GEM Project-Derived Maize Lines Crossed with Temperate Elite Tester Lines Make for High-Quality, High-Yielding and Stable Silage Hybrids
Abstract
:1. Introduction
1.1. Rates of Genetic Gain Have Been Lower for Silage Yield Than for Grain Yield
1.2. Different Trait Requirements
1.3. What Are the Appropriate Units for Measuring Silage Quality and Yield?
1.4. What Are the Appropriate Tools for Identifying Competitive Silage Hybrids?
1.5. The Bottleneck for Silage MAIZE Improvement
1.6. Can Exotic Germplasm Be the Solution?
1.7. The Aims of the Study
2. Materials and Methods
2.1. Field Evaluation
2.2. Laboratory Procedures
2.3. MILK2006 Model
2.4. Statistical Procedures
3. Results
3.1. Quality Traits in Population of GEM-Line–Elite Tester Hybrid Combinations
3.1.1. Correlations between the Traits
3.1.2. Variance Components
3.2. Performance Comparisons
Understanding the Contribution of the Parent Lines through Yield–Quality Dynamics
3.3. Simultaneous Selection for Productivity and Stability in Silage Maize
3.4. Simultaneous Selection for Milk ha−1 and Milk t−1 Mean Performance and Stability
4. Discussion
4.1. Quality Traits in A Population of GEM-Line–Elite Tester Hybrids
4.1.1. Correlations between the Traits
4.1.2. Variance Components
4.2. Performance Comparisons
4.2.1. Understanding the Contribution of the Parent Lines through Yield–Quality Dynamics–Tester Lines
4.2.2. Understanding the Contribution of the Parent Lines through Yield–Quality Dynamics–GEM-Derived Lines
4.3. Simultaneous Selection for Productivity and Stability in Silage Maize
4.4. Simultaneous Selection for Milk ha−1 and Milk t−1 Mean Performance and Stability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ball, D.; Collins, M.; Lacefield, G.; Martin, N.; Mertens, D.; Olson, K.; Putnam, D.; Undersander, D.; Wolf, M. Understanding Forage Quality; The American Forage and Grassland Council, the National Forage Testing Association: Park Ridge, IL, USA, 2010. [Google Scholar]
- Lopez-Malvar, A.; Malvar, R.A.; Butron, A.; Revilla, P.; Pereira-Crespo, S.; Santiago, R. Genetic Dissection for Maize Forage Digestibility Traits in a Multi-Parent Advanced Generation Intercross (MAGIC) Population. Agronomy 2021, 11, 104. [Google Scholar] [CrossRef]
- Schwab, E.C.; Shaver, R.D.; Lauer, J.G.; Coors, J.G. Estimating Silage Energy Value and Milk Yield to Rank Corn Hybrids. Anim. Feed Sci. Technol. 2003, 109, 1–18. [Google Scholar] [CrossRef]
- Jung, H.G.; Allen, M.S. Characteristics of Plant Cell Walls Affecting Intake and Digestibility of Forages by Ruminants. J. Anim. Sci. 1995, 73, 2774–2790. [Google Scholar] [CrossRef] [PubMed]
- Shaver, R. Evaluating Corn Silage Quality For Dairy Cattle; USDA NRCS CIG Program, 2606 West Pioneer: Puyallup, WA, USA, 2007. [Google Scholar]
- Ferraretto, L.F.; Shaver, R.D.; Luck, B.D. Silage Review: Recent Advances and Future Technologies for Whole-Plant and Fractionated Corn Silage Harvesting. J. Dairy Sci. 2018, 101, 3937–3951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oba, M.; Allen, M.S. Evaluation of the Importance of the Digestibility of Neutral Detergent Fiber from Forage: Effects on Dry Matter Intake and Milk Yield of Dairy Cows. J. Dairy Sci. 1999, 82, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Lauer, J.G. Breeding and Managing the Ideal Corn Silage Hybrid: A Retrospective and Direction For Progress. In Proceedings of the 2011 Western Alfalfa & Forage Conference, Las Vegas, NV, USA, 11–13 December 2011. [Google Scholar]
- Ferreira, G.; Alfonso, M.; Depino, S.; Alessandri, E. Effect of Planting Density on Nutritional Quality of Green-Chopped Corn for Silage 1. J. Dairy Sci. 2014, 97, 5918–5921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frey, T.J.; Coors, J.G.; Shaver, R.D.; Lauer, J.G.; Eilert, D.T.; Flannery, P.J. Selection for Silage Quality in the Wisconsin Quality Synthetic and Related Maize Populations. Crop Sci. 2004, 44, 1200–1208. [Google Scholar] [CrossRef]
- Lauer, J.; Agronomist, C. The “Normal” Pattern of Corn Forage and Grain Development. In Proceedings, 2011 Western Alfalfa & Forage Conference, Las Vegas, NV, USA, UC Cooperative Extension; Plant Sciences Department, University of California: Davis, CA, USA, 2019. [Google Scholar]
- Barrière, Y.; Alber, D.; Dolstra, O.; Lapierre, C.; Motto, M.; Ordas, A.; van Waes, J.; Vlasminkel, L.; Welcker, C.; Monod, J.P. Past and Prospects of Forage Maize Breeding in Europe. II. History, Germplasm Evolution and Correlative Agronomic Changes. Maydica 2006, 51, 435–449. [Google Scholar]
- Lauer, J.G.; Coors, J.G.; Flannery, P.J. Forage Yield and Quality of Corn Cultivars Developed in Different Eras. Crop Sci. 2001, 41, 1449–1455. [Google Scholar] [CrossRef] [Green Version]
- Duvick, D.N.; Cassman, K.G. Post–Green Revolution Trends in Yield Potential of Temperate Maize in the North-Central United States. Crop Sci. 1999, 39, 1622–1630. [Google Scholar] [CrossRef] [Green Version]
- Falcon, C.M.; Kaeppler, S.M.; Spalding, E.P.; Miller, N.D.; Haase, N.; AlKhalifah, N.; Bohn, M.; Buckler, E.S.; Campbell, D.A.; Ciampitti, I.; et al. Relative Utility of Agronomic, Phenological, and Morphological Traits for Assessing Genotype-by-Environment Interaction in Maize Inbreds. Crop Sci. 2020, 60, 62–81. [Google Scholar] [CrossRef]
- Barrière, Y.; Argillier, O.; Barrière, Y.; Brown-midrib, O.A.; Sciences, E.D.P. Brown-Midrib Genes of Maize: A Review To Cite This Version: HAL Id: Hal-00885517 Brown-Midrib Genes of Maize. Agronomie 1993, 13, 865–876. [Google Scholar] [CrossRef] [Green Version]
- Hansey, C.N.; Lorenz, A.J.; de Leon, N. Cell Wall Composition and Ruminant Digestibility of Various Maize Tissues Across Development. BioEnergy Res. 2010, 3, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Hansey, C.N.; Johnson, J.M.; Sekhon, R.S.; Kaeppler, S.M.; de Leon, N. Genetic Diversity of a Maize Association Population with Restricted Phenology. Crop Sci. 2011, 51, 704–715. [Google Scholar] [CrossRef]
- Epinat-Le Signor, C.; Dousse, S.; Lorgeou, J.; Denis, J.B.; Bonhomme, R.; Carolo, P.; Charcosset, A. Interpretation of Genotype X Environment Interactions for Early Maize Hybrids over 12 Years. Crop Sci. 2001, 41, 663–669. [Google Scholar] [CrossRef]
- Li, Z.; Coffey, L.; Garfin, J.; Miller, N.D.; White, M.R.; Spalding, E.P.; de Leon, N.; Kaeppler, S.M.; Schnable, P.S.; Springer, N.M.; et al. Genotype-by-Environment Interactions Affecting Heterosis in Maize. bioRxiv PLoS ONE 2017, 13, e0191321. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Kang, M.S.; Ma, B.; Woods, S.; Cornelius, P.L. GGE Biplot vs. AMMI Analysis of Genotype-by-Environment Data. Crop Sci. 2007, 47, 643–655. [Google Scholar] [CrossRef] [Green Version]
- Canizares, G.L.L.; Gonçalves, H.C.; Costa, C.; Rodrigues, L.; de Menezes, J.J.L.; Gomes, H.F.B.; Marques, R.O.; Branco, R.H. Use of High Moisture Corn Silage Replacing Dry Corn on Intake, Apparent Digestibility, Production and Composition of Milk of Dairy Goats. Rev. Bras. De Zootec. 2011, 40, 860–865. [Google Scholar] [CrossRef] [Green Version]
- Gauch, H.G. A Simple Protocol for AMMI Analysis of Yield Trials. Crop Sci. 2013, 53, 1860–1869. [Google Scholar] [CrossRef]
- Nataraj, V.; Bhartiya, A.; Singh, C.P.; Devi, H.N.; Deshmukh, M.P.; Verghese, P.; Singh, K.; Mehtre, S.P.; Kumari, V.; Maranna, S.; et al. WAASB-Based Stability Analysis and Simultaneous Selection for Grain Yield and Early Maturity in Soybean. Agron. J. 2021, 113, 3089–3099. [Google Scholar] [CrossRef]
- Branković-Radojčic, D.; Babić, V.; Girek, Z.; Tivanović, T.; Radojčić, A.; Filipović, M.; Srdić, J. Evaluation of Maize Grain Yield and Yield Stability by AMMI Analysis. Genetika 2018, 50, 1067–1080. [Google Scholar] [CrossRef]
- Crossa, J.; de Los Campos, G.; Pérez, P.; Gianola, D.; Burgueño, J.; Araus, J.L.; Makumbi, D.; Singh, R.P.; Dreisigacker, S.; Yan, J.; et al. Prediction of Genetic Values of Quantitative Traits in Plant Breeding Using Pedigree and Molecular Markers. Genetics 2010, 186, 713–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivoto, T.; Lúcio, A.D.C.; da Silva, J.A.G.; Marchioro, V.S.; de Souza, V.Q.; Jost, E. Mean Performance and Stability in Multi-Environment Trials I: Combining Features of AMMI and BLUP Techniques. Agron. J. 2019, 111, 2949–2960. [Google Scholar] [CrossRef]
- Olivoto, T.; Lúcio, A.D.C.; da Silva, J.A.G.; Sari, B.G.; Diel, M.I. Mean Performance and Stability in Multi-Environment Trials II: Selection Based on Multiple Traits. Agron. J. 2019, 111, 2961–2969. [Google Scholar] [CrossRef]
- Grassini, P.; Eskridge, K.M.; Cassman, K.G. Distinguishing between Yield Advances and Yield Plateaus in Historical Crop Production Trends. Nat. Commun. 2013, 4, 2918. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Hu, S.; Gardner, C.; Lübberstedt, T. Emerging Avenues for Utilization of Exotic Germplasm. Trends Plant Sci. 2017, 22, 624–637. [Google Scholar] [CrossRef] [Green Version]
- McCouch, S.; Baute, G.J.; Bradeen, J.; Bramel, P.; Bretting, P.K.; Buckler, E.; Burke, J.M.; Charest, D.; Cloutier, S.; Cole, G.; et al. Feeding the Future. Nature 2013, 499, 23–24. [Google Scholar] [CrossRef] [Green Version]
- Moreta, D.E.; Mathur, P.N.; van Zonneveld, M.; Amaya, K.; Arango, J.; Selvaraj, M.G.; Dedicova, B. Current Issues in Cereal Crop Biodiversity. Adv. Biochem. Eng. Biotechnol. 2013, 147, 1–35. [Google Scholar] [CrossRef]
- Nelson, P.T.; Goodman, M.M. Evaluation of Elite Exotic Maize Inbreds for Use in Temperate Breeding. Crop Sci. 2008, 48, 85–92. [Google Scholar] [CrossRef]
- Aboagye, I.A.; Baron, V.S.; Oba, M.; Guyader, J.; Beauchemin, K.A. In Vitro Degradation and Methane Production of Short-Season Corn Hybrids Harvested before or after a Light Frost. Can. J. Anim. Sci. 2019, 99, 741–753. [Google Scholar] [CrossRef]
- Darby, H.M.; Lauer, J.G. Harvest Date and Hybrid Influence on Corn Forage Yield, Quality, and Preservation. Agron. J. 1999, 94, 559–566. [Google Scholar] [CrossRef]
- Guyader, J.; Baron, V.S.; Beauchemin, K.A. Corn Forage Yield and Quality for Silage in Short Growing Season Areas of the Canadian Prairies. Agronomy 2018, 8, 164. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Feng, Y.; Shi, Y.; Shen, H.; Hu, H.; Luo, Y.; Xu, L.; Kang, J.; Xing, A.; Wang, S.; et al. Yield and Quality Properties of Silage Maize and Their Influencing Factors in China. Sci. China Life Sci. 2022, 65, 1655–1666. [Google Scholar] [CrossRef] [PubMed]
- Romay, M.C.; Millard, M.J.; Glaubitz, J.C.; Peiffer, J.A.; Swarts, K.L.; Casstevens, T.M.; Elshire, R.J.; Acharya, C.B.; Mitchell, S.E.; Flint-Garcia, S.A.; et al. Comprehensive Genotyping of the USA National Maize Inbred Seed Bank. Genome Biol. 2013, 14, R55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Nagoya Protocol on Access and Benefit-sharing The Nagoya Protocol on Access and Benefit-Sharing; Secretariat of the Convention on Biological Diversity United Nations Environmental Programme: Montreal, QC, Canada, 2022; ISBN 92-9225-306-9.
- Bailey-Serres, J.; Fukao, T.; Ronald, P.; Ismail, A.; Heuer, S.; Mackill, D. Submergence Tolerant Rice: SUB1’s Journey from Landrace to Modern Cultivar. Rice 2010, 3, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Haverkort, A.J.; Boonekamp, P.M.; Hutten, R.; Jacobsen, E.; Lotz, L.A.P.; Kessel, G.J.T.; Vossen, J.H.; Visser, R.G.F. Durable Late Blight Resistance in Potato Through Dynamic Varieties Obtained by Cisgenesis: Scientific and Societal Advances in the DuRPh Project. Potato Res. 2016, 59, 35–66. [Google Scholar] [CrossRef] [Green Version]
- Goodman, M.M. Broadening the Genetic Diversity in Maize Breeding By Use Of. In The Genetics and Exploitation of Heterosis in Crops; Pandey, J.G.C.S., Ed.; American Society of Agronomy, Inc.; Crop Science Society of America, Inc.: Madison, WI, USA, 1999; pp. 139–148. [Google Scholar] [CrossRef] [Green Version]
- Holley, R.N.; Goodman, M.M. Yield Potential of Tropical Hybrid Maize Derivatives. Crop Sci. 1988, 28, 213–218. [Google Scholar] [CrossRef]
- Kim, S.K.; Efron, Y.; Khadr, F.; Fajemisin, J.; Lee, M.H. Registration of 16 Maize-Streak Virus Resistant Tropical Maize Parental Inbred Lines. Crop Sci. 1987, 27, 824–825. [Google Scholar] [CrossRef]
- Uhr, D.V.; Goodman, M.M. Temperate Maize Inbreds Derived from Tropical Germplasm: I. Testcross Yield Trials. Crop Sci. 1995, 35, 779–784. [Google Scholar] [CrossRef]
- Balint-Kurti, P.J.; Blanco, M.; Millard, M.; Duvick, S.; Holland, J.; Clements, M.; Holley, R.; Carson, M.L.; Goodman, M.M. Registration of 20 GEM Maize Breeding Germplasm Lines Adapted to the Southern USA. Crop Sci. 2006, 46, 996–998. [Google Scholar] [CrossRef]
- Salhuana, W.S.; Sevilla, R.; Jesus; Eberhart, S.A. 1931- Final Report, Latin American Maize Project. 1997. Available online: https://agris.fao.org/agris-search/search.do?recordID=US201300031773 (accessed on 18 November 2022).
- Carena, M.J.; Pollak, L.; Salhuana, W.; Denuc, M. Development of Unique and Novel Lines for Early-Maturing Hybrids: Moving GEM Germplasm Northward and Westward. Euphytica 2009, 170, 87–97. [Google Scholar] [CrossRef]
- GEM Germplasm Releases and Key Traits. Available online: https://web.archive.org/web/20181130231700/http://www.public.iastate.edu/~usda-gem/Official_Documents/GEM_Germplasm_Releases.htm (accessed on 23 June 2021).
- Coffman, S.M.; Hufford, M.B.; Andorf, C.M.; Lubberstedt, T. Haplotype Structure in Commercial Maize Breeding Programs in Relation to Key Founder Lines. Theor. Appl. Genet. 2020, 133, 547–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shenk, J.S.; Westerhaus, M.O. The Application of near Infrared Reflectance Spectroscopy (NIRS) to Forage Analysis. Forage Qual. Eval. Util. 2015, 406–449. [Google Scholar] [CrossRef]
- Weiss, W.P.; Tebbe, A.W. Estimating Digestible Energy Values of Feeds and Diets and Integrating Those Values into Net Energy Systems. Transl. Anim. Sci. 2019, 3, 953. [Google Scholar] [CrossRef] [PubMed]
- Weiss, W.P.; Conrad, H.R.; St.Pierre, N.R. A Theoretically-Based Model for Predicting Total Digestible Nutrient Values of Forages and Concentrates. Anim. Feed Sci. Technol. 1992, 39, 95–110. [Google Scholar] [CrossRef]
- Charmley, E. Towards Improved Silage Quality—A Review. Can. J. Anim. Sci. 2011, 81, 157–168. [Google Scholar] [CrossRef]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 18 November 2022).
- Olivoto, T.; Nardino, M.; Meira, D.; Meier, C.; Follmann, D.N.; de Souza, V.Q.; Konflanz, V.A.; Baretta, D. Multi-Trait Selection for Mean Performance and Stability in Maize. Agron. J. 2021, 113, 3968–3974. [Google Scholar] [CrossRef]
- Henderson, C.R. Best Linear Unbiased Estimation and Prediction under a Selection Model. Biometrics 1975, 31, 423. [Google Scholar] [CrossRef] [Green Version]
- Snedecor, G.W.; George, W.; Cochran, W.G.; William, G. Statistical Methods; Iowa State University Press: Ames, IA, USA, 1967; p. 593. [Google Scholar]
- Piepho, H.P. Best Linear Unbiased Prediction (BLUP) for Regional Yield Trials: A Comparison to Additive Main Effects and Multiplicative Interaction (AMMI) Analysis. Theor. Appl. Genet. 1994, 89, 647–654. [Google Scholar] [CrossRef]
- 2021 Results: PA Commercial Grain and Silage Hybrid Corn Tests Report. Available online: https://extension.psu.edu/2021-results-pa-commercial-grain-and-silage-hybrid-corn-tests-report (accessed on 8 January 2023).
- Thomas, E.D.; Mandebvu, P.; Ballard, C.S.; Sniffen, C.J.; Carter, M.P.; Beck, J. Comparison of Corn Silage Hybrids for Yield, Nutrient Composition, In Vitro Digestibility, and Milk Yield by Dairy Cows. J. Dairy Sci. 2001, 84, 2217–2226. [Google Scholar] [CrossRef]
- Melchinger, A.E.; Utz, F.H.; Bay, A.; Mirdita, V.; Ludewig, U. Silage Yield and Quality Traits in Elite Maize Hybrids and Their Relationship to Elemental Concentrations in Juvenile Plants. Plant Breed. 2016, 135, 55–62. [Google Scholar] [CrossRef]
- Thiex, N.J.; Manson, H.; Anderson, S.; Persson, J.-Å.; Collaborators; Anderson, S.; Bogren, E.; Bolek, G.; Budde, D.; Ellis, C.; et al. Determination of Crude Protein in Animal Feed, Forage, Grain, and Oilseeds by Using Block Digestion with a Copper Catalyst and Steam Distillation into Boric Acid: Collaborative Study. J. AOAC Int. 2002, 85, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez-Gaitan, M.A.; Cortez-Mendoza, H.; Wathika, E.N.; Gardner, C.O.; Oyervides-Garcia, M.; Hallauer, A.R.; Darrah, L.L. Testcross Evaluation of Mexican Maize Populations1. Crop Sci. 1986, 26, 99–104. [Google Scholar] [CrossRef]
- Fan, X.M.; Kang, M.S.; Chen, H.; Zhang, Y.; Tan, J.; Xu, C. Yield Stability of Maize Hybrids Evaluated in Multi-Environment Trials in Yunnan, China. Agron. J. 2007, 99, 220–228. [Google Scholar] [CrossRef]
- Yuksel, K.; Seyfi, T. Ceri Sait Nonparametric Stability Analysis of Yield Performances in Oat (Avena sativa L.) Genotypes Across Environments. Asian J. Plant Sci. 2003, 2, 286–289. [Google Scholar] [CrossRef]
- Miller, N.D.; Haase, N.J.; Lee, J.; Kaeppler, S.M.; de Leon, N.; Spalding, E.P. A Robust, High-Throughput Method for Computing Maize Ear, Cob, and Kernel Attributes Automatically from Images. Plant J. 2017, 89, 169–178. [Google Scholar] [CrossRef] [PubMed]
GENOTYPE 1 | Female Line | Male Line | GENOTYPE 1 | Female Line | Male Line |
---|---|---|---|---|---|
1 | GEMN-0178 | 3616 | 21 | GEMN-0186 | PHHB9 |
2 | GEMN-0179 | 3616 | 22 | GEMN-0187 | PHHB9 |
3 | GEMN-0186 | 3616 | 23 | GEMN-0190 | PHHB9 |
4 | GEMN-0187 | 3616 | 24 | GEMN-0193 | PHHB9 |
5 | GEMN-0190 | 3616 | 25 | GEMN-0239 | PHHB9 |
6 | GEMN-0191 | 3616 | 26 | GEMN-0246 | PHHB9 |
7 | GEMN-0192 | 3616 | 27 | GEMN-0249 | PHHB9 |
8 | GEMN-0249 | 3616 | 28 | GEMS-0206 | PHN82 |
9 | GEMN-0252 | 3616 | 29 | GEMS-0175 | PHN82 |
10 | GEMS-0175 | 67/91-3 | 30 | GEMS-0180 | PHN82 |
11 | GEMS-0176 | 67/91-3 | 31 | GEMS-0185 | PHN82 |
12 | GEMS-0184 | 67/91-3 | 32 | GEMS-0188 | PHN82 |
13 | GEMS-0185 | 67/91-3 | 33 | GEMS-0201 | PHN82 |
14 | GEMS-0188 | 67/91-3 | 34 | GEMS-0219 | PHN82 |
15 | GEMS-0220 | 67/91-3 | 35 | GEMS-0234 | PHN82 |
16 | GEMS-0223 | 67/91-3 | 36 | NS5010 | |
17 | GEMS-0250 | 67/91-3 | 37 | NS6043 | |
18 | GEMN-0177 | PHHB9 | 38 | P0725 | |
19 | GEMN-0178 | PHHB9 | 39 | AS160 | |
20 | GEMN-0179 | PHHB9 | 40 | MIKADO |
Trait | cv | Max | Mean | Median | Min | sd | se | ci |
---|---|---|---|---|---|---|---|---|
ADF | 12.02 | 27.44 | 19.05 | 19 | 13.11 | 2.29 | 0.1 | 0.2 |
CP | 9.17 | 10.89 | 8.21 | 8.1 | 6.79 | 0.75 | 0.03 | 0.07 |
DM_YIELD | 20.18 | 24.38 | 14.87 | 14.76 | 5.35 | 3 | 0.13 | 0.26 |
IVD | 2.17 | 91.98 | 88.12 | 88.34 | 81.49 | 1.91 | 0.09 | 0.17 |
Milk ha−1 | 21.9 | 39,953.53 | 24,094.13 | 23,809.44 | 7735.37 | 5275.89 | 235.47 | 462.64 |
Milk Mg−1 | 7.16 | 1921.02 | 1617.84 | 1615.73 | 1205.74 | 115.85 | 5.17 | 10.16 |
NDF | 7.32 | 49.91 | 39.85 | 39.74 | 32.79 | 2.92 | 0.13 | 0.26 |
STARCH | 18.08 | 37.08 | 23.78 | 23.56 | 6.83 | 4.3 | 0.19 | 0.38 |
Parameters | Milk ha−1 | Milk t−1 | NDF | ADF | CP | STARCH |
---|---|---|---|---|---|---|
Heritability | 0.24 | 0.31 | 0.19 | 0.15 | 0.03 | 0.31 |
GEIr2 | 0.18 | 0.1 | 0 | 0 | 0.11 | 0.05 |
h2 mg | 0.84 | 0.87 | 0.84 | 0.83 | 0.52 | 0.87 |
Accuracy | 0.92 | 0.93 | 0.92 | 0.91 | 0.72 | 0.93 |
rge | 0.26 | 0.15 | 0.01 | 0 | 0.12 | 0.08 |
CVg | 11.05 | 4.09 | 3.26 | 4.74 | 1.6 | 10.19 |
CVr | 13.81 | 5.15 | 5.22 | 8.03 | 5.09 | 13.52 |
CV ratio | 0.8 | 0.79 | 0.63 | 0.59 | 0.31 | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perisic, M.; Perkins, A.; Lima, D.C.; de Leon, N.; Mitrovic, B.; Stanisavljevic, D. GEM Project-Derived Maize Lines Crossed with Temperate Elite Tester Lines Make for High-Quality, High-Yielding and Stable Silage Hybrids. Agronomy 2023, 13, 243. https://doi.org/10.3390/agronomy13010243
Perisic M, Perkins A, Lima DC, de Leon N, Mitrovic B, Stanisavljevic D. GEM Project-Derived Maize Lines Crossed with Temperate Elite Tester Lines Make for High-Quality, High-Yielding and Stable Silage Hybrids. Agronomy. 2023; 13(1):243. https://doi.org/10.3390/agronomy13010243
Chicago/Turabian StylePerisic, Milica, Alden Perkins, Dayane Cristina Lima, Natalia de Leon, Bojan Mitrovic, and Dusan Stanisavljevic. 2023. "GEM Project-Derived Maize Lines Crossed with Temperate Elite Tester Lines Make for High-Quality, High-Yielding and Stable Silage Hybrids" Agronomy 13, no. 1: 243. https://doi.org/10.3390/agronomy13010243
APA StylePerisic, M., Perkins, A., Lima, D. C., de Leon, N., Mitrovic, B., & Stanisavljevic, D. (2023). GEM Project-Derived Maize Lines Crossed with Temperate Elite Tester Lines Make for High-Quality, High-Yielding and Stable Silage Hybrids. Agronomy, 13(1), 243. https://doi.org/10.3390/agronomy13010243