Characterization and Analysis of the Full-Length Transcriptome Provide Insights into Fruit Quality Formation in Kiwifruit Cultivar Actinidia arguta cv. Qinziyu
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and RNA Preparation
2.2. PacBio SMRT Library Preparation and Sequencing
2.3. Structure Analysis
2.4. Genes Functional Annotation
2.5. Analysis of bHLH Gene Family in A. arguta cv. Qinziyu
2.6. Quantitative RT-PCR Validation
3. Results
3.1. Characterization of PacBio SMRT Sequencing Data
3.2. Prediction of AS, LncRNA, and SSRs
3.3. Functional Annotation
3.4. Candidate Genes Related to Soluble Sugar and Organic Acid Biosynthesis in A. arguta cv. Qinziyu
3.5. Identification of bHLH Gene Family
3.6. Screening Potential Anthocyanin Biosynthesis-Related AabHLH Proteins
3.7. Phylogenetic and Protein Interaction Network Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, S.X.; Ding, J.; Deng, D.; Tang, W.; Sun, H.H.; Liu, D.Y.; Zhang, L.; Niu, X.; Zhang, X.L.; Meng, M.; et al. Draft genome of the kiwifruit Actinidia chinensis. Nat. Commun. 2013, 4, 2640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.C.; Shu, P.; Zhang, C.; Zhang, J.L.; Chen, Y.; Zhang, Y.X.; Du, K.; Xie, Y.; Li, M.Z.; Ma, T.; et al. Integrative analyses of metabolome and genome-wide transcriptome reveal the regulatory network governing flavor formation in kiwifruit (Actinidia chinensis). New Phytol. 2022, 233, 373–389. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhao, Q.; Lan, T.; Geng, T.; Gao, C.; Yuan, Q.; Zhang, Q.; Xu, P.; Sun, X.; Liu, X.; et al. Comparative analysis of physicochemical characteristics, nutritional and functional components and antioxidant capacity of fifteen kiwifruit (Actinidia) cultivars-comparative analysis of fifteen kiwifruit (Actinidia) cultivars. Foods 2020, 9, 1267. [Google Scholar] [CrossRef]
- Liao, G.L.; He, Y.Q.; Li, X.S.; Zhong, M.; Huang, C.H.; Yi, S.Y.; Liu, Q.; Xu, X.B. Effects of bagging on fruit flavor quality and related gene expression of AsA synthesis in Actinidia eriantha. Sci. Hortic. 2019, 256, 108511. [Google Scholar] [CrossRef]
- Wang, F.; Ge, S.F.; Xu, X.X.; Xing, Y.; Du, X.; Zhang, X.; Lv, M.X.; Liu, J.Q.; Zhu, Z.L.; Jiang, Y.M. Multiomics analysis reveals new insights into the apple fruit quality decline under high nitrogen conditions. J. Agric. Food Chem. 2021, 69, 5559–5572. [Google Scholar] [CrossRef]
- Lu, X.M.; Man, Y.P.; Lei, R.; Liu, Y.B.; Wu, J.H.; Wang, Y.C. Structural analysis of Actinidia arguta natural populations and preliminary application in association mapping of fruit traits. Sci. Hortic. 2022, 304, 111306. [Google Scholar] [CrossRef]
- Liu, Y.F.; Zhou, B.; Qi, Y.W.; Chen, X.; Liu, C.H.; Liu, Z.D.; Ren, X.L. Expression Differences of pigment structural genes and transcription factors explain flesh coloration in three contrasting kiwifruit cultivars. Front. Plant Sci. 2017, 8, 1507. [Google Scholar] [CrossRef]
- Huang, H.; Ferguson, A.R. Genetic resources of kiwifruit: Domestication and breeding. Hort. Rev. 2007, 33, 1–121. [Google Scholar]
- Liu, Y.; Li, D.; Zhang, Q.; Song, C.; Zhong, C.; Zhang, X.; Wang, Y.; Yao, X.; Wang, Z.; Zeng, S.; et al. Rapid radiations of both kiwifruit hybrid lineages and their parents shed light on a two-layer mode of species diversification. New Phytol. 2017, 215, 877–890. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Li, Z.Z.; Wang, Y.C.; Jiang, Z.W.; Wang, S.M.; Huang, H.W. Vitamin C, flower color and ploidy variation of hybrids from a ploidy-unbalanced Actinidia interspecific cross and SSR characterization. Euphytica 2010, 175, 133–143. [Google Scholar] [CrossRef]
- Li, Y.; Fang, J.; Qi, X.; Lin, M.; Zhong, Y.; Sun, L.; Cui, W. Combined analysis of the fruit metabolome and transcriptome reveals candidate genes involved in flavonoid biosynthesis in Actinidia arguta. Int. J. Mol. Sci. 2018, 19, 1471. [Google Scholar] [CrossRef] [PubMed]
- Almeida, D.; Pinto, D.; Santos, J.; Vinha, A.F.; Palmeira, J.; Ferreira, H.N.; Rodrigues, F.; Oliveira, M.B.P. Hardy kiwifruit leaves (Actinidia arguta): An extraordinary source of value-added compounds for food industry. Food Chem. 2018, 259, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fang, J.; Qi, X.; Lin, M.; Zhong, Y.; Sun, L. A key structural gene, AaLDOX, is involved in anthocyanin biosynthesis in all red-fleshed kiwifruit (Actinidia arguta) based on transcriptome analysis. Gene 2018, 648, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cui, W.; Wang, R.; Lin, M.; Fang, J. Microrna858-mediated regulation of anthocyanin biosynthesis in kiwifruit (Actinidia arguta) based on small RNA sequencing. PLoS ONE 2019, 14, e0217480. [Google Scholar] [CrossRef] [PubMed]
- Wojdyło, A.; Nowicka, P.; Oszmia’nski, J.; Golis, T. Phytochemical compounds and biological effects of Actinidia fruits. J. Funct. Foods 2017, 30, 194–202. [Google Scholar] [CrossRef]
- Pang, Q.; Zhang, A.; Zang, W.; Wei, L.; Yan, X. Integrated proteomics and metabolomics for dissecting the mechanism of global responses to salt and alkali stress in Suaeda corniculata. Plant Soil. 2016, 402, 379–394. [Google Scholar] [CrossRef]
- Jia, X.; Zhu, Y.; Hu, Y.; Zhang, R.; Cheng, L.; Zhu, Z.L.; Zhao, T.; Zhang, X.; Wang, Y.X. Integrated physiologic, proteomic, and metabolomic analyses of Malus halliana adaptation to saline-alkali stress. Hortic. Res. 2019, 6, 91–109. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Lu, X.; Tao, Y.; Guo, H.; Min, W. Comparative ionomics and metabolic responses and adaptive strategies of cotton to salt and alkali stress. Front. Plant Sci. 2022, 13, 871387. [Google Scholar] [CrossRef]
- Cheng, H.; Kong, W.; Tang, T.; Ren, K.; Zhang, K.; Wei, H.; Lin, T. Identification of key gene networks controlling soluble sugar and organic acid metabolism during oriental melon fruit development by integrated analysis of metabolic and transcriptomic analyses. Front. Plant Sci. 2022, 13, 830517. [Google Scholar] [CrossRef]
- Cho, K.; Cho, K.S.; Sohn, H.B.; Ha, I.J.; Hong, S.Y.; Lee, H.; Kim, Y.M.; Nam, M.H. Network analysis of the metabolome and transcriptome reveals novel regulation of potato pigmentation. J. Exp. Bot. 2016, 67, 1519–1533. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Man, Y.P.; Jiang, Z.W.; Wang, Y.C. Cloning and expression of anthocyanin pathway genes, AcCHS and AcLDOX, in Actinidia chinensis. Acta Hortic. Sin. 2012, 39, 2124–2132. [Google Scholar]
- Li, W.B.; Liu, Y.F.; Zeng, S.H.; Xiao, G.; Wang, G.; Wang, Y.; Peng, M.; Huang, H.W. Gene expression profiling of development and anthocyanin accumulation in Kiwifruit (Actinidia chinensis) based on transcriptome sequencing. PloS ONE 2015, 10, e0138743. [Google Scholar]
- Luo, J.; Guo, L.L.; Huang, Y.N.; Wang, C.; Qiao, C.K.; Pang, R.L.; Li, J.; Pang, T.; Wang, R.P.; Xie, H.Z.; et al. Transcriptome analysis reveals the effect of pre-harvest CPPU treatment on the volatile compounds emitted by kiwifruit stored at room temperature. Food Res. Int. 2017, 102, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Huan, C.; Zhang, J.; Jia, Y.; Li, S.E.; Jiang, T.J.; Shen, S.L.; Zheng, X.L. Effect of 1-methylcyclopropene treatment on quality, volatile production and ethanol metabolism in kiwifruit during storage at room temperature. Sci. Hortic. 2020, 265, 109266. [Google Scholar] [CrossRef]
- Pilkington, S.M.; Crowhurst, R.; Hilario, E.; Nardozza, S.; Fraser, L.; Peng, Y.; Gunaseelan, K.; Simpson, R.; Tahir, J.; Deroles, S.C.; et al. A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants. BMC Genomics 2018, 19, 257. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Ma, T.; Kang, M.; Ai, F.; Zhang, J.; Dong, G.; Liu, J.Q. A high-quality Actinidia chinensis (kiwifruit) genome. Hortic Res. 2019, 6, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.L.; Cheng, Y.D.; Wang, M.; Cui, S.J.; Guan, J.F. Weighted gene coexpression correlation network analysis reveals a potential molecular regulatory mechanism of anthocyanin accumulation under different storage temperatures in ‘Friar’ plum. BMC Plant Biol. 2021, 21, 576. [Google Scholar] [CrossRef]
- Xin, M.; Li, C.; Khoo, H.E.; Li, L.; He, X.; Yi, P.; Tang, Y.; Sun, J. Dynamic analyses of transcriptome and metabolic profiling: Revealing molecular insight of aroma synthesis of mango (Mangifera indica L. var. Tainong). Front. Plant Sci. 2012, 12, 666805. [Google Scholar] [CrossRef]
- Abbas, H.M.K.; Huang, H.X.; Wang, A.J.; Wu, T.Q.; Xue, S.D.; Ahmad, A.; Xie, D.S.; Li, J.X.; Zhong, Y.J. Metabolic and transcriptomic analysis of two Cucurbita moschata germplasms throughout fruit development. BMC Genom. 2020, 21, 365. [Google Scholar] [CrossRef]
- Hong, C.P.; Kim, C.K.; Lee, D.J.; Jeong, H.J.; Lee, Y.; Park, S.G.; Kim, H.J.; Kang, J.N.; Ryu, H.; Kwon, S.J.; et al. Long-read transcriptome sequencing provides insight into lignan biosynthesis during fruit development in Schisandra chinensis. BMC Genom. 2022, 23, 17. [Google Scholar] [CrossRef]
- Abdel-Ghany, S.E.; Hamilton, M.; Jacobi, J.L.; Ngam, P.; Devitt, N.; Schilkey, F.; Ben-Hur, A.; Reddy, A.S. A survey of the sorghum transcriptome using single-molecule long reads. Nat. Commun. 2016, 7, 11706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Zhang, H.; Kohnen, M.V.; Prasad, K.V.S.K.; Gu, L.; Reddy, A.S.N. Analysis of Transcriptome and Epitranscriptome in Plants Using PacBio Iso-Seq and Nanopore-Based Direct RNA Sequencing. Front. Genet. 2019, 10, 253. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.M.; Niu, B.F.; Zhu, Z.W.; Wu, S.T.; Li, W.Z. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef]
- Simao, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Mei, W.; Soltis, P.S.; Soltis, D.E.; Barbazuk, W.B. Detecting alternatively spliced transcript isoforms from single-molecule long-read sequences without a reference genome. Mol. Ecol. Resour. 2017, 17, 1243–1256. [Google Scholar] [CrossRef] [PubMed]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef] [Green Version]
- Fonouni-Farde, C.; Ariel, F.; Crespi, M. Plant long noncoding RNAs: New players in the field of post-transcriptional regulations. Non-Coding RNA 2021, 7, 12. [Google Scholar] [CrossRef]
- Kong, L.; Zhang, Y.; Ye, Z.Q.; Liu, X.Q.; Zhao, S.Q.; Wei, L.; Gao, G. CPC: Assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 2007, 35, W345–W349. [Google Scholar] [CrossRef]
- Sun, L.; Luo, H.; Bu, D.; Zhao, G.; Yu, K.; Zhang, C.; Liu, Y.; Chen, R.; Zhao, Y. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 2013, 41, e166. [Google Scholar] [CrossRef]
- Wang, L.G.; Park, H.J.; Dasari, S.; Wang, S.Q.; Kocher, J.P.; Li, W. CPAT: Coding-potential assessment tool using an alignment-free logistic regression model. Nucleic Acids Res. 2013, 41, e74. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Jaroszewski, L.; Godzik, A. Tolerating some redundancy significantly speeds up clustering of large protein databases. Bioinformatics 2002, 18, 77–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bairoch, A.; Apweiler, R. The SWISS-PROT protein sequence database and its supplement TrEMBL. Nucleic Acids Res. 2000, 28, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Tatusov, R.L.; Galperin, M.Y.; Natale, D.A.; Koonin, E.V. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000, 28, 33–36. [Google Scholar] [CrossRef] [Green Version]
- Koonin, E.V.; Fedorova, N.D.; Jackson, J.D.; Jacobs, A.R.; Krylov, D.M.; Makarova, K.S.; Mazumder, R.; Mekhedov, S.L.; Nikolskaya, A.N.; Rao, B.S.; et al. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol. 2004, 5, R7. [Google Scholar] [CrossRef] [Green Version]
- Huerta-Cepas, J.; Szklarczyk, D.; Heller, D.; Hernández-Plaza, A.; Forslund, S.K.; Cook, H.; Mende, D.R.; Letunic, I.; Rattei, T.; Jensen, L.J.; et al. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019, 47, D309–D314. [Google Scholar] [CrossRef] [Green Version]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Harris, M.A. Gene ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Goto, S.; Kawashima, S.; Okuno, Y.; Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004, 32, D277–D280. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Jiao, C.; Sun, H.H.; Rosli, H.G.; Pombo, M.A.; Zhang, P.F.; Banf, M.; Dai, X.B.; Martin, G.B.; Giovannoni, L.J.; et al. iTAK: A program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol. Plant 2016, 9, 1667–1670. [Google Scholar] [CrossRef] [Green Version]
- Finn, R.D.; Clements, J.; Eddy, S.R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 2011, 39, W29–W37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Tang, W.; Hu, Y.; Zhang, Y.; Sun, J.; Guo, X.; Lu, H.; Yang, Y.; Fang, C.; Niu, X.; et al. A MYB/bHLH complex regulates tissue-specific anthocyanin biosynthesis in the inner pericarp of red-centered kiwifruit Actinidia chinensis cv. Hongyang. Plant J. 2019, 99, 359–378. [Google Scholar] [CrossRef]
- Bernhardt, C.; Lee, M.M.; Gonzalez, A.; Zhang, F.; Lloyd, A.; Schiefelbein, J. The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root. Development 2003, 130, 6431–6439. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Z.; Wang, X.; Gao, J.; Guo, Y.; Huang, Z.; Du, Y. The tomato Hoffman’s anthocyaninless gene encodes a bHLH transcription factor involved in anthocyanin biosynthesis that is developmentally regulated and induced by low temperatures. PLoS ONE 2016, 11, e0151067. [Google Scholar] [CrossRef] [Green Version]
- Artimo, P.; Jonnalagedda, M.; Arnold, K.; Baratin, D.; Csardi, G.; De Castro, E.; Duvaud, S.; Flegel, V.; Fortier, A.; Gasteiger, E.; et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012, 40, W597–W603. [Google Scholar] [CrossRef]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME suite: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, Y.; Wu, Y.P.; Wang, F.W.; Zhang, L.; Yu, G.; Wang, Y.L.; Zhang, Y. Full-length transcriptome sequencing analysis and characterization of gene isoforms involved in flavonoid biosynthesis in the seedless kiwifruit cultivar ‘Chengxiang’ (Actinidia arguta). Diversity 2022, 14, 424. [Google Scholar] [CrossRef]
- Zhang, C.M.; Hao, Y.J. Advances in genomic, transcriptomic, and metabolomic analyses of fruit quality in fruit Crops. Hortic. Plant J. 2020, 6, 361–371. [Google Scholar] [CrossRef]
- Bai, Y.; Dougherty, L.; Cheng, L.L.; Zhong, G.Y.; Xu, K.N. Uncovering co-expression gene network modules regulating fruit acidity in diverse apples. BMC Genom. 2015, 16, 612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, B.Q.; Liao, L.; Fang, T.; Peng, Q.; Ogutu, C.; Zhou, H.; Ma, F.W.; Han, Y.P. A Ma10 gene encoding P-type ATPase is involved in fruit organic acid accumulation in apple. Plant Biotechnol. J. 2019, 17, 674–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, C.Q.; Liang, B.W.; Chang, B.; Yan, J.Y.; Liu, L.; Wang, Y.; Yang, Y.Z.; Zhao, Z.Y. Transcriptome profiling of anthocyanin biosynthesis in the peel of ‘Granny Smith’ apples (Malus domestica) after bag removal. BMC Genom. 2019, 20, 353. [Google Scholar] [CrossRef]
- He, Z.; Su, Y.; Wang, T.; Wu, H.W.; Zhu, J.F.; Wang, F.Z.; Cao, P.P.; Yang, X.Y.; Zhang, H.X. Full-Length Transcriptome Analysis of Four Different Tissues of Cephalotaxus oliveri. Int. J. Mol. Sci. 2021, 22, 787. [Google Scholar] [CrossRef]
- Chao, Y.; Yuan, J.; Guo, T.; Xu, L.; Mu, Z.; Han, L. Analysis of transcripts and splice isoforms in Medicago sativa L. by single molecule long-read sequencing. Plant Mol. Biol. 2019, 99, 219–235. [Google Scholar] [CrossRef]
- Liu, L.Y.; Teng, K.; Fan, X.F.; Han, C.; Zhang, H.; Wu, J.Y.; Chang, Z.H. Combination analysis of single-molecule long-read and Illumina sequencing provides insights into the anthocyanin accumulation mechanism in an ornamental grass, Pennisetum setaceum cv. Rubrum. Plant Mol. Biol. 2022, 109, 159–175. [Google Scholar] [CrossRef]
- Koch, K. Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 2004, 7, 235–246. [Google Scholar] [CrossRef]
- Xiong, Y.; Yan, P.; Du, K.; Li, M.Z.; Xie, Y.; Gao, P. Nutritional component analyses of kiwifruit in different development stages by metabolomic and transcriptomic approaches. J. Sci. Food Agr. 2020, 100, 2399–2409. [Google Scholar] [CrossRef] [PubMed]
- Claeyssen, E.; Rivoal, J. Plant hexokinase isozymes: Occurrence, properties, and functions. Phytochemistry 2007, 68, 709–731. [Google Scholar] [CrossRef]
- Menu, T.; Saglio, P.; Granot, D.; Dai, N.; Raymond, P.; Ricard, B. High hexokinase activity in tomato fruit perturbs carbon and energy metabolism and reduces fruit and seed size. Plant Cell Environ. 2004, 27, 89–98. [Google Scholar] [CrossRef]
- Fox, T.C.; Green, B.J.; Kennedy, R.A.; Rumpho, M.E. Changes in hexokinase activity in Echinochloa phyllopogon and Echinochloa crus-pavonis in response to abiotic stress. Plant Physiol. 1998, 118, 1403–1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, M.S.; Roche, T.E. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. Faseb J. 1990, 4, 3224–3233. [Google Scholar] [CrossRef] [PubMed]
- Katz, E.; Boo, K.H.; Kim, H.Y.; Eigenheer, R.A.; Phinney, B.S.; Shulaev, V.; Negre-Zakharov, F.; Sadka, A.; Blumwald, E. Label-free shotgun proteomics and metabolite analysis reveal a significant metabolic shift during citrus fruit development. J. Exp. Bot. 2011, 62, 5367–5384. [Google Scholar] [CrossRef] [PubMed]
- Sadka, A.; Dahan, E.; Or, E.; Roose, M.L.; Marsh, K.B.; Cohen, L. Comparative analysis of mitochondrial citrate synthase gene structure, transcript level and enzymatic activity in acidless and acid-containing Citrus varieties. Funct. Plant. Biol. 2001, 28, 383–390. [Google Scholar] [CrossRef]
- Amiour, N.; Imbaud, S.; Clment, G. The use of metabolomics integrated with transcriptomic and proteomic studies for identifying key steps involved in the control of nitrogen metabolism incrops such as maize. Exp. Bot. 2012, 63, 5017–5033. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.X.; Gao, Y.; Han, M.L.; Liu, P.Y.; Yang, C.; Shen, T.; Li, H.H. In vitro anthocyanin induction and metabolite analysis in Malus spectabilis leaves under low nitrogen conditions. Hortic. Plant J. 2020, 6, 284–292. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, F.; Wang, B.; Wu, H.; Wu, J.; Liu, J.; Sun, Y.; Cheng, C.; Qiu, D. Identification, characterization and expression analysis of anthocyanin biosynthesis-related bHLH genes in blueberry (Vaccinium corymbosum L.). Int. J. Mol. Sci. 2021, 22, 13274. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, Y.; Li, L.; Meng, H.; Yang, Y.; Dong, Z.; Wang, L.; Wu, G. Genome-wide identification and characterization of bHLH transcription factors related to anthocyanin biosynthesis in red walnut (Juglans regia L.). Front. Genet. 2021, 12, 632509. [Google Scholar] [CrossRef]
- Wang, X.J.; Peng, X.Q.; Shu, X.C.; Li, Y.H.; Wang, Z.; Zhuang, W.B. Genome-wide identifcation and characterization of PdbHLH transcription factors related to anthocyanin biosynthesis in colored-leaf poplar (Populus deltoids). BMC Genom. 2022, 23, 244. [Google Scholar]
- Feller, A.; Machemer, K.; Braun, E.L.; Grotewold, E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J. 2011, 66, 94–116. [Google Scholar] [CrossRef]
Item | Platform | Number of Sequences |
---|---|---|
Circular consensus sequences (CCSs) | SMRT | 175,913 |
Full-length non-chimeric (FLNC) reads | SMRT | 124,789 |
High-quality consensus sequence | IsoSeq | 71,637 |
Transcripts | CD-HIT | 52,793 |
KEGG ID | Enzyme | Gene ID | Enzyme Code | Gene Number |
---|---|---|---|---|
Carbohydrate metabolism | ||||
K00025 | malate dehydrogenase | MDH | EC:1.1.1.37 | 10 |
K00026 | malate dehydrogenase | MDH | EC:1.1.1.37 | 32 |
K00030 | isocitrate dehydrogenase (NAD+) | IDH | EC:1.1.1.41 | 23 |
K00031 | isocitrate dehydrogenase | ICD | EC:1.1.1.42 | 11 |
K00051 | malate dehydrogenase (NADP+) | MDH | EC:1.1.1.82 | 4 |
K00052 | 3-isopropylmalate dehydrogenase | IPMDH | EC:1.1.1.85 | 4 |
K00134 | glyceraldehyde 3-phosphate dehydrogenase | GAPD | EC:1.2.1.12 | 27 |
K00161 | pyruvate dehydrogenase E1 component alpha subunit | PDHE1 | EC:1.2.4.1 | 14 |
K00162 | pyruvate dehydrogenase E1 component beta subunit | PDHE1 | EC:1.2.4.1 | 13 |
K00164 | 2-oxoglutarate dehydrogenase E1 component | OGDH | EC:1.2.4.2 | 5 |
K00234 | succinate dehydrogenase (ubiquinone) flavoprotein subunit | SDH | EC:1.3.5.1 | 4 |
K00235 | succinate dehydrogenase (ubiquinone) iron-sulfur subunit | SDH | EC:1.3.5.1 | 6 |
K00382 | dihydrolipoamide dehydrogenase | DLD | EC:1.8.1.4 | 12 |
K00627 | pyruvate dehydrogenase E2 component (dihydrolipoamide acetyltransferase) | PDHE2 | EC:2.3.1.12 | 12 |
K00658 | 2-oxoglutarate dehydrogenase E2 component (dihydrolipoamide succinyltransferase) | OGDH | EC:2.3.1.61 | 8 |
K00811 | aspartate aminotransferase, chloroplastic | AAT | EC:2.6.1.1 | 4 |
K00814 | alanine transaminase | ALT | EC:2.6.1.2 | 9 |
K00831 | phosphoserine aminotransferase | PSAT | EC:2.6.1.52 | 6 |
K00844 | hexokinase | HK | EC:2.7.1.1 | 17 |
K00850 | 6-phosphofructokinase 1 | PFK1 | EC:2.7.1.11 | 16 |
K00873 | pyruvate kinase | PK | EC:2.7.1.40 | 43 |
K00927 | phosphoglycerate kinase | PGK | EC:2.7.2.3 | 14 |
K01438 | acetylornithine deacetylase | AOD | EC:3.5.1.16 | 1 |
K01623 | fructose-bisphosphate aldolase, class I | FBPA | EC:4.1.2.13 | 29 |
K01647 | citrate synthase | CS | EC:2.3.3.1 | 11 |
K01679 | fumarate hydratase, class II | FH | EC:4.2.1.2 | 4 |
K01681 | aconitate hydratase | ACON | EC:4.2.1.3 | 15 |
K01689 | enolase | ENO | EC:4.2.1.11 | 19 |
K01810 | glucose-6-phosphate isomerase | GPI | EC:5.3.1.9 | 13 |
K01834 | 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase | BdpM | EC:5.4.2.11 | 2 |
K01899 | succinyl-CoA synthetase alpha subunit | SCS | EC:6.2.1.4 6.2.1.5 | 4 |
K01900 | succinyl-CoA synthetase beta subunit | SCS | EC:6.2.1.4 6.2.1.5 | 3 |
K05298 | glyceraldehyde-3-phosphate dehydrogenase (NADP+) (phosphorylating) | GAPDH | EC:1.2.1.13 | 30 |
K14272 | glutamate-glyoxylate aminotransferase | GGAT | EC:2.6.1.4 2.6.1.2 2.6.1.44 | 11 |
K14454 | aspartate aminotransferase, cytoplasmic | AST | EC:2.6.1.1 | 4 |
K14455 | aspartate aminotransferase, mitochondrial | AST | EC:2.6.1.1 | 5 |
K15633 | 2,3-bisphosphoglycerate-independent phosphoglycerate mutase | iPGAM | EC:5.4.2.12 | 11 |
K15634 | probable phosphoglycerate mutase | PGAM | EC:5.4.2.12 | 5 |
Amino acids metabolism | ||||
K00615 | transketolase | TKT | EC:2.2.1.1 | 18 |
K01736 | chorismate synthase | CS | EC:4.2.3.5 | 14 |
K01850 | chorismate mutase | CM | EC:5.4.99.5 | 7 |
K00815 | tyrosine aminotransferase | TAT | EC:2.6.1.5 | 6 |
K15227 | arogenate dehydrogenase (NADP+), plant | ADH | EC:1.3.1.78 | 9 |
K01079 | phosphoserine phosphatase | PSP | EC:3.1.3.3 | 2 |
K00600 | glycine hydroxymethyltransferase | GHMT | EC:2.1.2.1 | 52 |
K01620 | threonine aldolase | TA | EC:4.1.2.48 | 2 |
K01738 | cysteine synthase A | CS | EC:2.5.1.47 | 14 |
K13034 | L-3-cyanoalanine synthase/cysteine synthase | CAS/CS | EC:2.5.1.47 4.4.1.9 | 1 |
K01687 | dihydroxy-acid dehydratase | DHAD | EC:4.2.1.9 | 3 |
K00826 | branched-chain amino acid aminotransferase | BCAA | EC:2.6.1.42 | 11 |
K00620 | glutamate N-acetyltransferase/amino-acid N-acetyltransferase | NAT | EC:2.3.1.35 2.3.1.1 | 3 |
K14682 | amino-acid N-acetyltransferase | DNT | EC:2.3.1.1 | 1 |
K14677 | aminoacylase | ACY | EC:3.5.1.14 | 4 |
K00611 | ornithine carbamoyltransferase | OCT | EC:2.1.3.3 | 3 |
K01755 | argininosuccinate lyase | ASL | EC:4.3.2.1 | 3 |
K13832 | 3-dehydroquinate dehydratase/shikimate dehydrogenase | DQD/SDH | EC:4.2.1.10 1.1.1.25 | 16 |
Name | Transcript ID | Homologous Gene Name | Protein ID | Identity/% | CDS Length/bp | Protein Size/aa | Molecular Weight/Da | Isoelectric Points | Location |
---|---|---|---|---|---|---|---|---|---|
AabHLH15 | dazi_transcript_50917 | AcbHLH42 (A. chinensis) | QAT77714.1 | 93.68 | 2333 | 520 | 57,493.60 | 5.06 | Nuclear |
AabHLH10 | dazi_transcript_36784 | AtEGL3,AtGL3 (A. thaliana) | NP_001185302.1 | 53.85 | 1352 | 290 | 31,530.91 | 5.82 | Nuclear |
AabHLH39 | dazi_transcript_65784 | AtTT8 (A. thaliana) | NP_192720.2 | 53.33 | 3439 | 138 | 14,914.02 | 9.89 | Nuclear |
AabHLH8 | dazi_transcript_66315 | AtEGL3, AtGL3 (A. thaliana) | NP_001185302.1 | 52.00 | 2157 | 175 | 19,926.09 | 5.70 | Nuclear |
AabHLH9 | dazi_transcript_54058 | AtEGL3, AtGL3 (A. thaliana) | NP_001185302.1 | 51.92 | 1327 | 289 | 31,609.09 | 5.23 | Nuclear |
AabHLH7 | dazi_transcript_27074 | AtEGL3, AtTT8 (A. thaliana) | NP_001332706.1 | 50.00 | 1132 | 273 | 30,150.45 | 5.89 | Nuclear |
AabHLH4 | dazi_transcript_70053 | SlAH (S. lycopersicum) | ALC74034.1 | 50.94 | 1661 | 320 | 35,826.42 | 5.88 | Nuclear |
AabHLH13 | dazi_transcript_71260 | SlAH (S. lycopersicum) | ALC74034.1 | 50.00 | 1821 | 317 | 35,412.00 | 5.88 | Nuclear |
AabHLH25 | dazi_transcript_56358 | SlAH (S. lycopersicum) | ALC74034.1 | 56.25 | 1630 | 259 | 28,501.88 | 6.33 | Nuclear |
AabHLH31 | dazi_transcript_47866 | SlAH (S. lycopersicum) | ALC74034.1 | 56.25 | 1535 | 264 | 29,028.87 | 9.19 | Nuclear |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Y.; Zhang, Y.; Zhang, L.; Wang, F.; Yu, G.; Wang, Y.; Kang, X.; Wu, Y. Characterization and Analysis of the Full-Length Transcriptome Provide Insights into Fruit Quality Formation in Kiwifruit Cultivar Actinidia arguta cv. Qinziyu. Agronomy 2023, 13, 143. https://doi.org/10.3390/agronomy13010143
Jia Y, Zhang Y, Zhang L, Wang F, Yu G, Wang Y, Kang X, Wu Y. Characterization and Analysis of the Full-Length Transcriptome Provide Insights into Fruit Quality Formation in Kiwifruit Cultivar Actinidia arguta cv. Qinziyu. Agronomy. 2023; 13(1):143. https://doi.org/10.3390/agronomy13010143
Chicago/Turabian StyleJia, Yun, Ying Zhang, Lei Zhang, Fengwei Wang, Gang Yu, Yaling Wang, Xiaoyan Kang, and Yongpeng Wu. 2023. "Characterization and Analysis of the Full-Length Transcriptome Provide Insights into Fruit Quality Formation in Kiwifruit Cultivar Actinidia arguta cv. Qinziyu" Agronomy 13, no. 1: 143. https://doi.org/10.3390/agronomy13010143
APA StyleJia, Y., Zhang, Y., Zhang, L., Wang, F., Yu, G., Wang, Y., Kang, X., & Wu, Y. (2023). Characterization and Analysis of the Full-Length Transcriptome Provide Insights into Fruit Quality Formation in Kiwifruit Cultivar Actinidia arguta cv. Qinziyu. Agronomy, 13(1), 143. https://doi.org/10.3390/agronomy13010143