drivers of topsoil biodiversity divergence
based on meta-analyses and provided key theoretical support for evaluating SBP. On the
other hand, benefiting from the GlobalSoilMap.net project [29,30], more detailed and accu-
rate soil information for China and even the world became accessible [31–33], providing a
data base for SBP mapping. But today, there is still a knowledge gap between environmental
parameters and soil biota due to the complexity of both soil and biodiversity [22,34].

The Decision EXpert (DEX) multi-attribute decision model is well suited for solving
complex decision problems that require judgment and qualitative knowledge-based rea-
soning, as well as for dealing with inaccurate or missing data [35,36]. It has been used
in the LANDMARK project to capture European knowledge on soil functions and land
management [37] and to build the Soil Navigator decision support system for assessing and
optimizing field soil functions [38]. Based on this methodology, we present an approach
to describe the SBP spatial differentiation in China (9.6 × 106 km2) under limited soil
biodiversity spatial data over large areas.

The results are expected to offer insights for China’s Third National Soil Survey (2022–2025)
in identifying priority areas for soil biological surveys and establishing nationally comparable
benchmark parameters for soil biodiversity indicators in land evaluation.

2. Materials and Methods
2.1. General Approach

Following the definition of soil biodiversity—the variety of life belowground, as well
as the ecological complexes to which they contribute and to which they belong [39], soil
biodiversity potentials (SBP) were defined in this study as the potential to provide the
habitat for soil biota activity.
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Taking China’s land area as the study area, we constructed a DEX multi-attribute
decision model based on the presumed impact of abiotic factors such as soil and climate on
soil biota. It was used to indirectly assess and map the national SBP based on the habitat
suitability for fungi, bacteria, nematodes, and earthworms in the topsoil. Then, the spatial
pattern of the mapped SBP was quantitatively described using spatial statistics, with the
agricultural region as the unit. Finally, the validation of the results was discussed in terms
of SBP differences among different agricultural land types and comparison with the Global
Soil Biodiversity Atlas (Figure 1).
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Figure 1. Technical roadmap for assessing soil biodiversity potentials in China based on the DEX
multi-attribute decision model.

2.2. Study Area

China is located on the east coast of the Eurasian continent and on the west coast of
the Pacific Ocean (Figure 2a). Its topography is generally high in the west and low in the
east, with a three-stage distribution. Nationwide, the five basic topographies are mountain
(33.3%), plateau (26.0%), basin (18.8%), plain (12.0%), and hills (9.9%) in order of area share.

China’s climate ranges from tropical monsoons, subtropical monsoons, and temperate
monsoons in the east to temperate continental arid climates in the northwest, all the way to
alpine climates on the Tibetan Plateau [42] (Figure 2b). Compared with other places at the
same latitude, China has low temperatures in winter and high temperatures in summer,
with a large annual temperature difference.

China’s land area covers 9.6 × 106 km2. Among them, there are 1279 × 103 km2 of arable
land, nearly two-thirds of which is located north of the Qinling–Huaihe Line; 2841 × 103 km2 of
forest, mainly in areas with annual precipitation of 400 mm or more; and 2645 × 103 km2 of
grassland, mainly in Tibet, Inner Mongolia, Xinjiang, Qinghai, Gansu, and Sichuan provinces [41]
(Figure 2c). According to the distribution characteristics of agricultural resources, the country is
divided into nine agricultural regions and 38 agricultural subregions [40] (Figure 2a).
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Figure 2. China’s location, topography, agricultural regions (a), climate (b), and land use/land cover
(c) (data accessed from Nationwide Committee of Agricultural Regionalization [40]; Xu et al. [41];
Zheng et al. [42]).

2.3. Data Source and Preprocessing

Six soil attributes in 1-km resolution gridded maps were accessed from the National
Soil Information Grids of China [31]: pH, SOC, total nitrogen (total N), total phosphorus
(total P), cation exchange capacity (CEC), and USDA textural classes (texture). The C/N
ratio was calculated from SOC and total N. These data were available for 0–5–15–30 cm
depths. For all soil data, those values that deviate more than three standard deviations
from the mean were regarded as outliers and excluded. Additionally, the soil type data of
the World Reference Base for Soil Resources (WRB) were obtained from the Harmonized
World Soil Database version 2.0 [33].

Climate attribute data were accessed from the Climate Regionalization in China for
1981–2010 [42]. It is the latest scheme of climate regionalization in China, which integrally
reveals the regional differentiation of climate and describes climate characteristics at the
regional scale. Based on this scheme, our study divides China into five temperature zones,
including subfrigid/cool-temperate, medium temperate, warm temperate, subtropical, and
tropical zones, and four arid/humid regions, including humid, semi-humid, semi-arid,
and arid regions (Figure 2b). It was gridded into a 1-km grid in accordance with the soil
attribute data.

With respect to land use/land cover data for the interpretation of the evaluation
results, a 100-m resolution gridded map of arable land, forest, and high (>50%)-medium
(20–50%)-low (5–20%)-coverage grassland in 2020 (Figure 2c) was accessed from China’s
Multi-period Land Use/Land Cover Remote Sensing Monitoring Dataset (CNLUCC) [41].
It was also gridded in accordance with the soil attribute data.
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2.4. Construction of the DEX Multi-Attribute Decision Model

The DEX multi-attribute decision model is a subjective evaluation model that first
deconstructs a complex problem and then makes a stepwise decision on a single problem
based on a priori knowledge to achieve the evaluation objective [35,36,43]. It simplifies the
complex problem and fuzzifies the hierarchy of indicator values to meet our two needs:
(1) knowledge-based evaluation of SBP; and (2) discretization of indicator values to focus on
significant rather than subtle changes in the habitat of soil biota, thus avoiding information
redundancy caused by the sensitivity of soil biota. DEX modeling was implemented in the
DEXi 5.05 program [44].

2.4.1. Indicator Soil Biota and Their Diversity Drivers

Due to the abundant availability of data on the geographic distribution of soil fungi,
bacteria, nematodes, and earthworms, they serve as subjects for current global-scale soil
biogeography research [23–28,45]. These studies provide a comprehensive understanding
of these taxa, including their geographic distribution and habitat characteristics. Conse-
quently, these four taxa were chosen as indicator soil biota to describe soil habitat suitability
and to link SBP. They comprise three functional groups [46]: (1) As essential chemical
engineers, fungi and bacteria are responsible for the chemical processes at the first level of
the food web. It has been observed that fungi respond to soil environmental changes in a
complete and significant gradient manner [11]. Bacteria are sensitive to soil management
actions and are integrative—that is, they provide adequate coverage across a relatively wide
range of environmental variables such as soil types, climate, and crop sequence [39,47,48].
(2) Nematodes, as biological regulators, are present in high abundance and richness, and
their relative or absolute abundance provides valuable information on ecosystem diversity
and stability [49,50]. (3) Earthworms are the most frequently used indicator species among
ecosystem engineers and are highly relevant for structure formation, bioturbation, and
related soil functions [51]. They were also widely used in European national or regional
soil biodiversity monitoring networks [52].

The main drivers of the diversity (richness and abundance) of four soil taxa at the
global scale were summarized in Table 1, with soil and climate being the two most important
common drivers. The information provided by the different studies varies: firstly, those on
fungi focused on diversity and richness, those on bacteria and nematodes on abundance,
and the one on earthworms on diversity; secondly, the specific indicators of the drivers
differ, and the driving forces were presented quantitatively or qualitatively in various
forms such as numbers, graphs and text; thirdly, the main habitats of the four soil taxa are
different, as reflected in the soil depths that these studies focused on, i.e., 0–5 cm for fungi
and bacteria, 0–15 cm for nematodes, and 0–30 cm for earthworms; finally, there may be
conflicts between studies, e.g., Tedersoo et al. [23] found the overall richness of soil fungi
increased towards the equator, while in the analysis of Větrovský et al. [45], fungal diversity
is concentrated at high latitudes. Before constructing the DEX model, this information
needs to be manually interpreted and adapted.

2.4.2. Attribute Tree and the Relative Importance of Attributes

The first step in constructing the DEX model is to build an attribute tree. The attribute
tree (Figure 3) for mapping SBP was built based on the adapted global-scale biogeographic
research results (Table 1) and the DEXi Program Guidelines [53]. SBP was represented by
four level I attributes: fungal richness, bacterial abundance, nematode abundance, and
earthworm diversity. The four level I attributes were indicated by two level II habitat
attributes, namely climate and soil. Considering data availability and operability, tempera-
ture zones and arid/humid regions were selected as two level III attributes characterizing
climate. Soil pH, SOC, CEC, texture, total P, and C/N ratio were selected as the level III
attributes characterizing soil.
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Table 1. Drivers of biodiversity of soil fungi, bacteria, nematodes, and earthworms at the global scale.

Types Primary Drivers Other Main Drivers References

Fungal
richness
(0–5 cm)

Climate (Latitude, Mean
annual precipitation) Soil (pH, Calcium (CEC), Phosphorus) [23]

Fungal
diversity
(0–5 cm)

Climate (Temperature,
Precipitation) Soil (Bulk density, pH), Plant [45]

Bacterial abundance
(0–5 cm) Soil (pH)

Climate (Aridity Index, Minimum and
maximum temperature, Precipitation,
Mean diurnal temperature range), UV
light, Net primary productivity, Soil

(SOC, Nitrogen, Phosphorus, C/N ratio,
Clay + silt), Land use (Forest, Grassland)

[25]

Nematode abundance
(0–15 cm) Soil (SOC, CEC, pH) Climate (Temperature, Precipitation) [26]

Earthworm diversity
(0–30 cm)

Climate (Precipitation,
Temperature) Soil (pH, SOC, Clay, Silt, CEC), Plant [28]
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being the highest and 1 being the lowest.

As part of the biogeographic study (Table 1), the relative importance of each driver
was also estimated. Each sibling attribute was assigned an importance score of 3, 2, or
1, respectively, with 3 being the highest and 1 being the lowest. Therefore, in the case of
pairwise comparison, there are four relative importance relationships: 3:2, 3:1, 2:1, and 1:1
in the local sibling nodes. For example, the relative importance of the four level I attributes
under SBP was set to 3, 2, 2, and 2, respectively; the relative importance of the two level
II attributes, soil and climate, for the level I attribute, bacterial abundance, was set to
3 and 2, respectively; and so on. These relative importance scores would be converted
proportionally into weights and used as parameters for developing the decision rules.
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2.4.3. Attributes’ Scales

In the second step, the four types of soil biodiversity (richness or abundance) indicated
in the above attribute tree (Figure 3) were classified into three to five grades from high
to low; soil and climate attributes were classified into three grades from habitat suitable
to unsuitable (Figure 4). In the DEX model, the grades of attributes are generated by the
aggregation decision of the grades of their lower-level attributes. Therefore, the scales of
the lowest-level attributes need to be determined first. For our study, we used the literature
listed in Table 1 as the theoretical basis, combined with the spatial differentiation of these
attributes in China.
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biodiversity potentials in China. The green interval or type means positive (suitable/high), black
means normal, and red means negative (unsuitable/low).

Nominal attributes such as climate arid/humid regions, temperate zones, and soil
texture were directly mapped to habitat-suitable, normal, and unsuitable grades with
their original categories. For instance, in climate-arid/humid regions for earthworms, the
humid region is suitable, the semi-humid region and semi-arid regions are normal, and
the arid region is unsuitable. Moreover, numerical attributes were reclassified into three
to four numerical intervals by the Geometrical Interval classification method in ArcGIS
Pro, which ensures that each class range has approximately the same number of values and
that the change between intervals is fairly consistent. These intervals were then mapped
to the three grades of habitat suitability according to membership function types such as
positive linear, negative linear, or kurtosis. For example, the higher SOC content is better
for nematodes, so this relationship is a positive linear function. Specifically, an SOC content
of 26.2 to 121.7 g/kg is considered suitable, 10.2 to 26.2 g/kg is normal, and 0.8 to 10.2 g/kg
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is unsuitable. Each attribute grade is a partition of that attribute value, confirming the
completeness of the DEX model.

2.4.4. Expert Consultation for Model Optimization

The quality of the DEX model depends on the quality of the knowledge applied in
modeling. In the process of forming the above attribute tree and its scales (Figure 4),
six independent experts in pedology, soil ecology, soil biology, pedometrics, and land
management were invited to consult on (1) the relative importance of attributes and (2) the
scales of soil biological habitat suitability attributes. Multiple rounds of consultation were
conducted to reach consensus.

Comments from the six invited experts covered all ten modules consulted and focused
mainly on soil fungi, bacteria, and earthworms and less on nematodes (Table 2). Integrating
44 comments from all experts improved the DEX model.

Table 2. Statistics of expert comments on model parameters for assessing soil biodiversity potentials
in China.

Consulted Modules Number of Experts’
Comments

The relative
importance of

attributes

Global Soil biodiversity
potentials 4

Local

Fungal richness 7
Bacterial abundance 6

Nematode abundance 3
Earthworm diversity 5

The scales of soil
biological habitat

suitability attributes

Global Reclassification of
spatial data 2

Local

Fungal richness 5
Bacterial abundance 6

Nematode abundance 2
Earthworm diversity 4

Total 44

2.4.5. Decision Rules

Each node of the DEX attribute tree has an independent decision rule that relies only
on the next-level attributes to make a level-by-level decision. The definition of decision
rules follows four principles: (1) If all the attributes at the next-level node are suitable, this
node is suitable or high. (2) If all the attributes at the next-level node are normal, this node
is normal or medium. (3) If all the attributes at the next-level node are unsuitable, this node
is unsuitable or low. (4) Based on the above three principles, other cases are determined by
the weight of the attribute, which is converted proportionally from the relative importance
score in the DEXi 5.05 program [44] (Table 3).

Table 3. Correspondence between the relative importance scores of the attributes and their weights.

The Relative Importance Scores of the
Attributes The Weights of the Attributes

3:2:2:2 36% 21% 21% 21%
3:2:1 42% 39% 19%
3:2 67% 33%

2:1:1 50% 25% 25%
2:1 67% 33%

1:1:1:1 25% 25% 25% 25%
1:1:1 33% 33% 33%
1:1 50% 50%
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2.5. Attribute Mapping

In ArcGIS Pro, the raster values of the bottom attributes were reclassified into three
grades: suitable, normal, and unsuitable, according to the defined scales. Then, the Map
Algebra expression of the Raster Calculator tool was used to map the national SBP step-by-
step according to the decision rule. The map’s accuracy depends on the resolution of the
soil raster data, which is 1 km here.

2.6. Spatial Analysis

First, the average SBP of China’s nine agricultural regions and 38 agricultural sub-
regions was counted. Then, the Global Moran’s I was calculated to measure the spatial
autocorrelation of national SBP based on the location and mean SBP values of each agricul-
tural region, revealing whether the national SBP pattern was clustered, discrete, or random.
If the z-score or p-value indicates statistical significance, a positive Global Moran’s I value
indicates a clustering trend, and a negative value indicates a discrete trend. The Global
Moran’s I value is calculated according to Cliff and Ord [54]:

I =
n
S0

∑n
i=1 ∑n

j=1 wi,j
(
xi − X

)(
xj − X

)
∑n

i=1
(
xi − X

)2 (1)

where n is the number of spatial units indexed by i and j, x is the variable of interest, wi,j is
the spatial weight between the spatial units i and j, and S0 = ∑n

i=1 ∑n
j=1 wi,j.

The z-score is computed as:

zI =
I − E[I]√

E[I2]− E[I]2
(2)

where E[I] = −1/(n − 1).
Further, the Getis-Ord Gi* statistic was calculated to show the spatial clustering

of higher SBP (hot spots) and lower SBP (cold spots) with statistical significance, thus
identifying the focal areas. If the Gi* statistic of the spatial unit is statistically significant, the
higher the positive Gi* statistic, the more significant the clustering of high SBP (hot spots),
and the lower the negative Gi* statistic, the more significant the clustering of low SBP (cold
spots). The Gi* statistic is calculated following Getis and Ord [55] and Ord and Getis [56]:

G∗
i =

∑n
j=1 wi,jxj − X∑n

j=1 wi,j

S

√ [
n∑n

j=1 w2
i,j−

(
∑n

j=1 wi,j

)2
]

n−1

(3)

where n is the number of spatial units indexed by i and j, x is the variable of interest, S is the
standard deviation of all x, and wi,j is the spatial weight between the spatial units i and j.

These spatial analyses were implemented using the Zonal Statistics, Spatial Auto-
correlation (Global Moran’s I), and Hot Spot Analysis (Getis-Ord Gi*) tools in ArcGIS
Pro 3.1.3.

3. Results
3.1. The Decision Rules of the DEX Multi-Attribute Decision Model

After initializing the DEX model and expert consultation, all 332 final decision rules
were generated, which are shown in the Supplementary Material. The monotonicity of each
utility function was verified by checking the “Use scale orders” box in the Function Editor
of the DEXi program. Here, Figure 5 excerpts show the 56 decision rules for soil fungal
richness. It consists of three levels and demonstrates a step-by-step decision-making process
following the attribute tree and the four decision principles described in Section 2.4.5.
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Figure 5. Decision rules of the DEX multi-attribute decision model for assessing soil biodiversity
potentials in China (Soil fungal richness section). The green interval or type means positive (suit-
able/high), black means normal, and red means negative (unsuitable/low). The percentages represent
the local weight of the attributes.

The vital parameters supporting the formation of these decision rules are shown
in Figure 6, where the most important ones are the local weights, converted from the
attributes’ relative importance, which represent the contribution (%) of the corresponding
attribute in every individual decision process, and the global weights, which reflect the
attributes’ weights (%) in the whole process. Among the bottom attributes at the global
level, the arid/humid regions (26%) are the most important climate attribute, followed
by temperature zones (23%); ignoring different topsoil depths, the contribution of soil
attributes is pH (20%), SOC (12%), CEC (8%), texture (7%), total P (3%) and C/N (3%), in
that order; soil attributes (51%) are almost as important as climate attributes (49%).

3.2. Habitat Suitability Maps of Four Soil Taxa in China

Climatic habitat suitability, soil habitat suitability, and combined climate and soil
habitat suitability for soil fungi, bacteria, nematodes, and earthworms were mapped
separately in the decision-making process for mapping national SBP, as shown in Figure 7.
In terms of climatic suitability, bacteria and earthworms have the same spatial pattern;
they and fungi show decreasing suitability from the southern warm-humid areas to the
northwestern cold-arid areas; nematodes have high suitability in humid and semi-humid
temperate areas, and on this axis, decreasing to the north and south, with the lowest in
the northwestern cold-arid areas. In terms of soil suitability, the spatial patterns of the
four soil taxa differed significantly, but the distribution law of soil suitability was not
apparent due to the complex spatial heterogeneity and combined effects of soil attributes.
In terms of combined climate and soil suitability, the spatial patterns of the four taxa are
also different as affected by soils. The spatial mismatch between climate and soil suitability
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makes significant differences between the soil suitability and the combined climate and
soil suitability of fungi, bacteria, and earthworms. Such as the soil conditions (low pH,
high CEC) in the Greater and Lesser Khingan Mountains and the Changbai Mountains are
suitable for fungi, but the cold climate limits their habitat; the warm–humid climate of the
Southeast China Hills improves the poor soil conditions (coarse texture, low SOC, and pH),
which are not suitable for bacteria and earthworms.
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Figure 7. Habitat suitability maps of soil fungi, bacteria, nematodes, and earthworms in China.

3.3. Map of Soil Biodiversity Potentials in China

A whole-area SBP map was generated by integrating the above maps into the DEX
model. Then, the raster of arable land, forest, grassland, and unused land was extracted
to print a nationwide non-construction land SBP map with a total coverage area of
8,929,899 km2 (Figure 8). As a result, the national SBP was classified into five grades:
low (1,767,379 km2, 19.8% of the area), medium-low (1,894,493 km2, 21.2%), medium
(1,426,606 km2, 16.0%), medium-high (3,435,667 km2, 38.5%), and high (405,754 km2, 4.5%),
with the scores corresponding to 1, 2, 3, 4, and 5. The national average SBP score is 2.87,
considered medium SBP.
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According to the statistics of agricultural regions (Figure 9), the average SBP of agricul-
tural regions from high to low is: China Region (4.19), Yangtze Plain Region (4.09), South
China Region (4.04), Northeast China Region (3.53), Huanghuaihai Region (3.35), Loess
Plateau Region (2.83), Qinghai-Tibet Region (2.66), Inner Mongolia and the Great Wall Re-
gion (2.56), and Gansu–Xinjiang Region (1.50). Among them, the Southwest China, Yangtze
Plain, South China, Northeast China, and Huanghuaihai regions score above the national
average and have less spatial variation within regions, with a total area of 3,539,421 km2,
accounting for 39.6% nationwide. In contrast, Loess Plateau, Qinghai–Tibet, Inner Mongolia
and the Great Wall, and Gansu-Xinjiang regions are lower than the national average and
have greater spatial variation within regions, with a total area of 5,389,603 km2, accounting
for 60.4% nationwide. In general, the SBP of agricultural areas shows the distribution
pattern of the Hu Line, i.e., the SBP of the area east of the Hu Line scores above the national
average, and the area west of the Hu Line is lower than the national average.

The distribution of SBP in agricultural regions across the country is shown in Table 4. The
high SBP areas are mainly distributed in the Southwest China, Yangtze Plain, Huanghuaihai,
Qinghai–Tibet, and South China regions. The medium-high SBP areas are mainly distributed
in the Qinghai–Tibet, Yangtze Plain, Northeast China, Southwest China, South China, and
Gansu–Xinjiang regions. The medium SBP areas are mainly distributed in Qinghai-Tibet,
Northeast China, Huanghuaihai, Inner Mongolia and the Great Wall, Loess Plateau, and
Gansu–Xinjiang regions. The medium-low-SBP areas are mainly distributed in the Qinghai–
Tibet, Gansu–Xinjiang, Inner Mongolia and the Great Wall, Loess Plateau, and Northeast
China regions. The low-SBP areas are mainly distributed in the Gansu–Xinjiang and Qinghai–
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Tibet regions. Overall, the distribution of high SBP, low SBP, and medium-low SBP areas is
generally clustered, while the medium-high SBP and medium SBP areas are relatively discrete
and distributed across all agricultural subregions.
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Table 4. Distribution of soil biodiversity potentials in agricultural regions across China. The main distribution area of the grade is indicated by a colored background.

Agricultural
Regions

Agricultural
Subregions

High
Potential (km2)

Medium–High
Potential (km2)

Medium Potential (km2) Medium–Low
Potential (km2)

Low
Potential (km2)

Total
Coverage (km2)

VI
Southwest China

VI1 Qinling-Daba Mountains 77,616 83,373 18,520 759 0 180,268
VI3 Chongqing-Hubei-Hunan-Guizhou Border
Mountainous 40,274 146,119 21 0 0 186,414

VI2 Sichuan Basin 32,440 133,759 3293 0 0 169,492
VI5 Sichuan-Yunnan Plateau (Mountainous) 49,631 201,715 11,833 0 0 263,179
VI4 Guizhou-Guangxi Plateau (Mountainous) 18,648 144,291 523 0 0 163,462

V
Yangtze Plain

V2 Hubei-Henan-Anhui Plain (Mountainous) 37,409 41,911 1362 0 0 80,682
V3 Middle Yangtze Plain 26,017 81,989 52 0 0 108,058
V1 Lower Yangtze Plain (Hills) 30,621 80,059 14,173 46 0 124,899
V4 Jiangnan Hills (Mountainous) 4595 264,499 323 0 0 269,417
V6 Nanling Hills (Mountainous) 1920 168,395 471 0 0 170,786
V5 Zhejiang-Fujian Hills (Mountainous) 700 131,270 591 0 0 132,561

VII
South China

VII3 Southern Yunnan 15,420 141,697 134 0 0 157,251
VII2 Western Guangdong-Southern Guangxi 7605 114,864 475 0 0 122,944
VII5 Taiwan 704 30,718 872 0 0 32,294
VII1 Southern Fujian-Central Guangdong 1146 100,478 2092 0 0 103,716
VII4 Leizhou Peninsula and South China Sea
Islands 581 34,405 3285 0 0 38,271

I
Northeast China

I3 Changbai Mountains 0 99,496 30,330 0 0 129,826
I1 Khingan Mountains 0 207,023 91,854 2 0 298,879
I2 Songneng-Sanjiang Plain 0 238,639 67,247 39,199 12,873 357,958
I4 Liaoning Plain (Hills) 0 9634 113,698 5093 51 128,476

III
Huanghuaihai

III3 Huanghuai Plain 39,310 19,480 36,740 156 0 95,686
III1 Yanshan-Taihang Mountains Foothills
(Plain) 0 11,091 56,382 67 0 67,540

III4 Shandong Hills 0 1674 76,359 22 0 78,055
III2 Hebei-Shandong-Henan Low-lying Plain 0 390 78,777 170 0 79,337

IV
Loess Plateau

IV1 Eastern Shanxi-Western Henan Hills
(Mountainous) 5 28,815 48,933 706 0 78,459

IV2 Fenwei Valley 0 23,507 55,725 1539 0 80,771
IV4 Central Gansu-Eastern Qinghai Hills 0 20,978 11,403 60,216 2007 94,604
IV3 Shanxi-Shaanxi-Gansu Loess Hills (Gullies) 0 18,169 63,383 72,899 11,678 166,129

IX
Qinghai-Tibet

IX2 Sichuan-Tibet Border 17,336 265,063 130,225 3760 0 416,384
IX1 Southern Tibet 3693 44,562 74,530 80,248 3278 206,311
IX4 Qinghai-Tibet Alpine 0 252,014 107,274 540,028 188,378 1,087,694
IX3 Qinghai-Gansu Border 0 86,188 53,481 86,960 148,424 375,053

II
Inner Mongolia and

the Great Wall

II3 Along the Great Wall 0 27,439 78,377 55,466 1309 162,591
II2 South-central Inner Mongolia 0 37,790 71,106 93,310 18,363 220,569
II1 Northern Inner Mongolia 0 48,317 68,101 155,774 37,238 309,430

VIII
Gansu-Xinjiang

VIII2 Northern Xinjiang 0 77,396 39,612 216,594 100,427 434,029
VIII3 Southern Xinjiang 0 17,113 10,806 317,093 806,586 1,151,598
VIII1 Inner Mongolia-Ningxia-Gansu Border 0 732 4154 164,303 436,749 605,938
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In terms of soil types (Figure 10), among the seven WRB Reference Soil Groups
(RSGs) that cover more than 5% nationwide, the SBP ranges from high to low as follows:
Acrisols, Luvisols, and Cambisols; Leptosols and Cryosols; Arenosols and Gypsisols.
This sequence reflects various influences, primarily driven by climate, as evidenced by
the stark contrast between Acrisols occurring in warm-humid areas and Arenosols and
Gypsisols in arid regions. Secondly, soil physicochemical properties, such as Luvisols
covered by forests, have favorable physical characteristics such as porosity and aeration;
the widespread Cambisols possess medium texture, good structural stability, high porosity,
excellent water retention capacity, and effective internal drainage, as well as neutral to
weakly acid soil reactions, satisfactory chemical fertility, and active soil fauna. There are
also cold environments and strongly dissected topography influenced by altitude, as seen
in Leptosols and Cryosols.
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3.4. Spatial Pattern Characteristics and Priority Areas of Soil Biodiversity Potentials in China

The Global Moran’s I statistics for the mean SBP scores of agricultural subregions
showed a Moran’s I value of 0.725 > 0 for the national SBP and a z-score of 6.03 > +2.58 with a
99% confidence level. This indicates a significant, strong positive spatial autocorrelation (i.e.,
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clustering of similar values) for the nationwide non-construction land SBP map (Figure 8).
This is in accordance with the innate spatial autocorrelation of soil and climate properties.

Further, the significant spatial clusters of higher SBP (hot spots) and lower SBP (cold
spots) are shown in Figure 11 by the Getis-Ord Gi* statistic. At the 95% confidence level, the
SBP hot spot area covers 1,338,040 km2 and accounts for 15.0% nationwide, while the SBP
cold spot has an area of 2,566,618 km2 and accounts for 28.7% nationwide, which is almost
twice the size of the hot spot area. Table 5 shows the natural conditions and agricultural
characteristics of these areas.

Figure 11. Hot and cold spots map of soil biodiversity potentials in China. The region code is the
same as in Tables 4 and 5.
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Table 5. Hot and cold spots: regions of soil biodiversity potential in China.

Hot and Cold Spots
(Agricultural Regions)

Dominant WRB Second Level
Reference Soil Groups

Natural Conditions
and Agricultural Characteristics

Hot spots
V Yangtze Plain

V2 Hubei-Henan-Anhui Plain (Mountainous)
V3 Middle Yangtze Plain
V4 Jiangnan Hills (Mountainous)
V6 Nanling Hills (Mountainous)
V5 Zhejiang-Fujian Hills (Mountainous)

Haplic Acrisols
Plaggic-&Terric Anthrosols
Acric Umbrisols
Haplic Luvisols
Haplic Alisols

Located in the subtropics, with an
alternating distribution of plains, hills,
and low to medium mountains; excellent
water, heat, and soil conditions;
developed agriculture, forestry, and
fisheries; and high agricultural
productivity.

VI Southwest China
VI3 Chongqing-Hubei-Hunan-Guizhou

Border Mountainous
VI4 Guizhou-Guangxi Plateau

(Mountainous)

Haplic Alisols
Haplic Luvisols
Chromic Luvisols
Acric Umbrisols
Dystric Cambisols
Plaggic-&Terric Anthrosols

Located in the subtropics, dominated by
hilly mountains and plateaus, with
complex topography; significant vertical
differentiation in natural conditions and
agricultural production; and a
substantial agricultural and forestry
production base.

VII South China
VII2 Western Guangdong-Southern Guangxi
VII1 Southern Fujian-Central Guangdong

Ferric Acrisols
Plaggic-&Terric Anthrosols
Haplic Acrisols
Haplic Luvisols

Located in the subtropics and tropics,
with hilly and mountainous terrain; rich
in water and heat resources, evergreen in
all seasons; and suitable for tropical
economic corps.

Cold spots
VIII Gansu-Xinjiang

VIII2 Northern Xinjiang
VIII3 Southern Xinjiang
VIII1 Inner Mongolia-Ningxia-Gansu Border

Arenosols
Leptic Cryosols
Petric Gypsisols
Eutric Leptosols
Luvic Calcisols
Calcic Gypsisols
Brunic Arenosols
Lixic-&Luvic Gypsisols

Located inland, most of it has an arid
desert climate, with deficiencies in the
coordination of light, heat, water and soil
resources; mainly relies on oasis
agriculture and wilderness grazing.

IX Qinghai-Tibet
IX3 Qinghai-Gansu Border Leptic Cryosols

Arenosols
Mollic Leptosols
Hypersalic Solonchaks
Rendzic Leptosols
Eutric Leptosols

Located in an alpine area with
insufficient heat and low vegetation
coverage, mainly composed of
grasslands and desert grasslands, and
has poor grazing tolerance.

4. Verification

The commonly used “measured vs. simulated” validation approach is not practical
here because of the lack of comparable soil biodiversity survey data over this vast area.
So, two indirect validations were applied. First, by raster overlay analysis and one-way
ANOVA, the mapped SBP was counted by five land use/land cover types, such as arable
land, forest, and high/medium/low coverage grassland. Differences in SBP between land
types are expected to be consistent with the general knowledge of soil biology research.
As shown in Figure 12, the SBP of five land types is significantly different at the 0.05 level.
Their mean values are between 2.19~3.84, with the highest in forest (3.84), followed by
arable land (3.47) and high (>50%)-coverage grassland (3.17), and the lowest in medium-low
(≤50%)-coverage grassland (2.19–2.81). Considering the apparent distribution differences
between cropland and grassland, this SBP/land-types sequence generally reflects the gen-
eral principle that lower land use intensity and less soil disturbance lead to higher soil
biodiversity [57–64]. From this perspective, the evaluation result was considered reason-
able.
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Figure 12. Differences in soil biodiversity potentials of arable land, forest, and high-medium-low
coverage grassland in China.

The mapped SBP was then compared with similar work covering China. Here the
Global Soil Biodiversity Atlas [16] was selected, and the Spearman’s rank correlation revealed
its correlation with the mapped SBP. A significant positive correlation would corroborate
the concept of the SBP. Of course, there is a possibility that both maps are “overall” wrong,
but this likelihood decreases as more data and knowledge contributing to the conceptual
soil biodiversity model become available [20]. Therefore, if both maps exhibit a positive cor-
relation, they provide mutual support for their validity. The analysis showed a Spearman’s
rank correlation coefficient of 0.50 between the two maps, indicating a moderately positive
correlation (Figure 13). A strong positive correlation could not be achieved. However, a
possible explanation is that the Global Soil Biodiversity Atlas, as an exploratory global-scale
result, represents a much coarser spatial resolution compared to our study.

Figure 13. Box plot of the soil biodiversity potentials and the soil biodiversity index of Global Soil
Biodiversity Atlas.
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5. Discussion
5.1. New Knowledge in Soil Biogeography Develops the Soil Biodiversity Assessment at Large
Spatial Scales

Knowledge about soil biodiversity is central to mapping SBP. The mechanisms affect-
ing soil biodiversity are complex and are being elucidated from multiple perspectives and
scales, from climate change to land use, and from field trials to global geography. Due to the
extreme complexity of interacting mechanisms acting under vastly different site conditions,
there are no clear relationships between a limited number of site characteristics and soil
biodiversity. This leads to contradictory observations even when many influencing factors
are the same or in the same geographical region. This is reflected not only in publications,
such as the discussion of tropical and temperate patterns of earthworm diversity by Phillips
et al. [28] and James et al. [65], but also in our consultations with experienced experts. This
is a major issue for SBP mapping.

Soil biogeography aims to study the ecological distributions of soil biota’s diversity,
community composition, and functional traits across space and time, from regional to
global scales [66]. The relationship between soil biodiversity and environmental covari-
ates is a core research element. Recently published global-scale soil biogeography results
emerge as the most robust information available. Although the derived global-scale laws
of soil biodiversity differentiation are inherently coarse-grained and may not fully capture
more nuanced regional conditions, they have a higher possibility of balancing rationality
and universality, offering a versatile framework for understanding and application. Taking
advantage of this, we present a national-scale SBP mapping solution based on understand-
ing the relationship between soil biodiversity and site conditions using available soil and
climate data, clarifying the systematic basis for selecting indicators and determining their
weights from a relatively objective perspective.

Indeed, with decades of research accumulated in Europe on soil assessment about
biodiversity [67], a solid knowledge base has been built: from monitoring networks and
their indicators [59,68–71], potential risk estimation [72], to expert system-based [15,16,20–22]
and survey data-driven [20,73–76] soil biodiversity mapping. However, we still have great
difficulty adjusting complex indicator parameters when applying previous methods to China,
unless we organize an extensive expert system or already have a wealth of survey data. This
is a great challenge for China, which has nine agricultural regions. SBP mapping based on soil
biogeography and the adaptable DEX model is a potential choice that is universal and easily
transferable to other areas.

We highlight that knowledge gaps remain regarding the habitat suitability of soil biota
and the scale of the impact of climatic factors on soil biodiversity. The method we used to
reclassify numerical attributes by a combination of data spatial variability and membership
function type is applicable here, but the reclassification results would be more interpretable
and general if they could be based on the exact suitable habitat for soil biota. These issues
rely on a stronger data and knowledge base. So, we call for China’s Third National Soil
Survey (2022–2025) to pay attention to the national-scale soil biological survey based on
soil species sampling, covering major climatic regions, topographic conditions, and land
use types, as a way to advance soil biogeography research further.

5.2. Soil Biogeography Knowledge Applied to the DEX Multi-Attribute Decision Model

We have clarified the rationality of using global-scale soil biogeography findings for
SBP mapping. Growing global-scale research is labor-intensive and complicated, some-
times conflicting with scientists’ opinions. There are also differences in the processes and
expressions of studies on different soil taxa. We assigned an importance score (3, 2, or 1)
to fuzzily normalize information on indicator weights from different studies according to
numerical, graphical, or textual descriptions in the literature—the information is diverse.
Numerical attributes, mainly soil attributes, were discretized into grades based on spatial
variability. Both steps are intended to circumvent the uncertainty caused by soil biota’s
sensitivity and improve the assessment’s error tolerance. Although, inevitably, such an
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approach and the accompanying nonlinear decision rules of the DEX model sacrifice sen-
sitivity compared to dimensionless scoring functions. In addition, knowledge conflicts
are always in the process of knowledge-based assessment, mainly between literature and
expert comments on the relative importance of attributes. We followed the principle of
larger-scale prioritization—leaning on large-scale meta-analysis evidence, followed by
second-round consultation with experts. As a result, knowledge from multiple sources of
literature and experts was aggregated through the DEX model.

Climate is an important driver for the spatial differentiation of global soil biodiversity.
We have integrated climate attributes into the DEX model and graded them using standard
climate regionalization, which has more meteorological significance and interpretability
than geostatistical classification methods such as geometrical interval. But this allows
the climate suitability maps to present some climate regionalization boundaries that also
appear in the SBP map. These boundaries in the SBP map reflect the possible overly strong
role of climate attributes in the DEX model for national SBP. Climate is also a critical soil-
forming factor [77,78], and differences in soil properties may reflect differences in climatic
conditions as well. The trade-off of climatic factors in national-scale SBP mapping needs to
be supported by further theoretical understanding [79].

5.3. Application of the Map of Soil Biodiversity Potentials at the National Scale

Mapping the national SBP on a kilometer grid is an effective way to understand the
patterns of soil habitat function. Since soil biodiversity over large areas is not easy to
measure consistently from field sampling [80], nor is it realistic to predict accurately from
current knowledge. The large-scale soil function mapping aims to serve the macro-layout
of soil resource utilization and conservation, in contrast to the field soil function evaluation
for local management strategies. The agricultural regional SBP map and hot/cold spots
map would provide a reference for China’s Third National Soil Survey (2022–2025) to
identify priority areas for soil biological survey and also provide nationally comparable
benchmark parameters for soil biodiversity indicators in land evaluation.

Moreover, this study provides a space-for-time substitution [81] perspective to examine
the relationship between SBP, soil types, and land use. The Second Level RSGs covering
more than 3.0 × 106 km2 nationwide are Haplic Acrisols, Plaggic-&Terric Anthrosols, Haplic
Luvisols, Calcaric Cambisols, Leptic Cryosols, and Arenosols, which have significantly
lower SBP in turn. Meanwhile, their primary productivity also decreases in turn, confirming
the synergy between soil habitat function and production function. According to the pattern
of SBP and land use, we suggest that:

1. In the Yangtze Plain and Pearl River Delta, explore the symbiotic development of
intensive agricultural production and biodiversity in densely populated areas;

2. In the Jiangnan Hills and Southeast Coastal Hills, establish a long-term monitoring
network of forest soil biodiversity to maintain a high level of soil biodiversity;

3. In the Eastern Sichuan Hills and Guizhou–Guangxi Karst Hills, conduct SBP risk
assessment on farmland to jointly conserve soil biodiversity;

4. In the Gansu–Xinjiang Region and Qaidam Basin, given the low SBP baseline con-
ditions in northwest arid areas, moderately cultivate native vegetation to prevent
deterioration of the soil ecological environment.

5.4. Limitations

This methodology aims to reveal national patterns of soil habitat function by treating
soil biodiversity potentials as the primary focus, particularly in the absence of extensive
spatial data on soil biodiversity across large areas. As a multi-attribute decision approach, a
solid foundation of scientific understanding, both from the literature and expert experience,
is highly demanded. The understanding of the geographical distribution and habitat
characteristics of soil organisms is still developing. Based on the current progress, this
study selected soil fungi, bacteria, nematodes, and earthworms as indicator soil biota
and could not synthesize species numbers across the tree of life, and the SBP assessment
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did not focus on both the richness and abundance—the complete components of the
diversity concept—of each taxon. With the development of soil biogeography and the
implementation of soil biological surveys, it is reasonable to expect this method to have a
more solid theoretical foundation.

6. Conclusions

Mapping soil biodiversity potentials (SBP) is a practical way to uncover the national
patterns of soil habitat function. It is essential for the sustainable management of soil re-
sources. In this study, a DEX multi-attribute decision model was constructed by integrating
the mechanisms of soil and climate factors on soil biota to characterize the distribution of
SBP in China from the perspectives of topsoil fungi, bacteria, nematodes, and earthworm
habitat suitability. The results indicate that the national SBP is at a moderate level. The
SBP of the agricultural regions east of the Hu Line is higher than the national average,
and the region west of the Hu Line is lower than the national average. The hotspot areas
are located in the Yangtze Plain Region, the southeastern Southwest China Region, and
the central-eastern South China Region, covering 15.0% nationwide, while the coldspot
areas are located in the Gansu–Xinjiang Region and the northeastern Qinghai–Tibet Region,
covering 28.7% nationwide. Soil (pH, SOC, CEC, texture, total P, and C/N) and climate
(arid/humid regions, temperature zones) drive this SBP variation.

SBP mapping based on soil biogeography and the DEX model presented a general
solution to describe the habitat function at a broad scale with environmental covariates
data. It clarifies the systematic basis for the selection of indicators and determines the
indicators and their weights from an objective perspective. This methodology is suitable for
regions where soil biota is not surveyed and can also be used as a pre-survey for planning
soil resource utilization and conservation. The scale effect of climatic factors is still being
clarified here, pending further knowledge. With the development of soil biogeography
and the implementation of soil biological surveys, a fine-resolution soil biodiversity map
covering a wider area is expected.
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D’Alò, F.; et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies.
Sci. Data 2020, 7, 228. [CrossRef] [PubMed]

25. Delgado-Baquerizo, M.; Oliverio, A.M.; Brewer, T.E.; Benavent-González, A.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh,
B.K.; Fierer, N. A global atlas of the dominant bacteria found in soil. Science 2018, 359, 320–325. [CrossRef]

26. Van den Hoogen, J.; Geisen, S.; Routh, D.; Ferris, H.; Traunspurger, W.; Wardle, D.A.; de Goede, R.G.M.; Adams, B.J.; Ahmad, W.;
Andriuzzi, W.S.; et al. Soil nematode abundance and functional group composition at a global scale. Nature 2019, 572, 194–198.
[CrossRef] [PubMed]

27. Van den Hoogen, J.; Geisen, S.; Wall, D.H.; Wardle, D.A.; Traunspurger, W.; de Goede, R.G.M.; Adams, B.J.; Ahmad, W.; Ferris, H.;
Bardgett, R.D.; et al. A global database of soil nematode abundance and functional group composition. Sci. Data 2020, 7, 103.
[CrossRef] [PubMed]

https://doi.org/10.16418/j.issn.1000-3045.2018.02.002
https://doi.org/10.16418/j.issn.1000-3045.20200313002
https://doi.org/10.7621/cjarrp.1005-9121.20160703
https://doi.org/10.16418/j.issn.1000-3045.2015.04.004
https://doi.org/10.11766/trxb202009280546
https://doi.org/10.1002/ldr.3066
https://doi.org/10.5194/soil-4-83-2018
https://doi.org/10.1016/j.envsci.2013.10.002
https://doi.org/10.1038/nature13855
https://doi.org/10.1016/j.ejsobi.2006.10.002
https://doi.org/10.1073/pnas.1320054111
https://www.ncbi.nlm.nih.gov/pubmed/24639507
https://doi.org/10.1038/s43017-020-0080-8
https://doi.org/10.1016/j.geoderma.2013.08.013
https://doi.org/10.1111/ejss.13299
https://doi.org/10.1016/j.landusepol.2017.06.025
https://doi.org/10.3389/fenvs.2019.00164
https://doi.org/10.11766/trxb201908120364
https://doi.org/10.3390/soilsystems3020039
https://doi.org/10.3389/fenvs.2019.00113
https://doi.org/10.1016/j.scitotenv.2017.02.173
https://doi.org/10.1126/science.1256688
https://www.ncbi.nlm.nih.gov/pubmed/25430773
https://doi.org/10.1038/s41597-020-0567-7
https://www.ncbi.nlm.nih.gov/pubmed/32661237
https://doi.org/10.1126/science.aap9516
https://doi.org/10.1038/s41586-019-1418-6
https://www.ncbi.nlm.nih.gov/pubmed/31341281
https://doi.org/10.1038/s41597-020-0437-3
https://www.ncbi.nlm.nih.gov/pubmed/32218461


Agronomy 2023, 13, 2822 24 of 25

28. Phillips, H.R.P.; Guerra, C.A.; Bartz, M.L.C.; Briones, M.J.I.; Brown, G.; Crowther, T.W.; Ferlian, O.; Gongalsky, K.B.; van den
Hoogen, J.; Krebs, J.; et al. Global distribution of earthworm diversity. Science 2019, 366, 480–485. [CrossRef]

29. Arrouays, D.; Grundy, M.G.; Hartemink, A.E.; Hempel, J.W.; Heuvelink, G.B.M.; Hong, S.Y.; Lagacherie, P.; Lelyk, G.; McBratney,
A.B.; McKenzie, N.J.; et al. GlobalSoilMap: Toward a fine-resolution global grid of soil properties. Adv. Agron. 2014, 125, 93–134.
[CrossRef]

30. Chen, S.C.; Arrouays, D.; Leatitia Mulder, V.; Poggio, L.; Minasny, B.; Roudier, P.; Libohova, Z.; Lagacherie, P.; Shi, Z.; Hannam, J.;
et al. Digital mapping of GlobalSoilMap soil properties at a broad scale: A review. Geoderma 2022, 409, 115567. [CrossRef]

31. Liu, F.; Wu, H.Y.; Zhao, Y.G.; Li, D.; Yang, J.-L.; Song, X.; Shi, Z.; Zhu, A.X.; Zhang, G.-L. Mapping high resolution National Soil
Information Grids of China. Sci. Bull. 2022, 67, 328–340. [CrossRef]

32. Poggio, L.; de Sousa, L.M.; Batjes, N.H.; Heuvelink, G.B.M.; Kempen, B.; Ribeiro, E.; Rossiter, D. SoilGrids 2.0: Producing soil
information for the globe with quantified spatial uncertainty. Soil 2021, 7, 217–240. [CrossRef]

33. FAO; IIASA. Harmonized World Soil Database Version 2.0; FAO: Rome, Italy, 2023. [CrossRef]
34. Köninger, J.; Panagos, P.; Jones, A.; Briones, M.J.I.; Orgiazzi, A. In defence of soil biodiversity: Towards an inclusive protection in

the European Union. Biol. Conserv. 2022, 268, 109475. [CrossRef]
35. Bohanec, M. DEX (Decision EXpert): A qualitative hierarchical multi-criteria method. In Multiple Criteria Decision Making:

Techniques, Analysis and Applications; Kulkarni, A.J., Ed.; Springer: Singapore, 2022; pp. 39–78.
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