Effects of Salinity Stress on Drip-Irrigated Tomatoes Grown under Mediterranean-Type Greenhouse Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Treatments
2.3. Analyses, Measurements, and Calculations
2.4. Statistical Analysis
3. Results and Discussion
3.1. Soil Salinity
3.2. Yield Components
3.3. Crop Evapotranspiration and Water Use Efficiency
3.4. Plant Height
3.5. Leaf Area Index, Chlorophyll Content Index, and Stomatal Conductance
3.6. Salt Tolerance Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Munns, R.; Gilliham, M. Salinity tolerance of crops—What is the cost? New Phytol. 2015, 208, 668–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machado, R.M.; Serralheiro, R.P. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef] [Green Version]
- Jamil, A.; Riaz, S.; Ashraf, M.; Foolad, M.R. Gene expression profiling of plants under salt stress. CRC. Crit. Rev. Plant Sci. 2011, 30, 435–458. [Google Scholar] [CrossRef]
- Dadshani, S.; Sharma, R.C.; Baum, M.; Ogbonnaya, F.C.; Léon, J.; Ballvora, A. Multi-dimensional evaluation of response to salt stress in wheat. PLoS ONE 2019, 14, e0222659. [Google Scholar] [CrossRef] [PubMed]
- Hossain, S. Present scenario of global salt affected soils, its management and importance of salinity research. Int. Res. J. Biol. Sci. 2019, 1, 1–3. [Google Scholar]
- Wang, W.; Vinocur, B.; Altman, A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta 2003, 218, 1–14. [Google Scholar] [CrossRef]
- Fernández-García, N.; Martínez, V.; Carvajal, M. Effect of salinity on growth, mineral composition, and water relations of grafted tomato plants. J. Plant Nutr. Soil Sci. 2004, 167, 616–622. [Google Scholar] [CrossRef]
- Baath, G.S.; Shukla, M.K.; Bosland, P.W.; Steiner, R.L.; Walker, S.J. Irrigation water salinity influences at various growth stages of Capsicum annuum. Agric. Water Manag. 2017, 179, 246–253. [Google Scholar] [CrossRef] [Green Version]
- Flores, A.M.; Shukla, M.K.; Schutte, B.J.; Picchioni, G.; Daniel, D. Physiologic response of six plant species grown in two contrasting soils and irrigated with brackish groundwater and RO concentrate. Arid. Land Res. Manag. 2017, 31, 182–203. [Google Scholar] [CrossRef]
- Mansour, E.; Moustafa, E.S.A.; Desoky, E.-S.M.; Ali, M.M.A.; Yasin, M.A.T.; Attia, A.; Alsuhaibani, N.; Tahir, M.U.; El-Hendawy, S. Multidimensional evaluation for detecting salt tolerance of bread wheat genotypes under actual saline field growing conditions. Plants 2020, 9, 1324. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Q.; Liu, M.; Zhou, H.; Ma, C.; Wang, P. Regulation of plant responses to salt stress. Int. J. Mol. Sci. 2021, 22, 4609. [Google Scholar] [CrossRef]
- Desoky, E.-S.M.; Merwad, A.-R.M.A.; Abo El-Maati, M.F.; Mansour, E.; Arnaout, S.M.A.I.; Awad, M.F.; Ramadan, M.F.; Ibrahim, S.A. Physiological and biochemical mechanisms of exogenously applied selenium for alleviating destructive impacts induced by salinity stress in bread wheat. Agronomy 2021, 11, 926. [Google Scholar] [CrossRef]
- Li, J.; Song, J.; Li, M.; Shang, S.; Mao, X.; Yang, J.; Adeloye, A.J. Optimization of irrigation scheduling for spring wheat based on simulation-optimization model under uncertainty. Agric. Water Manag. 2018, 208, 245–260. [Google Scholar] [CrossRef]
- Theiveyanathan, S.; Benyon, R.G.; Marcar, N.E.; Myers, B.J.; Polglase, P.J.; Falkiner, R.A. An irrigation-scheduling model for application of saline water to tree plantations. For. Ecol. Manag. 2004, 193, 97–112. [Google Scholar] [CrossRef]
- Maas, E.V. Salt Tolerance of Plants. In CRC Handbook of Plant Science in Agriculture Volume II; CRC Press: Boca Raton, FL, USA, 2019; p. 20. [Google Scholar]
- Shannon, M.C.; Grieve, C.M. Tolerance of vegetable crops to salinity. Sci. Hortic. 1999, 78, 5–38. [Google Scholar] [CrossRef]
- Cuartero, J.; Fernández-Muñoz, R. Tomato and salinity. Sci. Hortic. 1999, 78, 83–125. [Google Scholar] [CrossRef]
- Hanson, B.; May, D. Effect of subsurface drip irrigation on processing tomato yield, water table depth, soil salinity, and profitability. Agric. Water Manag. 2004, 68, 1–17. [Google Scholar] [CrossRef]
- Pasternak, D.; De Malach, Y.; Borovic, I. Irrigation with brackish water under desert conditions VII. Effect of time of application of brackish water on production of processing tomatoes (Lycopersion esculentum Mill.). Agric. Water Manag. 1986, 12, 149–158. [Google Scholar] [CrossRef]
- Maas, E.V.; Grattan, S.R. Crop Yields as Affected by Salinity. In Agricultural Drainage; Skaggs, R.W., van Schilfgaarde, J., Eds.; Agronomy Monographs: Madison, WI, USA, 1999; pp. 55–108. ISBN 9780891182306. [Google Scholar]
- TUIK. Greenhouse Agricultural Area; Turkish Statistical Institute: Ankara, Turkey, 2022. [Google Scholar]
- Çakmak, B. Türkiye’de sulanan tarım arazilerinde sorunlar ve çözüm önerileri. Türktarım Tarım Köyişleri Bakanl. Derg. 2005, 164, 28–33. [Google Scholar]
- Dişli, Y. Antalya İli Kale (Demre) Ilçesi yer Altı Sulama Suyu Kalitesi Üzerine bir Araştırma (A Research on the Subsurface Irrigation Water Quality of Kale (Demre) District of Antalya Province); Selçuk Üniversitesi: Konya, Turkey, 1997. [Google Scholar]
- Sönmez, İ.; Kaplan, M. Determination of salinity of soil and irrigation waters of greenhouses in Demre region. Akdeniz Üniversitesi Ziraat Fakültesi Derg. 2004, 17, 155–160. [Google Scholar]
- MGM. Long-Year Climate Data for Antalya Province. Antalya Meteorology Regional Directorate; Antalya. Available online: https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=ANTALYA (accessed on 2 November 2022).
- Hancioglu, N.E.; Kurunc, A.; Tontul, I.; Topuz, A. Irrigation water salinity effects on oregano (Origanum onites L.) water use, yield and quality parameters. Sci. Hortic. 2019, 247, 327–334. [Google Scholar] [CrossRef]
- Kurunc, A. Effects of water and salinity stresses on growth, yield, and water use of iceberg lettuce. J. Sci. Food Agric. 2021, 101, 5688–5696. [Google Scholar] [CrossRef] [PubMed]
- Karaca, C. Evapotranspiration of Crops Widely Grown in Greenhouses Using the Energy Balance Method. Ph.D. Thesis, Akdeniz University, Antalya, Turkey, 2020. [Google Scholar]
- Richards, L. Diagnosis and Improvement of Saline and Alkali Soils. In USDA Handbook No:60; USDA: Washington, DC, USA, 1954. [Google Scholar]
- Carter, M.R.; Gregorich, E.G.; Pennock, D.; Yates, T.; Braidek, J. Soil Sampling and Methods of Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007; ISBN 9780849335860. [Google Scholar]
- Maas, E.V.; Hoffman, G.J. Crop salt tolerance—Current assessment. J. Irrig. Drain. Div. 1977, 103, 115–134. [Google Scholar] [CrossRef]
- Van Genuchten, M. Analyzing Crop Salt Tolerance Data: Model Description and User’s Manual; Research Report No: 120; USDA ARS U.S. Salinity Laboratory: Riverside, CA, USA, 1983.
- Hanson, B.R.; Grattan, S.R.; Fulton, A. Agricultural Salinity and Drainage; Department of Land, Air and Water Resources, University of California: Davis, CA, USA, 2006; ISBN 160107946X. [Google Scholar]
- Duzdemir, O.; Kurunc, A.; Unlukara, A. Response of pea (Pisum sativum) to salinity and irrigation water regime. Bulg. J. Agric. Sci. 2009, 15, 400–409. [Google Scholar]
- Düzdemir, O.; Ünlükara, A.; Kurunç, A. Response of cowpea (Vigna unguiculata) to salinity and irrigation regimes. N. Z. J. Crop Hortic. Sci. 2009, 37, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Ünlükara, A.; Kurunç, A.; Cemek, B. Green long pepper growth under different saline and water regime conditions and usability of water consumption in plant salt tolerance. J. Agric. Sci. 2015, 21, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Kurunc, A.; Unlukara, A.; Cemek, B. Salinity and drought affect yield response of bell pepper similarly. Acta Agric. Scand. Sect. B Soil Plant Sci. 2011, 61, 514–522. [Google Scholar] [CrossRef]
- Yang, H.; Du, T.; Mao, X.; Shukla, M.K. Modeling tomato evapotranspiration and yield responses to salinity using different macroscopic reduction functions. Vadose Zone J. 2020, 19, e20074. [Google Scholar] [CrossRef]
- Semiz, G.D.; Suarez, D.L. Tomato salt tolerance: Impact of grafting and water composition on yield and ion relations. Turk. J. Agric. For. 2015, 39, 876–886. [Google Scholar] [CrossRef]
- Ayars, J.E.; Schoneman, R.A.; Dale, F.; Meso, B.; Shouse, P. Managing subsurface drip irrigation in the presence of shallow ground water. Agric. Water Manag. 2001, 47, 243–264. [Google Scholar] [CrossRef]
- Ehret, D.L.; Ho, L.C. The effects of salinity on dry matter partitioning and fruit growth in tomatoes grown in nutrient film culture. J. Hortic. Sci. 1986, 61, 361–367. [Google Scholar] [CrossRef]
- Adams, P. The test of raised salinity. Hortic. Now 1986, 1986, 23–27. [Google Scholar]
- Van Ieperen, W. Effects of different day and night salinity levels on vegetative growth, yield and quality of tomato. J. Hortic. Sci. 1996, 71, 99–111. [Google Scholar] [CrossRef]
- Johnson, R.W.; Dixon, M.A.; Lee, D.R. Water relations of the tomato during fruit growth. Plant Cell Environ. 1992, 15, 947–953. [Google Scholar] [CrossRef]
- Baytorun, A.N.; Zaimoglu, Z. Climate control in mediterranean greenhouses. In Climate Resilient Agriculture—Strategies and Perspectives; Rao, C.S., Shanker, A.K., Shanker, C., Eds.; Intechopen: London, UK, 2018; pp. 167–181. [Google Scholar]
- Soria, T.; Cuartero, J. Tomato fruit yield and water consumption with salty water irrigation. Int. Symp. Water Qual. Quant. Greenh. Acta Hortic. 1998, 458, 215–219. [Google Scholar] [CrossRef]
- Romero-Aranda, M.R.; Jurado, O.; Cuartero, J. Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J. Plant Physiol. 2006, 163, 847–855. [Google Scholar] [CrossRef]
- Rodriguez, P.; Dell’Amico, J.; Morales, D.; Sanchez Blanco, M.J.; Alarcon, J.J. Effects of salinity on growth, shoot water relations and root hydraulic conductivity in tomato plants. J. Agric. Sci. 1997, 128, 439–444. [Google Scholar] [CrossRef]
- Lv, X.; Chen, S.; Wang, Y. Advances in understanding the physiological and molecular responses of sugar beet to salt stress. Front. Plant Sci. 2019, 10, 1431. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Senge, M.; Dai, Y. Effects of salinity stress at different growth stages on tomato growth, yield, and water-use efficiency. Commun. Soil Sci. Plant Anal. 2017, 48, 624–634. [Google Scholar] [CrossRef]
- Parvin, K.; Ahamed, K.U.; Islam, M.M.; Haque, M.N. Response of tomato plant under salt stress: Role of exogenous calcium. J. Plant Sci. 2015, 10, 222–233. [Google Scholar] [CrossRef] [Green Version]
- Hernández, J.A.; Aguilar, A.B.; Portillo, B.; López-Gómez, E.; Beneyto, J.M.; García-Legaz, M.F. The effect of calcium on the antioxidant enzymes from salt-treated loquat and anger plants. Funct. Plant Biol. 2003, 30, 1127–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maggio, A.; De Pascale, S.; Angelino, G.; Ruggiero, C.; Barbieri, G. Physiological response of tomato to saline irrigation in long-term salinized soils. Eur. J. Agron. 2004, 21, 149–159. [Google Scholar] [CrossRef]
- De la Torre-González, A.; Montesinos-pereira, D.; Blasco, B.; Ruiz, J.M. Influence of the proline metabolism and glycine betaine on tolerance to salt stress in tomato (Solanum lycopersicum L.) commercial genotypes. J. Plant Physiol. 2018, 231, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Saranga, Y.; Zamir, D.; Marani, A.; Rudich, J. Breeding tomatoes for salt tolerance: Field evaluation of Lycopersicon germplasm for yield and dry-matter production. J. Am. Soc. Hortic. Sci. 1991, 116, 1067–1071. [Google Scholar] [CrossRef]
- Magan, J.J.; Moreno, N.; Meca, D.; Canovas, F. Response to salinity of a tomato crop in Mediterranean climate conditions. Proc. Int. Symp. Grow. Media Hydroponics. Acta Hortic. 2004, 644, 479–484. [Google Scholar] [CrossRef]
Water Salinity (dS m−1) | Time | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Autumn 2021 | 6 September 2021 | 15 October 2021 | 21 November 2021 | 22 December 2021 | 24 January 2022 | |||||
0.7 | 0.87 † | i ‡ | 1.27 | gi | 1.76 | gh | 1.86 | fg | 1.89 | fg |
2.5 | 1.09 | hi | 1.96 | fg | 2.79 | e | 2.82 | e | 2.81 | e |
5.0 | 1.98 | fg | 2.57 | ef | 4.74 | d | 5.09 | d | 5.85 | bc |
7.5 | 2.01 | fg | 3.24 | e | 5.11 | cd | 6.25 | ab | 6.76 | a |
Spring 2022 | 23 February 2022 | 26 March 2022 | 26 April 2022 | 22 May 2022 | 27 June 2022 | |||||
0.7 | 0.67 | l | 1.07 | jl | 1.02 | kl | 1.60 | il | 2.76 | fh |
2.5 | 0.89 | kl | 1.69 | ik | 2.32 | gi | 3.13 | fg | 4.26 | e |
5.0 | 1.76 | ik | 2.35 | gi | 3.53 | ef | 6.05 | cd | 7.32 | ab |
7.5 | 2.04 | hj | 3.48 | ef | 5.31 | d | 6.55 | bc | 7.90 | a |
Water Salinity (dS m−1) | Not Marketable Yield | Marketable Yield | Total Yield | |||
---|---|---|---|---|---|---|
----------------------------------- (t ha−1) ----------------------------------- | ||||||
Autumn 2021 | ||||||
0.7 | 7.8 † | a ‡ | 162.8 | a | 170.6 | a |
2.5 | 5.9 | a | 136.6 | b | 142.5 | b |
5.0 | 4.8 | a | 122.2 | b | 127.0 | bc |
7.5 | 3.3 | a | 117.8 | b | 121.1 | c |
P > F | ns | ** | ** | |||
Spring 2022 | ||||||
0.7 | 14.3 | a | 160.3 | a | 174.7 | a |
2.5 | 14.1 | a | 146.3 | a | 160.4 | a |
5.0 | 6.6 | b | 100.9 | b | 107.4 | b |
7.5 | 4.1 | b | 72.6 | c | 76.6 | c |
P > F | ** | ** | ** |
Water Salinity (dS m−1) | Autumn 2021 | Spring 2022 | ||
---|---|---|---|---|
Seasonal evapotranspiration (mm) | ||||
0.7 | 398.6 † | a ‡ | 442.4 | a |
2.5 | 372.7 | b | 398.4 | b |
5.0 | 345.0 | c | 319.1 | c |
7.5 | 343.0 | c | 250.9 | d |
P > F | ** | ** | ||
Water use efficiency (kg m−3) | ||||
0.7 | 32.3 | a | 36.7 | a |
2.5 | 36.6 | a | 36.3 | a |
5.0 | 35.4 | a | 31.7 | bc |
7.5 | 34.3 | a | 29.0 | c |
P > F | ns | * |
Water Salinity (dS m−1) | Autumn 2021 | Spring 2022 | ||
---|---|---|---|---|
------------------------- Plant Height (cm) ------------------------- | ||||
0.7 | 229.1 † | a ‡ | 206.1 | a |
2.5 | 219.1 | a | 202.4 | ab |
5.0 | 217.4 | a | 191.2 | b |
7.5 | 210.1 | a | 175.9 | c |
P > F | ns | ** |
Water Salinity (dS m−1) | Autumn 2021 | Spring 2022 | ||
---|---|---|---|---|
Leaf area index (m2 m−2) | ||||
0.7 | 4.32 † | a ‡ | 3.01 | a |
2.5 | 3.67 | b | 2.78 | a |
5.0 | 3.49 | b | 2.33 | b |
7.5 | 3.35 | b | 1.68 | c |
P > F | ** | ** | ||
Chlorophyll content index (CCI) | ||||
0.7 | 43.0 | a | 55.9 | b |
2.5 | 44.4 | a | 56.2 | b |
5.0 | 45.1 | a | 58.6 | b |
7.5 | 44.9 | a | 63.5 | a |
P > F | ns | ** | ||
Stomatal conductance (mmol m−2 s−1) | ||||
0.7 | 267.6 | a | 277.9 | a |
2.5 | 274.6 | a | 279.8 | a |
5.0 | 270.3 | a | 265.3 | a |
7.5 | 262.3 | a | 269.5 | a |
P > F | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaca, C.; Aslan, G.E.; Buyuktas, D.; Kurunc, A.; Bastug, R.; Navarro, A. Effects of Salinity Stress on Drip-Irrigated Tomatoes Grown under Mediterranean-Type Greenhouse Conditions. Agronomy 2023, 13, 36. https://doi.org/10.3390/agronomy13010036
Karaca C, Aslan GE, Buyuktas D, Kurunc A, Bastug R, Navarro A. Effects of Salinity Stress on Drip-Irrigated Tomatoes Grown under Mediterranean-Type Greenhouse Conditions. Agronomy. 2023; 13(1):36. https://doi.org/10.3390/agronomy13010036
Chicago/Turabian StyleKaraca, Cihan, Gulcin Ece Aslan, Dursun Buyuktas, Ahmet Kurunc, Ruhi Bastug, and Alejandra Navarro. 2023. "Effects of Salinity Stress on Drip-Irrigated Tomatoes Grown under Mediterranean-Type Greenhouse Conditions" Agronomy 13, no. 1: 36. https://doi.org/10.3390/agronomy13010036
APA StyleKaraca, C., Aslan, G. E., Buyuktas, D., Kurunc, A., Bastug, R., & Navarro, A. (2023). Effects of Salinity Stress on Drip-Irrigated Tomatoes Grown under Mediterranean-Type Greenhouse Conditions. Agronomy, 13(1), 36. https://doi.org/10.3390/agronomy13010036