Physiological Mechanism of Photosynthetic, Nutrient, and Yield Responses of Peanut Cultivars with Different Tolerances under Low K Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design and Treatments
2.3. Determination Items and Methods
2.3.1. Determination of Chlorophyll Content
2.3.2. Determination of Carotenoid Content
2.3.3. Determination of Dry Matter Accumulation
2.3.4. Determination of Antioxidant Enzyme Activity
Determination of SOD Activity
Determination of POD Activity
2.3.5. Determination of Osmotic Regulatory Substances
Determination of MDA Content
Determination of Soluble Protein Content
2.3.6. Determination of Chlorophyll Fluorescence Imaging
2.3.7. Determination of Plant Nutrients
Determination of Potassium and Sodium Content
2.3.8. Determination of Yield and Yield-Related Traits
2.3.9. Statistical Analysis of Data
3. Results
3.1. Effect of Low K Stress on Dry Matter Accumulation of Peanuts at Maturity
3.2. Effects of Low K Stress on Chlorophyll Content in Leaves
3.3. Effects of Low K Stress on the Activity of Antioxidant Enzymes in Leaves at Pod Setting Stage
3.4. Effects of Low K Stress on Osmotic Regulatory Substances in Leaves
3.4.1. Effects of Low K Stress on MDA Content in Leaves
3.4.2. Effects of Low K Stress on Soluble Protein Content in Leaves
3.5. Effects of Low K Stress on Fluorescence Parameters
3.6. Effects of Low K Stress on Fluorescence Parameters under Light Adaptation
3.6.1. Effects of Low K Stress on Photochemical Quenching Coefficient
3.6.2. Effects of Low K Stress on Non-Photochemical Quenching
3.7. Effects of Low K Stress on Nutrient Content
3.7.1. Influence of Low K Stress on Potassium Content
3.7.2. Influence of Low K Stress on Sodium Content
3.8. Effects of Low K Stress on K/Na Ratio of Peanut Organs
3.9. Effects of Low K Stress on Yield and Yield Components
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, T.-H. Analysis of World oil supply and demand and trade pattern. China Oils Fats 2015, 40, 1–6. [Google Scholar]
- Expert Committee of Market Early Warning of Ministry of Agriculture. Analysis of Supply and demand Situation of Agricultural Products in China in August. Agric. Prod. Mark. Wkly. 2018, 32, 46–53. [Google Scholar]
- Wan, S.-B. Peanut Cultivation in China. M. Shanghai Shanghai Sci. Technol. Press 2003, 610–611. [Google Scholar]
- Liao, B.-S. Current situation and potential analysis of peanut production development. Chin. J. Oil Crop. 2020, 42, 161–166. [Google Scholar]
- Ren, J.-Y.; Wang, J.; Ai, X.; Zhao, S.-L.; Li, R.-Y.; Jiang, C.-J.; Zhao, X.-H.; Yin, D.-M.; Yu, H.-Q. Physiological response to drought resistance of peanut seedlings under drought stress. Chin. J. Oil Crop. 2022, 44, 138–146. [Google Scholar]
- Xu, H.-H.; Hou, G.-Y.; Li, Y.; Xiao, H.; Sun, D.; Wang, F.; Li, H. Research progress of plant potassium channel AKT1. Biotechnology 2018, 28, 1–5, 7–10. [Google Scholar]
- Xie, J.C.; Zhou, J.-M. Progress in research on soil potassium and application of potash fertilizer in China. Soils. 1999, 03, 244–254. [Google Scholar]
- Yang, L.-Q.; Liu, J.; Li, W.; Dai, L. Research advances in potassium lon channel AKT1 in plant. Biotechnol. Bull. 2019, 35, 94–100. [Google Scholar]
- Huang, W.-G.; Jiang, W.-D.; Yao, Y.-B.; Song, X.; Liu, Y.; Chen, S.; Zhao, D.; Wu, G.; Yuan, H.; Ren, S.; et al. Transcriptional profiling of Flax in Response to Low Potassium Stress. Acta Agron. Sin. 2021, 47, 1070–1081. [Google Scholar]
- Chakraborty, K.; Bhaduri, D.; Meena, H.N.; Kalariya, K. External potassium (K(+)) application improves salinity tolerance by promoting Na(+)-exclusion, K(+)-accumulation and osmotic adjustment in contrasting peanut cultivars. Plant Physiol. Biochem. 2016, 103, 143–153. [Google Scholar] [CrossRef]
- Romheld, V.; Kirkby, E.A. Research on potassium in agriculture: Needs and prospects. Water Air Soil Pollut. 2010, 335, 155–180. [Google Scholar] [CrossRef]
- Jiang, G.-B.; Chen, S. Effects of potassium, calcium and magnesium on crop senescence. Sci. Agric. Sin. 2005, 12, 47–48. [Google Scholar]
- Mengel, K.; Kirkby, E.A.; Kosegarten, H.; Appel, T. Principles of Plant Nutrition. M. Springer Neth. 2001, 504. [Google Scholar]
- Jadav, J.K.; Umrania, V.V.; Rathod, K.J.; Sodha, K.H.; Gondaliya, R.P.; Anuj, S.A.; Golakiya, B.A. Effects of induced potassium deficiency in groundnut and its estimation by flame photometry. AkiNik Publ. 2017, 5, 1757–1763. [Google Scholar]
- Xu, D.-Q. Some problems in the analysis of stomatal limitation of photosynthesis. Plant Physiol. Commun. 1997, 4, 241–244. [Google Scholar]
- Berghuijs, H.N.; Yin, X.; Ho, Q.T.; Retta, M.A.; Verboven, P.; Nicolaï, B.M.; Struik, P.C. Localization of (photo)respiration and CO2 re-assimilation in tomato leaves investigated with a reaction-diffusion model. PLoS One 2017, 12, 26. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Oosterhuis, D.M.; Bednarz, C.W. Influence of Potassium Deficiency on Photosynthesis, Chlorophyll Content, and Chloroplast Ultrastructure of Cotton Plants. Photosynthetica 2001, 39, 103–109. [Google Scholar] [CrossRef]
- Naeem, M.; Waseem, M.; Zhu, Z.; Zhang, L. Downregulation of SlGRAS15 manipulates plant architecture in tomato (Solanum lycopersicum). Dev. Genes Evol. 2020, 230, 1–12. [Google Scholar] [CrossRef]
- Naeem, M.; Muqarab, R.; Waseem, M. The Solanum melongena COP1 delays fruit ripening and influences ethylene signaling in tomato. J. Plant Physiol. 2019, 240, 152997. [Google Scholar] [CrossRef]
- Yan, L.; Riaz, M.; Wu, X.-W.; Wang, Y.-H.; Du, C.-Q.; Jiang, C.-C. Interaction of boron and aluminum on the physiological characteristics of rape (Brassica napus L.) seedlings. Acta Physiol. Plantarum. 2018, 4, 33. [Google Scholar] [CrossRef]
- Wu, J.-Y.; Yu, C.-Y.; Huang, L.-L.; Gan, Y.-B. A rice transcription factor, OsMADS57, positively regulateshigh salinity tolerance in transgenic Arabidopsis thaliana and Oryza sativa plants. Physiol. Plantarum. 2021, 173, 1120–1135. [Google Scholar] [CrossRef]
- Wang, D.; Pang, Y.-X.; Wang, W.-Q.; Wan, C.-Y.; Hou, J.-L.; Yu, F.-L.; Wang, Q.-L.; Liu, F.-B.; Zhang, X.-D. Effect of molybdenum on secondary metabolic process of glycyrrhizic acid in Glycyrrhiza uralensis Fisch. Biochem. Syst. Ecol. 2013, 50, 93–100. [Google Scholar] [CrossRef]
- Tong, X.-N.; Tong, X.-D.; Li, X.-T.; Wang, X.-G.; Wang, N. Effects of low potassium stress on dry matter accumulation, transfer and distribution of soybean cultivars with different tolerance. Jiangsu Agric. Sci. 2017, 45, 56–59. [Google Scholar]
- Hu, W.; Jiang, N.; Yang, J.-S.; Meng, Y.; Wang, Y.; Chen, B.; Zhao, W.; Oosterhuis, D.M.; Zhou, Z. Potassium(K) supply affects K accumulation and photosynthetic physiology in two cotton (Gossypium hirsutum L.) cultivars with different K sensitivities. Field Crop. Res. 2016, 196, 51–63. [Google Scholar] [CrossRef]
- Lu, Z.-F.; Ren, T.; Lu, J.-W.; Li, X.-K.; Cong, R.-H.; Pan, Y.-H.; Li, K.-X. Main factors and mechanism leading to the decrease of photosynthetic efficiency of oilseed rape exposure to potassium deficiency. J. Plant Nutr. Fertil. 2016, 22, 122–131. [Google Scholar]
- Xu, D. Photosynthetic rate, photosynthetic efficiency and crop yield. Chin. J. Biol. 1999, 8, 11–13. [Google Scholar]
- Dai, X.-Y.; Xu, G.-Q.; Shi, Q.-H.; Wang, Y.-F.; Chen, P.-Y.; Zhang, T.-J.; Liu, C.; Zhang, X.-Q.; Fu, Y.-P. Effects of calcium signal inhibitors on photosynthetic characteristics and potassium uptake of tobacco seedlings under low potassium stress. Plant Nutr. Fertil. J. 2022, 28, 138–149. [Google Scholar]
- Wang, K.-Y.; Kellomaki, S.; Zha, T. Modifications in photosynthetic pigments and chlorophyll fluorescence in 20-year-old pine trees after a four-year exposure to carbon dioxide and temperature elevation. Photosynthetica 2003, 41, 167–175. [Google Scholar] [CrossRef]
- Kanazawa, S.; Sano, S.; Koshiba, T.; Ushimaru, T. Changes in antioxidative enzymes in cucumber cotyledons during natural senescence: Comparison with those during dark-induced senescence. Physiol. Plant. 2000, 109, 211–216. [Google Scholar] [CrossRef]
- Miao, B.-H.; Han, X.-G.; Zhang, W.-H. The Ameliorative Effect of Silicon on soybean seedlings grown in potassium deficient Medium. Ann. Bot. 2010, 105, 967–970. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Li, Q.-W.; Huang, Z.-R.; Ao, J.-H. Study on the difference of potassium uptake in Sugarcane varieties. Acta Thermol. Sin. 2011, 32, 2221–2225. [Google Scholar]
- Zeng, Q.-Y.; Wu, J.-Y.; Feng, X.-M.; Zhang, N.-N.; Wu, Z.-L.; Qi, Y.-W. Differences in response of sugarcane sister lines to low potassium stress. Chin. J. Trop. Crop. 2021, 42, 739–746. [Google Scholar]
- Liu, X.-W.; Song, Y.-L.; Li, S.-S.; Zhang, S.-H.; Yang, X.-J.; Wang, D.-W.; Zhao, Y. Effects of low potassium stress on plant element accumulation and biological traits of winter wheat. J. Agric. Univ. Hebei 2019, 42, 14–21. [Google Scholar]
- Wakeel, A.; Steffens, D.; Schubert, D. Potassium substitution by sodium in sugar beet (Beta vulgaris) nutrition on K-fixing soils. J. Plant Nutr. Soil Sci. 2010, 173, 127–134. [Google Scholar] [CrossRef]
- Liu, G.-D.; Liu, G.-y. Partial substitution of Ca and Na on K in rice genotypes. Acta Agron. Sin. 1996, 3, 313–319. [Google Scholar]
- Benito, B.; Haro, R.; Amtmann, A.; Cuin, T.A.; Dreyer, I. The twins K+ and Na+ in plants. J. Plant Physiol. 2014, 171, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yuan, Q.; Hu, H.-r.; Chen, Z.-y.; Long, Y.-h.; Du, G.-h.; Liu, F.-h. Study on tolerance difference of different hemp cultivars under low potassium stress. Chin. Hemp Ind. Sci. 2016, 38, 156–161. [Google Scholar] [CrossRef]
- Yan, C.; Han, X.; Wang, S.; Wang, S.; Li, H.; Wang, F. Effects of potassium on dry matter accumulation, yield and quality of Soybean. Soybean Sci. 2008, 01, 113–117. [Google Scholar]
- Zhong, Y.; Chen, C.; Nawaz, M.A.; Jiao, Y.; Zheng, Z.; Shi, X.; Xie, W.; Yu, Y.; Guo, J.; Zhu, S.; et al. Using rootstock to increase watermelon fruit yield and quality at low-K supply: A comprehensive analysis from agronomic, physiological and transcriptional perspective. Sci. Hortic. 2018, 241, 144–151. [Google Scholar] [CrossRef]
Cultivars | Abbreviation | Source | Ecological |
---|---|---|---|
Nonghua18 | NH18 | Shenyang Agricultural University | Pearl bean type |
Huayu20 | HY20 | Shandong Peanut Research Institute | Pearl bean type |
Treatment | Available Potassium (mg/kg) | Available Phosphorus (mg/kg) | Available Nitrogen (mg/kg) | Organic Matter (g/kg) | pH |
---|---|---|---|---|---|
HK | 147.3 | 16.3 | 96.3 | 12.3 | 7.2 |
LK | 57.0 | 17.1 | 94.2 | 11.6 | 7.3 |
Year | Cultivars | Treatments | Chlorophyll a (mg·g−1 (FM)) | Chlorophyll b (mg·g−1 (FM)) | Chlorophyll (a + b) (mg·g−1 (FM)) | Carotenoids (mg·g−1 (FM)) |
---|---|---|---|---|---|---|
2020 | NH18 | HK | 0.95 ± 0.02 a | 0.35 ± 0.02 a | 1.33 ± 0.03 a | 0.06 ± 0.01 a |
LK | 0.78 ± 0.06 b | 0.31 ± 0.01 b | 1.08 ± 0.08 b | 0.08 ± 0.01 a | ||
HY20 | HK | 1.11 ± 0.05 a | 0.45 ± 0.01 a | 1.55 ± 0.05 a | 0.11 ± 0.01 a | |
LK | 1.02 ± 0.07 a | 0.42 ± 0.02 a | 1.39 ± 0.08 b | 0.09 ± 0.01 a | ||
2021 | NH18 | HK | 1.03 ± 0.03 a | 0.46 ± 0.04 a | 1.41 ± 0.07 a | 0.15 ± 0.0.1 a |
LK | 0.86 ± 0.06 b | 0.40 ± 0.07 a | 1.26 ± 0.03 b | 0.11 ± 0.01 a | ||
HY20 | HK | 1.14 ± 0.08 a | 0.54 ± 0.05 a | 1.68 ± 0.05 a | 0.18 ± 0.02 a | |
LK | 1.05 ± 0.02 a | 0.44 ± 0.08 a | 1.49 ± 0.06 b | 0.14 ± 0.01 a | ||
Year | 0.186 | 0.003 | 0.001 | 0.000 | ||
Cultivar | 0.000 | 0.002 | 0.000 | 0.000 | ||
Treatment | 0.001 | 0.025 | 0.000 | 0.002 | ||
Year × Cultivar | 0.880 | 0.359 | 0.803 | 0.378 | ||
Year × Treatment | 0.528 | 0.290 | 0.563 | 0.002 | ||
Cultivar × Treatment | 0.419 | 0.684 | 0.600 | 0.173 |
Year | Cultivars | Treatments | Pods per Plant | Full Pods per Plant | Full Pod Weight (g) | 100-Pod Weight (g) | 100-Kernel Weight (g) | Yield (g per Plant) |
---|---|---|---|---|---|---|---|---|
2020 | HY20 | HK | 30.67 ± 1.26 a | 18.00 ± 0.90 a | 21.45 ± 1.42 a | 155.91 ± 7.62 a | 63.63 ± 3.53 a | 24.19 ± 0.85 a |
LK | 24.83 ± 2.93 b | 15.15 ± 0.69 b | 16.51 ± 0.66 b | 133.64 ± 3.37 b | 52.06 ± 1.48 b | 19.56 ± 0.86 b | ||
NH18 | HK | 22.33 ± 1.53 a | 12.90 ± 0.52 a | 19.68 ± 0.94 a | 172.67 ± 5.51 a | 70.29 ± 3.61 a | 23.59 ± 1.50 a | |
LK | 20.67 ± 1.04 a | 11.10 ± 1.13 a | 15.45 ± 0.82 b | 160.14 ± 5.29 b | 63.24 ± 1.39 b | 18.20 ± 1.51 b | ||
2021 | HY20 | HK | 31.55 ± 1.25 a | 22.22 ± 1.31 a | 37.24 ± 1.12 a | 132.55 ± 4.44 a | 72.73 ± 3.54 a | 41.82 ± 2.12 a |
LK | 24.11 ± 1.59 b | 16.56 ± 1.49 b | 21.47 ± 1.16 b | 103.16 ± 6.18 b | 60.07 ± 2.51 b | 24.86 ± 1.04 b | ||
NH18 | HK | 27.44 ± 0.96 a | 19.00 ± 1.25 a | 30.03 ± 1.39 a | 143.59 ± 5.28 a | 77.60 ± 3.52 a | 39.40 ± 2.55 a | |
LK | 21.78 ± 1.13 b | 15.33 ± 1.55 b | 23.08 ± 0.86 b | 133.08 ± 6.33 b | 72.46 ± 1.89 b | 28.98 ± 1.12 b | ||
Year | 0.061 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Cultivar | 0.000 | 0.000 | 0.008 | 0.000 | 0.000 | 0.963 | ||
Treatment | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Year × Cultivar | 0.066 | 0.046 | 0.366 | 0.893 | 0.913 | 0.229 | ||
Year × Treatment | 0.075 | 0.045 | 0.000 | 0.647 | 0.877 | 0.000 | ||
Cultivar × Treatment | 0.081 | 0.179 | 0.003 | 0.031 | 0.034 | 0.125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Song, P.; Zhang, Y.; Zhou, D.; Dong, Q.; Jia, P.; Liu, Z.; Zhao, X.; Yu, H. Physiological Mechanism of Photosynthetic, Nutrient, and Yield Responses of Peanut Cultivars with Different Tolerances under Low K Stress. Agronomy 2023, 13, 185. https://doi.org/10.3390/agronomy13010185
Liu Y, Song P, Zhang Y, Zhou D, Dong Q, Jia P, Liu Z, Zhao X, Yu H. Physiological Mechanism of Photosynthetic, Nutrient, and Yield Responses of Peanut Cultivars with Different Tolerances under Low K Stress. Agronomy. 2023; 13(1):185. https://doi.org/10.3390/agronomy13010185
Chicago/Turabian StyleLiu, Yingyan, Penghao Song, Yuanchun Zhang, Dongying Zhou, Qiqi Dong, Peiyan Jia, Zhenhua Liu, Xinhua Zhao, and Haiqiu Yu. 2023. "Physiological Mechanism of Photosynthetic, Nutrient, and Yield Responses of Peanut Cultivars with Different Tolerances under Low K Stress" Agronomy 13, no. 1: 185. https://doi.org/10.3390/agronomy13010185
APA StyleLiu, Y., Song, P., Zhang, Y., Zhou, D., Dong, Q., Jia, P., Liu, Z., Zhao, X., & Yu, H. (2023). Physiological Mechanism of Photosynthetic, Nutrient, and Yield Responses of Peanut Cultivars with Different Tolerances under Low K Stress. Agronomy, 13(1), 185. https://doi.org/10.3390/agronomy13010185