Mentha suaveolens as Allelopathic Biomass for Weed Control: Phenolics, Organic Acids, and Volatile Organic Compounds Profiles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Greenhouse Assays
2.2.1. Establishment and Initial Growth of Maize and Weeds
2.2.2. Temporary Phytotoxic Effects of Apple Mint Biomass
2.3. Chemical Analyses of Apple Mint Aerial Biomass
2.3.1. Reagents and Standards
2.3.2. Phenolic Compounds: Extraction, Identification, and Quantification Using High-Performance Liquid Chromatography Coupled with a Diode Array Detector (HPLC-DAD)
2.3.3. Organic Acids: Extraction, Identification, and Quantification via HPLC-DAD
2.3.4. Volatile Organic Compounds: Extraction and Identification via Headspace (HS)-Gas Chromatography–Mass Spectrometry (GC-MS)
2.4. Statistical Analyses
3. Results
3.1. Establishment and Early Growth of Maize and Weeds
3.2. Temporary Phytotoxic Effects of Apple Mint Biomass
3.3. Chemical Analyses of Apple Mint Flowering Aerial Biomass
3.3.1. Phenolic Compounds and Organic Acids
3.3.2. Volatile Organic Compounds
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scavo, A.; Mauromicale, G. Crop allelopathy for sustainable weed management in agroecosystems: Knowing the present with a view to the future. Agronomy 2021, 11, 2104. [Google Scholar] [CrossRef]
- Heisey, R.M. Evidence for Allelopathy by Tree-of-Heaven (Ailanthus altissima). J. Chem. Ecol. 1990, 16, 2039–2055. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Pérez, C.; Valencia-Gredilla, F.; Royo-Esnal, A.; Recasens, J. Organic Mulches as an Alternative to Conventional Under-Vine Weed Management in Mediterranean Irrigated Vineyards. Plants 2022, 11, 2785. [Google Scholar] [CrossRef]
- Nasir, H.; Iqbal, Z.; Hiradate, S.; Fujii, Y. Allelopathic Potential of Robinia pseudoacacia L. J. Chem. Ecol. 2005, 31, 2179–2192. [Google Scholar] [CrossRef] [PubMed]
- Briones-Rizo, M.; Pérez-Corona, M.E.; Medina-Villar, S. The Other Way around: The Utility of a Plant Invader. Renew. Agric. Food Syst. 2023, 38, e8. [Google Scholar] [CrossRef]
- Puig, C.G.; Álvarez-Iglesias, L.; Reigosa, M.J.; Pedrol, N. Eucalyptus globulus Leaves Incorporated as Green Manure for Weed Control in Maize. Weed Sci. 2013, 61, 154–161. [Google Scholar] [CrossRef]
- Puig, C.G.; Revilla, P.; Barreal, M.E.; Reigosa, M.J.; Pedrol, N. On the suitability of Eucalyptus globulus green manure for field weed control. Crop Prot. 2019, 121, 57–65. [Google Scholar] [CrossRef]
- Puig, C.G.; Gonçalves, R.F.; Valentão, P.; Andrade, P.B.; Reigosa, M.J.; Pedrol, N. The Consistency Between Phytotoxic Effects and the Dynamics of Allelochemicals Release from Eucalyptus globulus Leaves Used as Bio-herbicide Green Manure. J. Chem. Ecol. 2018, 44, 658–670. [Google Scholar] [CrossRef]
- Macías, F.A.; Mejías, F.J.; Molinillo, J.M. Recent advances in allelopathy for weed control: From knowledge to applications. Pest Manag. Sci. 2019, 75, 2413–2436. [Google Scholar] [CrossRef]
- Llorens-Molina, J.A.; Rivera Seclén, C.F.; Vacas Gonzalez, S.; Boira Tortajada, H. Mentha suaveolens Ehrh. chemotypes in eastern iberian peninsula: Essential oil variation and relation with ecological factors. Chem. Biodivers. 2017, 14, e1700320. [Google Scholar] [CrossRef]
- Salehi, B.; Stojanović-Radić, Z.; Matejić, J.; Sharopov, F.; Antolak, H.; Kręgiel, D.; Sen, S.; Sharifi-Rad, M.; Acharya, K.; Sharifi-Rad, R.; et al. Plants of genus Mentha: From farm to food factory. Plants 2018, 7, 70. [Google Scholar] [CrossRef] [PubMed]
- Hassani El, F.Z. Characterization, activities, and ethnobotanical uses of Mentha species in Morocco. Heliyon 2020, 6, e05480. [Google Scholar] [CrossRef] [PubMed]
- Mamadalieva, N.Z.; Hussain, H.; Xiao, J. Recent advances in genus Mentha: Phytochemistry, antimicrobial effects, and food applications. Food Front. 2020, 1, 435–458. [Google Scholar] [CrossRef]
- Kadoglidou, K.I.; Chatzopoulou, P. Approaches and Applications of Mentha Species in Sustainable Agriculture. Sustainability 2023, 15, 5245. [Google Scholar] [CrossRef]
- Božović, M.; Pirolli, A.; Ragno, R. Mentha suaveolens Ehrh. (Lamiaceae) essential oil and its main constituent piperitenone oxide: Biological activities and chemistry. Molecules 2015, 20, 8605–8633. [Google Scholar] [CrossRef]
- Benali, T.; Bouyahya, A.; Habbadi, K.; Zengin, G.; Khabbach, A.; Hammani, K. Chemical composition and antibacterial activity of the essential oil and extracts of Cistus ladaniferus subsp. ladanifer and Mentha suaveolens against phytopathogenic bacteria and their ecofriendly management of phytopathogenic bacteria. Biocatal. Agric. Biotechnol. 2020, 28, 101696. [Google Scholar] [CrossRef]
- Yakhlef, G.; Hambaba, L.; Pinto, D.C.; Silva, A.M. Chemical composition and insecticidal, repellent and antifungal activities of essential oil of Mentha rotundifolia (L.) from Algeria. Ind. Crops Prod. 2020, 158, 112988. [Google Scholar] [CrossRef]
- Ainane, T.; Mohamed Abdoul-Latif, F.; Ouassil, M.; Am, A.; Ainane, A. Antagonistic antifungal activities of Mentha suaveolens and Artemisia absinthium essential oils from Morocco. Pharmacologyonline 2021, 2, 470–478. [Google Scholar]
- Ćavar Zeljković, S.; Šišková, J.; Komzáková, K.; De Diego, N.; Kaffková, K.; Tarkowski, P. Phenolic compounds and biological activity of selected Mentha species. Plants 2021, 10, 550. [Google Scholar] [CrossRef]
- Fatiha, B.; Didier, H.; Naima, G.; Khodir, M.; Martin, K.; Léocadie, K.; Caroline, S.; Mohamed, C.; Pierre, D. Phenolic composition, in vitro antioxidant effects and tyrosinase inhibitory activity of three Algerian Mentha species: M. spicata (L.), M. pulegium (L.) and M. rotundifolia (L.) Huds (Lamiaceae). Ind. Crops Prod. 2015, 74, 722–730. [Google Scholar] [CrossRef]
- Aldogman, B.; Bilel, H.; Moustafa, S.M.N.; Elmassary, K.F.; Ali, H.M.; Alotaibi, F.Q.; Hamza, M.; Abdelgawad, M.A.; El-Ghorab, A.H. Investigation of chemical compositions and biological activities of Mentha suaveolens L. from Saudi Arabia. Molecules 2022, 27, 2949. [Google Scholar] [CrossRef] [PubMed]
- Bouymajane, A.; Filali, F.R.; El Majdoub, Y.O.; Ouadik, M.; Abdelilah, R.; Cavò, E.; Miceli, N.; Taviano, M.F.; Mondello, L.; Cacciola, F. Phenolic compounds, antioxidant and antibacterial activities of extracts from aerial parts of Thymus zygis subsp. gracilis, Mentha suaveolens and Sideritis incana from Morocco. Chem. Biodivers. 2022, 19, e202101018. [Google Scholar] [CrossRef]
- Oumzil, H.; Ghoulami, S.; Rhajaoui, M.; Ilidrissi, A.; Fkih-Tetouani, S.; Faid, M.; Benjouad, A. Antibacterial and antifungal activity of essential oils of Mentha suaveolens. Phytother. Res. 2002, 16, 727–731. [Google Scholar] [CrossRef] [PubMed]
- Spagnoletti, A.; Guerrini, A.; Tacchini, M.; Vinciguerra, V.; Leone, C.; Maresca, I.; Simonetti, G.; Sacchetti, G.; Angiolella, L. Chemical composition and bio-efficacy of essential oils from italian aromatic plants: Mentha suaveolens, Coridothymus capitatus, Origanum hirtum and Rosmarinus officinalis. Nat. Prod. Commun. 2016, 11, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- de Araujo Moysés, D.; dos Santos Martins, H.P.; Ribeiro, M.S.; da Rocha Galucio, N.C.; de Souza, R.R.; dos Santos Correa, R.M.; Arimateia Rodrigues, J.; Dolabela, M.F.; Vieira Vale, V. Mentha sp. Essential Oil and Its Applicability in Brazil. In Essential Oils: Extraction Methods and Applications, 1st ed.; Inamuddin Altalhi, T., Neves Cruz, J., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2023; pp. 125–155. [Google Scholar] [CrossRef]
- Singh, P.; Pandey, A.K. Prospective of essential oils of the genus Mentha as biopesticides: A review. Front. Plant Sci. 2018, 9, 1295. [Google Scholar] [CrossRef]
- Araniti, F.; Zumbo, A.; Abenavoli, M.R. Phytotoxic activity and GC-MS chemical characterization of apple mint foliar volatiles and essential oils. J. Allelochem. Interact. 2018, 4, 23–31. [Google Scholar]
- Mirmostafaee, S.; Azizi, M.; Fujii, Y. Study of allelopathic interaction of essential oils from medicinal and aromatic plants on seed germination and seedling growth of lettuce. Agronomy 2020, 10, 163. [Google Scholar] [CrossRef]
- Dhima, K.V.; Vasilakoglou, I.B.; Gatsis, T.D.; Panou-Philotheou, E.; Eleftherohorinos, I.G. Effects of aromatic plants incorporated as green manure on weed and maize development. Field Crops Res. 2009, 110, 235–241. [Google Scholar] [CrossRef]
- Chalkos, D.; Kadoglidou, K.; Karamanoli, K.; Fotiou, C.; Pavlatou-Ve, A.; Eleftherohorinos, I.; Constantinidou, H.-I.; Vokou, D. Mentha spicata and Salvia fruticosa Composts as Soil Amendments in Tomato Cultivation. Plant Soil 2010, 332, 495–509. [Google Scholar] [CrossRef]
- FAOSTAT. 2021. Available online: https://www.fao.org/faostat/en/ (accessed on 28 September 2023).
- Gesteiro, N.; Butron, A.; Santiago, R.; Gomez, L.D.; Lopez-Malvar, A.; Alvarez-Iglesias, L.; Revilla, P.; Malvar, R.A. Breeding Dual-Purpose Maize: Grain Production and Biofuel Conversion of the Stover. Agronomy 2023, 13, 1352. [Google Scholar] [CrossRef]
- Sharma, N.; Rayamajhi, M. Different Aspects of Weed Management in Maize (Zea mays L.): A Brief Review. Adv. Agric. 2022, 2022, 7960175. [Google Scholar] [CrossRef]
- Young, S.L. A unifying approach for IWM. Weed Sci. 2020, 68, 435–436. [Google Scholar] [CrossRef]
- Merfield, C.N. Redefining Weeds for the Post-herbicide Era. Weed Res. 2022, 62, 263–267. [Google Scholar] [CrossRef]
- Álvarez-Iglesias, L.; Puig, C.G.; Revilla, P.; Reigosa, M.J.; Pedrol, N. Faba bean as green manure for field weed control in maize. Weed Res. 2018, 58, 437–449. [Google Scholar] [CrossRef]
- Abayechaw, D.; Worku, W.; Ayalew, T. Effect of population density and spatial arrangements on the productivity of Zea mays L. and Mentha spicata L. in intercropping systems at Wondo Genet, rift valley of Ethiopia. Ukr. J. Ecol. 2023, 13, 14–27. [Google Scholar] [CrossRef]
- Karkanis, A.; Alexiou, A.; Katsaros, C.; Petropoulos, S. Allelopathic activity of spearmint (Mentha spicata L.) and peppermint (Mentha × piperita L.) reduces yield, growth, and photosynthetic rate in a succeeding crop of maize (Zea mays L.). Agronomy 2019, 9, 461. [Google Scholar] [CrossRef]
- Wuest, S.B.; Albrecht, S.L.; Skirvin, K.W. Crop residue position and interference with wheat seedling development. Soil Till. Res. 2000, 55, 175–182. [Google Scholar] [CrossRef]
- Guitian, F.; Carballas, T. Técnicas de Análisis de Suelos, 2nd ed.; Pico Sacro: Santiago de Compostela, Spain, 1976; 179p. [Google Scholar]
- Peech, M.; Alexander, L.T.; Dean, L.A.; Reed, J.F. Methods of Soil Analysis for Soil Fertility Investigations; USDA: Washington, DC, USA, 1947. [Google Scholar]
- Areias, F.; Valentao, P.; Andrade, P.; Ferreres, F.; Seabra, R. Phenolic fingerprint of peppermint leaves. Food Chem. 2001, 73, 307–311. [Google Scholar] [CrossRef]
- Oliveira, I.; Valentão, P.; Lopes, R.; Andrade, P.B.; Bento, A.; Pereira, J.A. Phytochemical characterization and radical scavenging activity of Portulaca oleraceae L. leaves and stems. Microchem. J. 2009, 92, 129–134. [Google Scholar] [CrossRef]
- Synowiec, A.; Smeda, A.; Adamiec, J.; Kalemba, D. The effect of microencapsulated essential oils on the initial growth of maize (Zea mays) and common weeds (Echinochloa crus-galli and Chenopodium album). Prog. Plant Prot. 2016, 56, 372–378. [Google Scholar] [CrossRef]
- Gallandt, E.R. How can we target the weed seedbank? Weed Sci. 2006, 54, 588–596. [Google Scholar] [CrossRef]
- Kruidhof, H.M.; Gallandt, E.R.; Haramoto, E.R.; Bastiaans, L. Selective weed suppression by cover crop residues: Effects of seed mass and timing of species’ sensitivity. Weed Res. 2011, 51, 177–186. [Google Scholar] [CrossRef]
- Dhima, K.V.; Vasilakoglou, I.B.; Eleftherohorinos, I.G.; Lithourgidis, A.S. Allelopathic Potential of Winter Cereals and Their Cover Crop Mulch Effect on Grass Weed Suppression and Corn Development. Crop Sci. 2006, 46, 345–352. [Google Scholar] [CrossRef]
- Álvarez-Iglesias, L.; Puig, C.G.; Garabatos, A.; Reigosa, M.J.; Pedrol, N. Vicia faba aqueous extracts and plant material can suppress weeds and enhance crops. Allelopathy J. 2014, 34, 299–314. [Google Scholar]
- Rosenfeld, A.; Rayns, F. Sort out Your Soil: A Practical Guide to Green Manures; Cotswold Grass Seeds Direct: Moreton-in-Marsh, UK, 2011; pp. 1–21. [Google Scholar]
- Kruidhof, H.M.; Bastiaans, L.; Krop, M.J. Ecological weed management by cover cropping: Effects on weed growth in autumn and weed establishment in spring. Weed Res. 2008, 48, 492–502. [Google Scholar] [CrossRef]
- Kadoglidou, K.; Chalkos, D.; Karamanoli, K.; Eleftherohorinos, I.G.; Constantinidou, H.I.A.; Vokou, D. Aromatic plants as soil amendments: Effects of spearmint and sage on soil properties, growth and physiology of tomato seedlings. Sci. Hortic. 2014, 179, 25–35. [Google Scholar] [CrossRef]
- Tao, J.; Liu, X.; Liang, Y.; Niu, J.; Xiao, Y.; Gu, Y.; Ma, L.; Meng, D.; Zhang, Y.; Huang, W.; et al. Maize growth responses to soil microbes and soil properties after fertilization with different green manures. Appl. Microbiol. Biotechnol. 2016, 101, 1289–1299. [Google Scholar] [CrossRef]
- Álvarez, I.; Sam, O.; Reynaldo, I.; Testillano, P.; Risueño, M.D.C. Toxic effect of Al3+ ion in the root tip of two Cuban rice cultivars (Oryza sativa L.). Rev. Int. Contam. Ambient. 2013, 29, 315–323. [Google Scholar]
- Yang, M.; Tan, L.; Xu, Y.; Zhao, Y.; Cheng, F.; Ye, S.; Jiang, W. Effect of low pH and aluminum toxicity on the photosynthetic characteristics of different fast-growing Eucalyptus vegetatively propagated clones. PLoS ONE 2015, 10, e0130963. [Google Scholar] [CrossRef]
- De Mastro, G.; El Mahdi, J.; Ruta, C. Bioherbicidal potential of the essential oils from Mediterranean Lamiaceae for weed control in organic farming. Plants 2021, 10, 818. [Google Scholar] [CrossRef]
- D’Abrosca, B.; DellaGreca, M.; Fiorentino, A.; Monaco, P.; Zarrelli, A. Low molecular weight phenols from the bioactive aqueous fraction of Cestrum parqui. J. Agric. Food Chem. 2004, 52, 4101–4108. [Google Scholar] [CrossRef] [PubMed]
- Einhellig, F.A.; Galindo, J.C.G.; Molinillo, J.M.G.; Cutler, H.G. Mode of allelochemical action of phenolic compounds. In Allelopathy: Chemistry and Mode of Action of Allelochemicals, 1st ed.; Macias, F.A., Galindo, J.C.G., Molinillo, J.M.G., Eds.; CRC Press: Boca Ratón, FL, USA, 2004; pp. 217–238. [Google Scholar]
- Li, Z.H.; Wang, Q.; Ruan, X.; Pan, C.D.; Jiang, D.A. Phenolics and plant allelopathy. Molecules 2010, 15, 8933–8952. [Google Scholar] [CrossRef]
- Siham, F.; Rachid, B.; Al-Zoubi, R.M. Chemical composition and antioxidant effect of Mentha rotundifolia extracts. Pharmacogn. J. 2019, 11, 521–526. [Google Scholar] [CrossRef]
- Park, Y.J.; Baek, S.A.; Choi, Y.; Kim, J.K.; Park, S.U. Metabolic profiling of nine Mentha species and prediction of their antioxidant properties using chemometrics. Molecules 2019, 24, 258. [Google Scholar] [CrossRef]
- Araniti, F.; Costas-Gil, A.; Cabeiras-Freijanes, L.; Lupini, A.; Sunseri, F.; Reigosa, M.J.; Abenavoli, M.R.; Sanchez-Moreiras, A.M. Rosmarinic acid induces programmed cell death in Arabidopsis seedlings through reactive oxygen species and mitochondrial dysfunction. PLoS ONE 2018, 13, e0208802. [Google Scholar] [CrossRef] [PubMed]
- Appiah, K.S.; Mardani, H.K.; Omari, R.A.; Eziah, V.Y.; Ofosu-Anim, J.; Onwona-Agyeman, S.; Amoatey, C.A.; Kawada, K.; Katsura, K.; Oikawa, Y.; et al. Involvement of carnosic acid in the phytotoxicity of Rosmarinus officinalis leaves. Toxins 2018, 10, 498. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, J.; Zhu, Y.; Guo, L.; Ji, R.; Miao, Y.; Guo, L.; Du, H.; Liu, D. Caffeic acid, an allelochemical in Artemisia argyi, inhibits weed growth via suppression of mitogen-activated protein kinase signaling pathway and the biosynthesis of gibberellin and phytoalexin. Front. Plant Sci. 2022, 12, 802198. [Google Scholar] [CrossRef]
- Kamran, M.; Cheema, Z.A.; Farooq, M. Influence of Foliage Applied Allelopathic Water Extracts on the Grain Yield, Quality and Economic Returns of Hybrid Maize. Int. J. Agric. Biol. 2016, 18, 577–583. [Google Scholar] [CrossRef]
- Dorman, H.D.; Koşar, M.; Kahlos, K.; Holm, Y.; Hiltunen, R. Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. J. Agric. Food Chem. 2003, 51, 4563–4569. [Google Scholar] [CrossRef]
- Beninger, C.W.; Hall, J.C. Allelopathic activity of luteolin 7-O-β-glucuronide isolated from Chrysanthemum morifolium L. Biochem. Syst. Ecol. 2005, 33, 103–111. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Qi, S.S.; Dai, Z.C.; Zhang, M.; Sun, J.F.; Du, D.L. Allelopathic potential of flavonoids identified from invasive plant Conyza canadensis on Agrostis stolonifera and Lactuca sativa. Allelopathy J. 2017, 41, 223–238. [Google Scholar] [CrossRef]
- Chaves, N.; Sosa, T.; Alias, J.C.; Escudero, J.C. Identification and effects of interaction phytotoxic compounds from exudate of Cistus ladanifer leaves. J. Chem. Ecol. 2001, 27, 611–621. [Google Scholar] [CrossRef]
- Zhou, W.; Liao, J.; Zhou, B.; Yang, R.; Lin, W.; Zhang, D.; Wang, H.; Qi, Z. Rapidly reducing phytotoxicity of green waste for growing media by incubation with ammonium. Environ. Technol. Innov. 2023, 31, 103136. [Google Scholar] [CrossRef]
- Shehata, S.A.; Abouziena, H.F.; Abdelgawad, K.F.; Elkhawaga, F.A. Weed control efficacy, growth and yield of potato (Solanum tuberosum L.) as affected by alternative weed control methods. Potato Res. 2019, 62, 139–155. [Google Scholar] [CrossRef]
- Abouziena, H.F.; Omar, A.A.; Sharma, S.D.; Singh, M. Efficacy comparison of some new natural-product herbicides for weed control at two growth stages. Weed Technol. 2009, 23, 431–437. [Google Scholar] [CrossRef]
- Agnello, A.C.; Huguenot, D.; van Hullebusch, E.D.; Esposito, G. Phytotoxicity of citric acid and Tween® 80 for potential use as soil amendments in enhanced phytoremediation. Int. J. Phytoremediation 2015, 17, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Z.; Sun, Z.H.; Chen, W.H.; Lin, W.X. Allelopathic effects of organic acid allelochemicals on melon. Acta Ecol. Sin. 2013, 33, 4591–4598. [Google Scholar] [CrossRef]
- Bashar, H.K.; Juraimi, A.S.; Ahmad-Hamdani, M.S.; Uddin, M.K.; Asib, N.; Anwar, M.P.; Karim, S.R.; Rahaman, F.; Haque, M.A.; Hossain, A. Documentation of Phytotoxic Compounds Existing in Parthenium hysterophorus L. Leaf and Their Phytotoxicity on Eleusine indica (L.) Gaertn. and Digitaria sanguinalis (L.) Scop. Toxins 2022, 14, 561. [Google Scholar] [CrossRef]
- Chen, X.; Lin, J.; Shao, X.; Ou, X.; Sun, C.; Lu, G.; Wang, Z. Effects of oxalic acid on the activities of antioxidases and phenylalanine ammonialyase in leaves of Arabidopsis. J. Fujian Agric. For. Uni. (Nat. Sci. Ed.) 2009, 38, 356–360. [Google Scholar]
- Martino, L.D.; Mancini, E.; de Almeida, L.F.R.; Feo, V.D. The antigerminative activity of twenty-seven monoterpenes. Molecules 2010, 15, 6630–6637. [Google Scholar] [CrossRef]
- Weidenhamer, J.D.; Cipollini, D.; Morris, K.; Gurusinghe, S.; Weston, L.A. Ecological realism and rigor in the study of plant-plant allelopathic interactions. Plant Soil 2023, 489, 1–39. [Google Scholar] [CrossRef]
- Kordali, S.; Cakir, A.; Sutay, S. Inhibitory effects of monoterpenes on seed germination and seedling growth. Z. Naturforsch. C 2007, 62, 207–214. [Google Scholar] [CrossRef]
- Saad, M.M.; Gouda, N.A.; Abdelgaleil, S.A. Bioherbicidal activity of terpenes and phenylpropenes against Echinochloa crus-galli. J. Environ. Sci. Health B 2019, 54, 954–963. [Google Scholar] [CrossRef]
- Singh, H.P.; Batish, D.R.; Kaur, S.; Arora, K.; Kohli, R.K. α-Pinene Inhibits Growth and Induces Oxidative Stress in Roots. Ann. Bot. 2006, 98, 1261–1269. [Google Scholar] [CrossRef]
- Graña, E.; Díaz-Tielas, C.; M Sanchez-Moreiras, A.; J Reigosa, M. Mode of action of monoterpenes in plant-plant interactions. Curr. Bioact. Compd. 2012, 8, 80–89. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Q.X.; Song, B. Pesticidal activity and mode of action of monoterpenes. J. Agric. Food Chem. 2022, 70, 4556–4571. [Google Scholar] [CrossRef] [PubMed]
- Pardo-Muras, M.; Puig, C.G.; López-Nogueira, A.; Cavaleiro, C.; Pedrol, N. On the bioherbicide potential of Ulex europaeus and Cytisus scoparius: Profiles of volatile organic compounds and their phytotoxic effects. PLoS ONE 2018, 13, e0205997. [Google Scholar] [CrossRef]
- Boyom, F.F.; Ngouana, V.; Zollo, P.H.A.; Menut, C.; Bessiere, J.M.; Gut, J.; Rosenthal, P.J. Composition and anti-plasmodial activities of essential oils from some Cameroonian medicinal plants. Phytochemistry 2003, 64, 1269–1275. [Google Scholar] [CrossRef] [PubMed]
- Pardo-Muras, M.; Puig, C.G.; Pedrol, N. Complex synergistic interactions among volatile and phenolic compounds underlie the effectiveness of allelopathic residues added to the soil for weed control. Plants 2022, 11, 1114. [Google Scholar] [CrossRef]
- Sarheed, M.; Schärer, H.J.; Wang-Müller, Q.; Flury, P.; Maes, C.; Genva, M.; Fauconnier, M.L.; Nick, P. Signal, Not Poison—Screening Mint Essential Oils for Weed Control Leads to Horsemint. Agriculture 2023, 13, 712. [Google Scholar] [CrossRef]
Variable | Days after Sowing | Sig. a | 0% (w/w) | 1% (w/w) | 2% (w/w) | |||
---|---|---|---|---|---|---|---|---|
Total dicot weeds per pot (n) | 4 | * | 40.0 ± 7.0 | a | 0.0 ± 0.0 | b | 0.0 ± 0.0 | b |
6 | * | 67.7 ± 14.6 | a | 5.0 ± 2.6 | b | 0.0 ± 0.0 | b | |
8 | * | 76.0 ± 15.7 | a | 7.3 ± 5.0 | b | 0.7 ± 0.6 | b | |
10 | * | 77.7 ± 11.2 | a | 8.7 ± 5.0 | b | 2.3 ± 1.5 | b | |
13 | *** | 60.0 ± 9.7 | a | 15.7 ± 8.1 | b | 6.3 ± 2.5 | b | |
Total monocot weeds per pot (n) | 4 | * | 9.0 ± 4.4 | a | 1.3 ± 0.6 | b | 1.0 ± 0.0 | b |
6 | * | 26.7 ± 7.0 | a | 15.0 ± 2.6 | b | 16.0 ± 1.0 | b | |
8 | n.s. | 31.3 ± 5.9 | a | 21.7 ± 3.1 | a | 21.7 ± 4.5 | a | |
10 | n.s. | 31.7 ± 5.7 | a | 23.0 ± 5.3 | a | 24.0 ± 2.6 | a | |
13 | n.s. | 31.3 ± 6.1 | a | 23.0 ± 7.0 | a | 24.3 ± 3.1 | a | |
Total maize seedlings per pot (n) | 4 | n.s. | 0.0 ± 0.0 | a | 0.3 ± 0.6 | a | 0.0 ± 0.0 | a |
6 | n.s. | 3.0 ± 1.0 | a | 4.0 ± 0.0 | a | 3.0 ± 2.0 | a | |
8 | n.s. | 3.3 ± 0.6 | a | 4.0 ± 0.0 | a | 4.0 ± 1.0 | a | |
10 | n.s. | 3.7 ± 0.6 | a | 4.0 ± 0.0 | a | 4.7 ± 0.6 | a | |
13 | n.s. | 4.0 ± 1.0 | a | 4.3 ± 0.6 | a | 4.7 ± 0.6 | a |
Variable | Species | Sig. a | 0% (w/w) | 1% (w/w) | 2% (w/w) | |||
---|---|---|---|---|---|---|---|---|
Emerged seedlingsper pot (n) | C. arvensis | n.s. | 2.00 ± 0.00 | a | 2.00 ± 0.00 | a | 1.67 ± 1.53 | a |
A. retroflexus | * | 14.67 ± 3.22 | a | 0.33 ± 0.58 | b | 0.00 ± 0.00 | b | |
S. nigrum | * | 14.33 ± 3.22 | a | 1.00 ± 1.00 | b | 0.00 ± 0.00 | b | |
P. oleracea | * | 10.00 ± 6.25 | a | 20.33 ± 3.22 | b | 4.67 ± 3.51 | a | |
E. crus-galli | n.s. | 9.67 ± 1.16 | a | 9.67 ± 0.58 | a | 7.33 ± 3.06 | a | |
D. sanguinalis | n.s. | 23.67 ± 7.64 | a | 20.33 ± 5.13 | a | 17.00 ± 3.46 | a | |
Total small-seeded dicots | ** | 39.00 ± 11.53 | a | 21.67 ± 3.79 | b | 4.67 ± 3.51 | c | |
Total monocots | n.s. | 33.33 ± 7.51 | a | 30.00 ± 5.57 | a | 24.33 ± 4.16 | a | |
maize | n.s. | 4.00 ± 1.00 | a | 4.33 ± 0.58 | a | 4.67 ± 0.58 | a | |
Aerial biomassper pot (mg dw) | C. arvensis | n.s. | 17.73 ± 11.75 | a | 38.30 ± 3.37 | a | 18.90 ± 16.63 | a |
A. retroflexus | * | 11.20 ± 7.37 | a | 0.00 ± 0.00 | b | 0.00 ± 0.00 | b | |
S. nigrum | * | 34.83 ± 13.12 | a | 0.50 ± 0.46 | b | 0.00 ± 0.00 | b | |
P. oleracea | * | 7.27 ± 4.56 | a | 5.47 ± 2.22 | ab | 0.40 ± 0.40 | b | |
E. crus-galli | * | 57.77 ± 28.78 | a | 23.13 ± 8.47 | ab | 11.67 ± 3.88 | b | |
D. sanguinalis | * | 475.77 ± 213.77 | a | 23.33 ± 9.29 | b | 15.27 ± 6.55 | b | |
Total small-seeded dicots | * | 53.30 ± 20.34 | a | 5.97 ± 2.35 | b | 0.40 ± 0.40 | b | |
Total monocots | ** | 533.53 ± 236.83 | a | 46.46 ± 17.73 | b | 26.94 ± 7.56 | b | |
maize | n.s. | 1148.23 ± 87.32 | a | 817.43 ± 206.83 | a | 899.03 ± 133.61 | a | |
yield (%) b | * | 66.41 ± 10.32 | a | 89.80 ± 2.07 | b | 95.03 ± 2.74 | b | |
total ET (mL) c | * | 6186.47 ± 76.65 | a | 6037.20 ± 40.93 | ab | 5990.57 ± 98.02 | b | |
soil pH | *** | 4.38 ± 0.03 | a | 4.82 ± 0.01 | b | 5.10 ± 0.05 | c | |
soil EC (dS m−1) | ** | 0.16 ± 0.03 | a | 0.21 ± 0.02 | a | 0.33 ± 0.06 | b |
9 DAI | 30 DAI | |||||
---|---|---|---|---|---|---|
Sig. a | Control | M. suaveolens | Sig. a | Control | M. suaveolens | |
pH H2O | ** | 4.9 ± 0.0 | 5.3 ± 0.1 | *** | 4.77 ± 0.06 | 5.47 ± 0.06 |
Organic matter (%) | n.s. | 3.4 ± 0.2 | 3.6 ± 0.3 | * | 3.3 ± 0.3 | 3.7 ± 0.1 |
CECe b | *** | 3.43 ± 0.13 | 4.63 ± 0.14 | *** | 3.52 ± 0.06 | 4.42 ± 0.19 |
Ca2+ | *** | 1.00 ± 0.00 | 2.10 ± 0.10 | ** | 1.00 ± 0.00 | 2.07 ± 0.15 |
Mg2+ | ** | 0.13 ± 0.00 | 0.47 ± 0.03 | ** | 0.13 ± 0.00 | 0.58 ± 0.05 |
Na+ | ** | 0.15 ± 0.02 | 0.23 ± 0.02 | ** | 0.18 ± 0.00 | 0.37 ± 0.02 |
K+ | ** | 0.18 ± 0.01 | 1.20 ± 0.05 | *** | 0.17 ± 0.01 | 0.76 ± 0.03 |
Al3+ | *** | 1.97 ± 0.12 | 0.63 ± 0.06 | *** | 2.03 ± 0.06 | 0.63 ± 0.06 |
Compound | RT a | Content b | % c |
---|---|---|---|
Phenolic compounds | |||
Chlorogenic acid | 6 | 6.1 ± 0.05 | 0.2 |
Caffeic acid | 9 | 11.1 ± 0.36 | 0.4 |
Luteolin hexoside | 24 | 121.9 ± 0.56 | 4.4 |
Luteolin 7-O-rutinoside | 25 | 59.1 ± 0.48 | 2.1 |
Luteolin 7-O-glucoside | 27 | 57.3 ± 0.39 | 2 |
Rosmarinic acid | 32 | 2333.2 ± 8.23 | 83.4 |
Apigenin 7-O-glucoside | 35 | 208.1 ± 3.52 | 7.4 |
Organic acids | |||
Oxalic acid | 19.2 | 74.7 ± 1.12 | 1.6 |
cis-Aconitic acid | 24.5 | 2.4 ± 0.15 | 0.1 |
Citric acid | 30.2 | 2697.8 ± 79.93 | 57.9 |
Pyruvic acid | 32.2 | 360.1 ± 0.48 | 7.7 |
Malic acid | 36.4 | 617.2 ± 21.24 | 13.2 |
Quinic acid | 38.1 | 733.9 ± 6.97 | 15.7 |
trans-Aconitic acid | 43.3 | 93.9 ± 9.34 | 2 |
Shikimic acid | 47.1 | 55.2 ± 0.38 | 1.2 |
Fumaric acid | 60.9 | 26.7 ± 0.17 | 0.6 |
Compound | RT a | RA b |
---|---|---|
Sulfur compound | ||
Dimethyl sulfide | 4.3 | 1.26 |
Aldehydes | ||
2-methylpropanal | 4.5 | 0.89 |
3-methylbutanal | 5.6 | 0.86 |
2-methylbutanal | 5.7 | 0.62 |
Furans | ||
2-ethylfuran | 6.3 | 0.33 |
Esters | ||
2-methyl-propanoic acid ethyl ester | 7.3 | 0.50 |
Methyl 2-methylbutyrate | 7.7 | 2.55 |
Ethyl 2-methylbutyrate | 9.2 | 6.00 |
Propyl 2-methylbutyrate | 11.4 | 0.36 |
1-Octen-3-yl-acetate | 14.8 | 0.93 |
Aliphatic alcohol | ||
3-Octanol | 12.4 | 0.87 |
Monoterpenes | ||
β-thujene | 11 | 3.76 |
α-pinene | 11.2 | 15.06 |
Camphene | 11.6 | 4.71 |
(+)-Sabinene | 12.1 | 10.85 |
β-pinene | 12.2 | 13.19 |
β-myrcene | 12.4 | 6.50 |
Tricyclene | 12.7 | 0.29 |
α-terpinene | 13 | 1.29 |
D-limonene | 13.2 | 6.32 |
β-ocimene | 13.5 | 0.46 |
γ-terpinene | 13.9 | 1.70 |
p-menthan-1-ol | 14.1 | 8.38 |
Linalool | 14.6 | 0.55 |
4-thujanol | 14.7 | 0.75 |
Endo-borneol | 16.1 | 1.00 |
Terpinen-4-ol | 16.3 | 0.60 |
Sesquiterpenes | ||
α-bourbonene | 20.1 | 0.41 |
Caryophyllene | 20.7 | 1.20 |
Cadina-1(6),4-diene | 21.1 | 0.69 |
β-cubebene | 21.4 | 1.14 |
Germacrene D | 21.7 | 5.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puig, C.G.; Álvarez-Iglesias, L.; Pardo-Muras, M.; Andrade, P.B.; Pedrol, N. Mentha suaveolens as Allelopathic Biomass for Weed Control: Phenolics, Organic Acids, and Volatile Organic Compounds Profiles. Agronomy 2023, 13, 2793. https://doi.org/10.3390/agronomy13112793
Puig CG, Álvarez-Iglesias L, Pardo-Muras M, Andrade PB, Pedrol N. Mentha suaveolens as Allelopathic Biomass for Weed Control: Phenolics, Organic Acids, and Volatile Organic Compounds Profiles. Agronomy. 2023; 13(11):2793. https://doi.org/10.3390/agronomy13112793
Chicago/Turabian StylePuig, Carolina G., Lorena Álvarez-Iglesias, María Pardo-Muras, Paula B. Andrade, and Nuria Pedrol. 2023. "Mentha suaveolens as Allelopathic Biomass for Weed Control: Phenolics, Organic Acids, and Volatile Organic Compounds Profiles" Agronomy 13, no. 11: 2793. https://doi.org/10.3390/agronomy13112793
APA StylePuig, C. G., Álvarez-Iglesias, L., Pardo-Muras, M., Andrade, P. B., & Pedrol, N. (2023). Mentha suaveolens as Allelopathic Biomass for Weed Control: Phenolics, Organic Acids, and Volatile Organic Compounds Profiles. Agronomy, 13(11), 2793. https://doi.org/10.3390/agronomy13112793