Effects of Different Exogenous Organic Materials on Improving Soil Fertility in Coastal Saline-Alkali Soil
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Site and Materials
2.2. Experimental Design
2.3. Soil Analysis
2.4. Statistical Analysis
3. Results
3.1. Barley Yield in Organic Material-Treated Saline-Alkali Soil
3.2. Soil Barrier Factors
3.3. Soil Fertility
3.4. Contribution Analysis for Saline-Alkali Soil Fertility
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, K.; Liu, X. Reclamation effect of freezing saline water irrigation on heavy saline-alkali soil in the Hetao Irrigation District of North China. Catena 2021, 204, 105420. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, R.; Hu, J.; Zhao, F.; Wang, J.; Chu, H.; Zhang, J.; Dolfing, J.; Lin, X. Bacillus asahii comes to the fore in organic manure fertilized alkaline soils. Soil Biol. Biochem. 2015, 81, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Xin, X.; Zhang, J.; Zhu, A.; Zhang, C. Effects of long-term (23 years) mineral fertilizer and compost application on physical properties of fluvo-aquic soil in the North China Plain. Soil Till. Res. 2016, 156, 166–172. [Google Scholar] [CrossRef]
- Zhang, H.; Ding, W.; Yu, H.; He, X. Linking organic carbon accumulation to microbial community dynamics in a sandy loam soil: Result of 20 years compost and inorganic fertilizers repeated application experiment. Biol. Fert. Soils 2014, 51, 137–150. [Google Scholar] [CrossRef]
- Fooladmand, H.R. Estimating cation exchange capacity using soil textural data and soil organic matter content: A case study for the south of Iran. Arch. Agron. Soil Sci. 2008, 54, 381–386. [Google Scholar] [CrossRef]
- Guo, X.X.; Liu, H.T.; Wu, S.B. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions. Sci. Total Environ. 2019, 662, 501–510. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, T.; Liu, K.S.; Wang, L.; Wang, K.; Zhou, Y. Effects of different amendments for the reclamation of coastal saline soil on soil nutrient dynamics and electrical conductivity responses. Agr. Water Manag. 2015, 159, 115–122. [Google Scholar] [CrossRef]
- Grosbellet, C.; Vidal-Beaudet, L.; Caubel, V.; Charpentier, S. Improvement of soil structure formation by degradation of coarse organic matter. Geoderma 2011, 162, 27–38. [Google Scholar] [CrossRef]
- Mierzwa-Hersztek, M.; Gondek, K.; Lahori, A.H.; KopeĆ, M.; Mazurek, R.; Zaleski, T.; GŁĄB, T.; Wieczorek, J. Soil micromorphological and physical properties after application of composts with polyethylene and biocomponent-derived polymers added during composting. Pedosphere 2021, 31, 560–571. [Google Scholar] [CrossRef]
- Celik, I.; Gunal, H.; Budak, M.; Akpinar, C. Effects of long-term organic and mineral fertilizers on bulk density and penetration resistance in semi-arid Mediterranean soil conditions. Geoderma 2010, 160, 236–243. [Google Scholar] [CrossRef]
- Bai, Y.; Tao, T.; Gu, C.; Wang, L.; Feng, K.; Shan, Y. Mudflat soil amendment by sewage sludge: Soil physicochemical properties, perennial ryegrass growth, and metal uptake. Soil Sci. Plant Nutr. 2013, 59, 942–952. [Google Scholar] [CrossRef] [Green Version]
- Jafari Tarf, O.; Akça, M.O.; Donar, Y.O.; Bilge, S.; Turgay, O.C.; Sınağ, A. The short-term effects of pyro-and hydrochars derived from different organic wastes on some soil properties. Biomass Convers. Bior. 2021, 12, 129–139. [Google Scholar] [CrossRef]
- Corbin, A.T.; Thelen, K.D.; Robertson, G.P.; Leep, R.H. Influence of cropping systems on soil aggregate and weed seedbank dynamics during the organic transition period. Agron. J. 2010, 102, 1632–1640. [Google Scholar] [CrossRef]
- Bowden, C.L.; Evanylo, G.K.; Zhang, X.; Ervin, E.H.; Seiler, J.R. Soil carbon and physiological responses of corn and soybean to organic amendments. Compost Sci. Util. 2010, 18, 162–173. [Google Scholar] [CrossRef]
- Bao, S. Soil and Agro-Chemistry Analysis; China Agriculstural Press: Beijing, China, 2000. [Google Scholar]
- Zuo, W.; Gu, C.; Zhang, W.; Xu, K.; Wang, Y.; Bai, Y.; Shan, Y.; Dai, Q. Sewage sludge amendment improved soil properties and sweet sorghum yield and quality in a newly reclaimed mudflat land. Sci. Total Environ. 2019, 654, 541–549. [Google Scholar] [CrossRef]
- Jorenush, M.H.; Sepaskhah, A.R. Modelling capillary rise and soil salinity for shallow saline water table under irrigated and non-irrigated conditions. Agr. Water Manage. 2003, 61, 125–141. [Google Scholar] [CrossRef]
- Xiao, H.; Wang, L.; Cheng, W.; Zhao, J.; Pan, J.; Lu, W. Effect of different regulating materials on fast desalination of coastal saline soil. Acta Technol. Boreali-Sinica 2016, 31, 121–126. (In Chinese) [Google Scholar] [CrossRef]
- Moreno, J.L.; García, C.; Hernández, T.; Ayuso, M. Application of composted sewage sludges contaminated with heavy metals to an agricultural soil. Soil Sci. Plant Nutr. 1997, 43, 565–573. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till. Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Tian, X.; Fan, H.; Wang, J.; Ippolito, J.; Li, Y.; Feng, S.; An, M.; Zhang, F.; Wang, K. Effect of polymer materials on soil structure and organic carbon under drip irrigation. Geoderma 2019, 340, 94–103. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Cheshire, M.V.; Sparling, G.P.; Mundie, C.M. Effect of periodate treatment of soil on carbohydrate constituents and soil aggregation. J. Soil Sci. 1983, 34, 105–112. [Google Scholar] [CrossRef]
- Lax, A.; Garcia-Orenes, F. Carbohydrates of municipal solid wastes as aggregation factor of soils. Soil Technol. 1993, 6, 157–162. [Google Scholar] [CrossRef]
- Guo, Z.C.; Zhang, Z.B.; Zhou, H.; Rahman, M.T.; Wang, D.Z.; Guo, X.S.; Li, L.J.; Peng, X.H. Long-term animal manure application promoted biological binding agents but not soil aggregation in a Vertisol. Soil Till. Res. 2018, 180, 232–237. [Google Scholar] [CrossRef]
- Du, P.; Hu, W.; Feng, W.; Dai, D. Fermentation conditions of monascus pigments with vinegar wastes. China Brewing 2015, 34, 71–74. (In Chinese) [Google Scholar]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Mikutta, R.; Mikutta, C.; Kalbitz, K.; Scheel, T.; Kaiser, K.; Jahn, R. Biodegradation of forest floor organic matter bound to minerals via different binding mechanisms. Geochim. Cosmochim. Ac. 2007, 71, 2569–2590. [Google Scholar] [CrossRef]
- Kaiser, K.; Guggenberger, G.; Zech, W. Sorption of DOM and DOM fractions to forest soils. Geoderma 1996, 74, 281–303. [Google Scholar] [CrossRef]
- Wang, S.; Li, T.; Zheng, Z.; Chen, H.Y.H. Soil aggregate-associated bacterial metabolic activity and community structure in different aged tea plantations. Sci. Total Environ. 2019, 654, 1023–1032. [Google Scholar] [CrossRef]
- Rashid, M.I.; Mujawar, L.H.; Shahzad, T.; Almeelbi, T.; Ismail, I.M.; Oves, M. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol. Res. 2016, 183, 26–41. [Google Scholar] [CrossRef]
- Prescott, C.E. Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 2010, 101, 133–149. [Google Scholar] [CrossRef]
- Tian, G.; Badejo, M.A.; Okoh, A.I.; Ishida, F.; Kolawole, G.O.; Hayashi, Y.; Salako, F.K. Effects of residue quality and climate on plant residue decomposition and nutrient release along the transect from humid forest to Sahel of West Africa. Biogeochemistry 2007, 86, 217–229. [Google Scholar] [CrossRef]
- Qu, X.; Wu, J.; Li, J.; Hu, J.; Zhang, L. Effect of exogenous organic carbon on organic carbon and particulate organic carbon of black soil. J. Soil Water Conserv. 2017, 31, 278–286. [Google Scholar] [CrossRef]
- Zuo, W.; Bai, Y.; Lv, M.; Tang, Z.; Ding, C.; Gu, C.; Shan, Y.; Dai, Q.; Li, M. Sustained effects of one-time sewage sludge addition on rice yield and heavy metals accumulation in salt-affected mudflat soil. Environ. Sci. Pollut. R. 2021, 28, 7476–7490. [Google Scholar] [CrossRef]
- Jamali, M.K.; Kazi, T.G.; Arain, M.B.; Afridi, H.I.; Memon, A.R.; Jalbani, N.; Shah, A. Use of sewage sludge after liming as fertilizer for maize growth. Pedosphere 2008, 18, 203–213. [Google Scholar] [CrossRef]
- Kizilkaya, R.; Hepsen Turkay, F.S.; Turkmen, C.; Durmus, M. Vermicompost effects on wheat yield and nutrient contents in soil and plant. Arch. Agron. Soil Sci. 2012, 58, S175–S179. [Google Scholar] [CrossRef]
- Yu, G.; Zhu, K.; Zhang, P.; Lu, J.; Ma, H. Effect of vinegar residue mulching on soil and wheat yield-related traits in saline soil. J. Anhui Agr. Sci. 2021, 49, 2. (In Chinese) [Google Scholar] [CrossRef]
Items | Saline-Alkali Soil | Vinegar Residue | Sewage Sludge | Vermicompost |
---|---|---|---|---|
pH | 8.95 | 4.81 | 5.91 | 6.34 |
EC (mS cm−1) | 4.34 | 0.7 | 10.8 | 8.92 |
SOC (g kg−1) | 2.32 | 536.41 | 220.71 | 240.68 |
Total N (g kg−1) | 0.22 | 22.2 | 32.80 | 24.38 |
Total P (g kg−1) | 0.60 | 5.32 | 18.63 | 15.87 |
Alkaline N (mg kg−1) | 8.99 | 2829 | 1838 | 2467 |
Available P (mg kg−1) | 13.26 | 186 | 517 | 869 |
Year | Item | OM | OM Application Rate (t ha−1) | ||||
---|---|---|---|---|---|---|---|
0 | 25 | 50 | 100 | 200 | |||
2020 | Total N (g kg−1) | VR | 0.23 ± 0.01 d | 0.35 ± 0.03 c | 0.41 ± 0.03 c | 0.75 ± 0.03 b | 1.11 ± 0.03 a |
SS | 0.21 ± 0.03 e | 0.38 ± 0.05 d | 0.49 ± 0.07 c | 1.25 ± 0.03 b | 1.61 ± 0.04 a | ||
VC | 0.22 ± 0.01 e | 0.37 ± 0.02 d | 0.48 ± 0.03 c | 0.90 ± 0.04 b | 1.32 ± 0.06 a | ||
Alkaline N (mg kg−1) | VR | 43.93 ± 0.70 d | 53.05 ± 2.51 c | 55.53 ± 0.46 c | 89.88 ± 4.59 b | 120.60 ± 3.56 a | |
SS | 39.56 ± 8.37 d | 53.53 ± 4.05 d | 101.36 ± 4.49 c | 167.49 ± 11.03 b | 219.72 ± 13.94 a | ||
VC | 40.60 ± 3.05 e | 50.92 ± 2.67 d | 87.54 ± 2.57 c | 106.82 ± 3.70 b | 162.17 ± 5.78 a | ||
Total P (g kg−1) | VR | 0.61 ± 0.00 c | 0.64 ± 0.01 bc | 0.65 ± 0.04 bc | 0.66 ± 0.02 b | 0.73 ± 0.03 a | |
SS | 0.53 ± 0.03 e | 0.63 ± 0.03 d | 0.88 ± 0.04 c | 1.23 ± 0.04 b | 1.44 ± 0.05 a | ||
VC | 0.61 ± 0.06 e | 0.80 ± 0.07 d | 1.01 ± 0.05 c | 1.49 ± 0.05 b | 1.66 ± 0.07 a | ||
Available P (mg kg−1) | VR | 12.81 ± 0.39 b | 12.93 ± 0.41 b | 13.38 ± 0.42 b | 16.29 ± 0.15 a | 18.65 ± 0.55 a | |
SS | 12.93 ± 0.75 e | 40.12 ± 4.84 d | 73.15 ± 2.57 c | 110.31 ± 5.87 b | 165.62 ± 4.45 a | ||
VC | 12.72 ± 0.62 e | 38.90 ± 1.82 d | 62.17 ± 4.38 c | 116.75 ± 3.71 b | 132.71 ± 2.93 a | ||
2021 | Total N (g kg−1) | VR | 0.22 ± 0.01 d | 0.31 ± 0.05 c | 0.39 ± 0.01 c | 0.74 ± 0.04 b | 1.00 ± 0.06 a |
SS | 0.23 ± 0.05 d | 0.34 ± 0.03 d | 0.47 ± 0.04 c | 1.05 ± 0.13 b | 1.54 ± 0.01 a | ||
VC | 0.22 ± 0.03 d | 0.34 ± 0.04 c | 0.40 ± 0.04 c | 0.82 ± 0.03 b | 1.23 ± 0.07 a | ||
Alkaline N (mg kg−1) | VR | 42.91 ± 2.28 e | 52.39 ± 2.83 d | 60.37 ± 2.05 c | 75.23 ± 4.67 b | 81.99 ± 3.22 a | |
SS | 56.76 ± 3.96 e | 51.62 ± 5.45 d | 98.12 ± 7.70 c | 141.87 ± 5.37 b | 210.42 ± 10.03 a | ||
VC | 36.21 ± 3.37 e | 48.90 ± 2.75 d | 86.53 ± 1.71 c | 101.04 ± 2.31 b | 153.50 ± 4.77 a | ||
Total P (g kg−1) | VR | 0.59 ± 0.03 b | 0.62 ± 0.01 b | 0.67 ± 0.01 a | 0.67 ± 0.05 a | 0.69 ± 0.00 a | |
SS | 0.53 ± 0.03 e | 0.63 ± 0.03 d | 0.81 ± 0.04 c | 1.12 ± 0.03 b | 1.27 ± 0.03 a | ||
VC | 0.53 ± 0.03 e | 0.74 ± 0.04 d | 0.97 ± 0.09 c | 1.36 ± 0.06 b | 1.59 ± 0.01 a | ||
Available P (mg kg−1) | VR | 11.13 ± 0.45 d | 12.40 ± 0.45 c | 13.18 ± 0.70 c | 15.41 ± 0.38 b | 16.81 ± 0.21 a | |
SS | 12.46 ± 0.27 e | 35.99 ± 3.17 d | 63.28 ± 6.55 c | 106.96 ± 2.48 b | 145.04 ± 4.68 a | ||
VC | 12.32 ± 1.57 e | 32.27 ± 1.94 d | 54.12 ± 3.00 c | 92.04 ± 2.12 b | 113.53 ± 5.23 a |
OM | Item | Barley Yield | IPC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CC | DPC | SOC | TN | AN | TP | AP | pH | EC | WSA | ||
VR | SOC | 0.93 ** | −4.46 | / | −1.93 | 3.13 | −0.22 | 1.85 | 0.41 | 2.04 | 0.12 |
TN | 0.89 ** | −1.99 | −4.43 | / | 3.19 | −0.23 | 1.89 | 0.38 | 1.86 | 0.12 | |
AN | 0.88 ** | 3.22 | −4.33 | −1.97 | / | −0.23 | 1.89 | 0.38 | 1.82 | 0.11 | |
TP | 0.84 ** | −0.22 | −3.7 | −1.74 | 2.74 | / | 1.93 | 0.37 | 1.73 | 0.11 | |
AP | 0.83 ** | 1.6 | −4.28 | −1.95 | 3.16 | −0.27 | / | 0.38 | 1.68 | 0.14 | |
pH | −0.96 ** | −0.45 | 4.06 | 1.72 | −2.71 | 0.23 | −1.58 | / | −2.08 | −0.14 | |
EC | −0.97 ** | −2.24 | 4.06 | 1.66 | −2.61 | 0.2 | −1.48 | −0.42 | / | −0.13 | |
WSA | 0.28 ns | 0.23 | −2.41 | −1.04 | 1.48 | −0.17 | 0.93 | 0.28 | 1.3 | / | |
SS | SOC | 0.94 ** | −0.88 | / | 1.13 | 0.13 | −0.32 | 0.7 | −0.12 | −0.59 | 0.89 |
TN | 0.98 ** | 1.17 | −0.84 | / | 0.13 | −0.34 | 0.7 | −0.13 | −0.62 | 0.9 | |
AN | 0.98 ** | 0.14 | −0.85 | 1.15 | / | −0.33 | 0.7 | −0.14 | −0.63 | 0.94 | |
TP | 0.98 ** | −0.33 | −0.81 | 1.15 | 0.13 | / | 0.72 | −0.13 | −0.65 | 0.93 | |
AP | 0.96 ** | 0.7 | −0.85 | 1.14 | 0.13 | −0.34 | / | −0.14 | −0.66 | 0.95 | |
pH | −0.87 ** | 0.15 | 0.75 | −1.03 | −0.12 | 0.31 | −0.67 | / | 0.65 | −0.9 | |
EC | −0.87 ** | 0.7 | 0.74 | −1.03 | −0.12 | 0.32 | −0.67 | 0.14 | / | −0.93 | |
WSA | 0.95 ** | 0.97 | −0.81 | 1.09 | 0.13 | −0.33 | 0.7 | −0.14 | −0.68 | / | |
VC | SOC | 0.98 ** | 1.09 | / | 0.44 | −1.18 | 0.35 | −0.23 | 0.0015 | −0.22 | 0.73 |
TN | 0.98 ** | 0.44 | 1.08 | / | −1.18 | 0.35 | −0.23 | 0.0015 | −0.23 | 0.75 | |
AN | 0.94 ** | −1.22 | 1.06 | 0.43 | / | 0.35 | −0.23 | 0.0015 | −0.22 | 0.77 | |
TP | 0.96 ** | 0.36 | 1.06 | 0.43 | −1.18 | / | −0.24 | 0.0015 | −0.23 | −0.76 | |
AP | 0.97 ** | −0.24 | 1.04 | 0.42 | −1.15 | 0.37 | / | 0.0015 | −0.23 | 0.77 | |
pH | −0.93 ** | 0 | −1.02 | −0.42 | 1.13 | −0.34 | 0.23 | / | 0.22 | −0.73 | |
EC | −0.92 ** | 0.24 | −0.98 | −0.41 | 1.12 | −0.35 | 0.23 | −0.0015 | / | −0.78 | |
WSA | 0.92 ** | 0.81 | 0.98 | 0.41 | −1.16 | 0.34 | −0.23 | 0.0014 | −0.23 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, W.; Xu, L.; Qiu, M.; Yi, S.; Wang, Y.; Shen, C.; Zhao, Y.; Li, Y.; Gu, C.; Shan, Y.; et al. Effects of Different Exogenous Organic Materials on Improving Soil Fertility in Coastal Saline-Alkali Soil. Agronomy 2023, 13, 61. https://doi.org/10.3390/agronomy13010061
Zuo W, Xu L, Qiu M, Yi S, Wang Y, Shen C, Zhao Y, Li Y, Gu C, Shan Y, et al. Effects of Different Exogenous Organic Materials on Improving Soil Fertility in Coastal Saline-Alkali Soil. Agronomy. 2023; 13(1):61. https://doi.org/10.3390/agronomy13010061
Chicago/Turabian StyleZuo, Wengang, Lu Xu, Meihua Qiu, Siqiang Yi, Yimin Wang, Chao Shen, Yilin Zhao, Yunlong Li, Chuanhui Gu, Yuhua Shan, and et al. 2023. "Effects of Different Exogenous Organic Materials on Improving Soil Fertility in Coastal Saline-Alkali Soil" Agronomy 13, no. 1: 61. https://doi.org/10.3390/agronomy13010061
APA StyleZuo, W., Xu, L., Qiu, M., Yi, S., Wang, Y., Shen, C., Zhao, Y., Li, Y., Gu, C., Shan, Y., & Bai, Y. (2023). Effects of Different Exogenous Organic Materials on Improving Soil Fertility in Coastal Saline-Alkali Soil. Agronomy, 13(1), 61. https://doi.org/10.3390/agronomy13010061